Classical operators on weighted Banach spaces of entire functions

José Bonet

Workshop in Complex and Harmonic Analysis
(Málaga, March 11-14, 2013)

On joint work with María José Beltrán and Carmen Fernández
Investigate the dynamics of the operators of

Differentiation: \(Df := f' \)

Integration: \(Jf(z) := \int_0^z f(\xi) d\xi, \ z \in \mathbb{C} \)

on weighted Banach spaces of entire functions.

- \(D \) and \(J \) are continuous on \((H(\mathbb{C}), \text{co})\), where \(\text{co} \) denotes the compact-open topology.
- \(DJf = f \) and \(JDf(z) = f(z) - f(0) \ \forall f \in H(\mathbb{C}), \ z \in \mathbb{C} \).
Weights

A weight v on \mathbb{C} is a strictly positive continuous function on \mathbb{C} which is radial, i.e. $v(z) = v(|z|)$, $z \in \mathbb{C}$, $v(r)$ is non-increasing on $[0, \infty[$ and rapidly decreasing, that is, it satisfies $\lim_{r \to \infty} r^n v(r) = 0$ for each $n \in \mathbb{N}$.

For $r \geq 0$ and $f \in \mathcal{H}(\mathbb{C})$, consider

$$M_p(f, r) := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt \right)^{1/p}$$

for $1 \leq p < \infty$ and

$$M_\infty(f, r) := \sup_{|z|=r} |f(z)|, \ r \geq 0.$$

Note that for each $1 \leq p < \infty$ and each $n \in \mathbb{N}$, we have

$$M_p(z^n, r) = M_\infty(z^n, r) \text{ for each } r > 0.$$
For a weight v and $1 \leq p \leq \infty$, set

$$B_{p,\infty}(v) := \{ f \in H(\mathbb{C}) : \sup_{r > 0} v(r) M_p(f, r) < \infty \}$$

and

$$B_{p,0}(v) := \{ f \in H(\mathbb{C}) : \lim_{r \to \infty} v(r) M_p(f, r) = 0 \}.$$

Both are Banach spaces with the norm

$$|||f|||_{p,v} := \sup_{r > 0} v(r) M_p(f, r).$$

In case $p = \infty$, these spaces are usually denoted by $H^\infty_v(\mathbb{C})$ and $H^0_v(\mathbb{C})$, respectively.

We have

$$B_{p,0}(v) \subseteq B_{p,\infty}(v) \subseteq B_{1,\infty}(v) \subseteq H(\mathbb{C})$$

with continuous inclusions for every $1 \leq p \leq \infty$.

José Bonet
Classical operators on weighted Banach spaces of entire functions
Structure of the spaces

- The polynomials are included in $B_{p,0}(v)$ for all $1 \leq p \leq \infty$ and they are even dense. In particular, $B_{p,0}(v)$ is separable.

- For $1 < p < \infty$, the monomials are a Schauder basis of $B_{p,0}(v)$, but this is not satisfied in general for $p \in \{1, \infty\}$.

- For every $1 \leq p \leq \infty$ the bidual of $B_{p,0}(v)$ is isometrically isomorphic to $B_{p,\infty}(v)$.
The space $H_v^\infty(\mathbb{C}) = B_{\infty,\infty}(v)$ is isomorphic either to H^∞ or to ℓ_∞. The characterization is in terms of a technical condition on the weight v.

The space $H_v^0(\mathbb{C}) = B_{\infty,0}(v)$ has a basis.
Weighted spaces for exponential weights

Let $1 \leq p \leq \infty$. The space $B_{p,q}(a,\alpha)$, $q = 0$ or $q = \infty$, denotes the Bergman space associated to the following weight:

- $v_{a,\alpha}(r) = e^{-\alpha}$, $r \in [0,1]$, $v_{a,\alpha}(r) = r^a e^{-\alpha r}$, $r \geq 1$, if $a < 0$ and $v_{a,\alpha}(r) = (a/\alpha)^a e^{-a}$, $r \in [0,a/\alpha]$, $v_{a,\alpha}(r) = r^a e^{-\alpha r}$, $r \geq a/\alpha$, if $a > 0$.

- In case $a = 0$, $v_{0,\alpha}(r) = e^{-\alpha r}$, and we write $B_{p,q}(\alpha)$.

The norms will be denoted by $|||_{p,a,\alpha}$ and $|||_{p,\alpha}$. If, in addition, $p = \infty$, we simply write $|||_{a,\alpha}$ and $|||_{\alpha}$.

Especially important for us are $H^\infty_\alpha(\mathbb{C}) := B_{\infty,\infty}(\alpha)$ and $H^0_\alpha(\mathbb{C}) := B_{\infty,0}(\alpha)$.
Exponential functions in the space

The following result is useful in connection with the existence of periodic points for the operators of integration or differentiation.

Proposition (Bonet, Bonilla)

The following conditions are equivalent for a weight \(v \) and \(1 \leq p \leq \infty \):

(i) \(\{e^{\theta z} : |\theta| = 1\} \subset B_{p,0}(v) \).

(ii) There is \(\theta \in \mathbb{C}, |\theta| = 1 \), such that \(e^{\theta z} \in B_{p,0}(v) \).

(iii) \(\lim_{r \to \infty} v(r) \frac{e^r}{r^{2p}} = 0 \).
For a Banach space X, we write

$$\mathcal{L}(X) := \{ T : X \to X \text{ linear and continuous } \}.$$

Given $T \in \mathcal{L}(X)$, the pair (X, T) is a linear dynamical system.

Definitions

- Let $x \in X$. The *orbit of x under T* is the set

 $$\text{Orb}(x, T) := \{ x, Tx, T^2x, \ldots \} = \{ T^n x : n \geq 0 \}.$$

- $x \in X$ is a *periodic point* if $\exists n \in \mathbb{N}$ such that $T^n x = x$.
For a Banach space X and $T \in \mathcal{L}(X)$, we say

Definitions

- T **topologically mixing** $\iff \forall U, V \neq \emptyset$ open, $\exists n_0 : T^n U \cap V \neq \emptyset$ \forall n \geq n_0$.
- T **hypercyclic** $\iff \exists x \in X, \text{Orb}(T, x) := \{x, Tx, T^2x, \ldots \}$ is dense in $X \Rightarrow X$ separable.

Definition (Godefroy, Shapiro)

T is **chaotic** if
- T has a dense set of periodic points,
- T is hypercyclic.
Dynamics of linear operators

For a Banach space X and $T \in \mathcal{L}(X)$, we define

Definitions

- T *power bounded* $\iff \sup_n \|T^n\| < \infty$
- T *Cesàro power bounded* $\iff \sup_n \left\| \frac{1}{n} \sum_{k=1}^{n} T^k \right\| < \infty$
- T *mean ergodic* \iff
 \[
 \forall x \in X, \ \exists P_x := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} T^k x \in X
 \]
- T *uniformly mean ergodic* \iff
 \[
 \left\{ \frac{1}{n} \sum_{k=1}^{n} T^k \right\}_n
 \]
 converges in the operator norm.
Classical results

Theorem. Mac Lane (1952).

\(D : H(\mathbb{C}) \to H(\mathbb{C}) \) is hypercyclic, i.e.,

\[\exists f_0 \in H(\mathbb{C}) : \forall f \in H(\mathbb{C}), \exists (n_k)_k \subseteq \mathbb{N} \text{ such that} \]

\[f_0^{(n_k)} \to f \text{ uniformly on compact sets.} \]

Proposition.

The integration operator \(J : H(\mathbb{C}) \to H(\mathbb{C}) \) is not hypercyclic. In fact, for each \(f \in H(\mathbb{C}) \), the sequence \((J^nf)_n\) converges to 0 in \(H(\mathbb{C}) \).
\mathcal{P} is the space of polynomials.

Proposition.

Let $T : (\mathcal{H}(\mathbb{C}), \tau_{co}) \to (\mathcal{H}(\mathbb{C}), \tau_{co})$ be a continuous linear operator such that $T(\mathcal{P}) \subset \mathcal{P}$, let v be a weight and $1 \leq p \leq \infty$. The following conditions are equivalent:

1. $T(B_{p,\infty}(v)) \subset B_{p,\infty}(v)$.
2. $T : B_{p,\infty}(v) \to B_{p,\infty}(v)$ is continuous.
3. $T(B_{p,0}(v)) \subset B_{p,0}(v)$.
4. $T : B_{p,0}(v) \to B_{p,0}(v)$ is continuous.

Moreover, in this case the norm and the spectrum of the operators coincide.

Harutyunyan, Lusky, 2008: The continuity of D and J on $H^{\infty}_v(\mathbb{C})$ is determined by the growth or decline of $v(r)e^{\alpha r}$ for some $\alpha > 0$ in an interval $[r_0, \infty[$.
Proposition.

Let \(v \) be a weight function such that \(\sup_{r>0} \frac{v(r)}{v(r+1)} < \infty \) and let \(1 \leq p \leq \infty \). Then the differentiation operators \(D : B_{p,\infty}(v) \rightarrow B_{p,\infty}(v) \) and \(D : B_{p,0}(v) \rightarrow B_{p,0}(v) \) are continuous.

Proposition.

Let \(v \) be a weight such that \(v(r) = e^{-\alpha r} \) for some \(\alpha > 0 \) and let \(1 \leq p \leq \infty \). The operator \(J \) is continuous on \(B_{p,\infty}(v) \) and \(B_{p,0}(v) \) with \(\|\|J^n\|\|_{p,v} = 1/\alpha^n \) for each \(n \).
Proposition.
Assume that the integration operator $J : B_{p,0}(v) \to B_{p,0}(v)$ is continuous for some $1 \leq p \leq \infty$. The operator J is not hypercyclic and it has no periodic points different from 0.

Theorem (Bonet, Bonilla)
Assume that the differentiation operator $D : B_{p,0}(v) \to B_{p,0}(v)$ is continuous for some $1 \leq p \leq \infty$. The following conditions are equivalent:

(i) $D : B_{p,0}(v) \to B_{p,0}(v)$ satisfies the hypercyclicity criterion.
(ii) $D : B_{p,0}(v) \to B_{p,0}(v)$ is hypercyclic.
(iii) $\lim \inf_{n \to \infty} \frac{\|z^n\|_{\infty,v}}{n!} = 0$
Theorem (Bonet, Bonilla)

Assume that the differentiation operator $D : B_{p,0} \to B_{p,0}$ is continuous for some $1 \leq p \leq \infty$. The following conditions are equivalent:

(i) $D : B_{p,0}(v) \to B_{p,0}(v)$ is mixing.

(ii) $\lim_{n \to \infty} \frac{\|z^n\|_{\infty,v}}{n!} = 0$.

Theorem (Bonet, Bonilla)

Let v be a weight function such that the differentiation operator $D : B_{p,0} \to B_{p,0}$ is continuous for some $1 \leq p \leq \infty$. The following conditions are equivalent:

(i) $D : B_{p,0}(v) \to B_{p,0}(v)$ is chaotic.

(ii) $D : B_{p,0}(v) \to B_{p,0}(v)$ has a periodic point different from 0.

(iii) $\lim_{r \to \infty} v(r) \frac{e^r}{r^{2p}} = 0$.

José Bonet

Classical operators on weighted Banach spaces of entire functions
Corollary.

The operator $D : B_{\infty,0}(a, \alpha) \to B_{\infty,0}(a, \alpha)$ satisfies

- $0 < \alpha < 1 \implies D$ is not hypercyclic and has no periodic point different from 0.

- $\alpha = 1 \implies$ if $a < 1/2$, then D is topologically mixing, and if $a \geq 1/2$, D is not hypercyclic. It has no periodic point different from 0 iff $a \geq 0$.

- $\alpha > 1 \implies D$ is chaotic and topologically mixing.
From now on, to simplify the notation and the exposition, we will concentrate on the operators D and J defined on the spaces $H^\infty_v(\mathbb{C}) = B_{\infty,\infty}(v)$ and $H^0_v(\mathbb{C}) = B_{\infty,0}(v)$.

More general results are available, but will not be mentioned in the lecture.
If \(v(r) = r^a e^{-\alpha r} \) (\(\alpha > 0, \ a \in \mathbb{R} \)) for \(r \geq r_0 \):

\[
\|z^n\|_{a,\alpha} \approx \left(\frac{n+a}{e\alpha} \right)^{n+a}, \text{ with equality for } a = 0.
\]

Proposition.

For \(a > 0 \):

\[
\|D^n\|_{a,\alpha} = O \left(n! \left(\frac{e\alpha}{n-a} \right)^{n-a} \right) \quad \text{and} \quad n! \left(\frac{e\alpha}{n+a} \right)^{n+a} = O(\|D^n\|_{a,\alpha}).
\]

For \(a \leq 0 \):

\[
\|D^n\|_{a,\alpha} \approx n! \left(\frac{e\alpha}{n+a} \right)^{n+a}
\]

and the equality holds for \(a = 0 \).
Proposition.

For every $\alpha > 0$ and $a \in \mathbb{R}$, the spectrum $\sigma_{a,\alpha}(D) = \alpha \overline{D}$.

Proposition.

Let ν be a weight such that D is continuous on $H^\infty_v(\mathbb{C})$ and that $\nu(r)e^{\alpha r}$ is non increasing for some $\alpha > 0$. If $|\lambda| < \alpha$, the operator $D - \lambda I$ is surjective on $H^\infty_v(\mathbb{C})$ and on $H^0_v(\mathbb{C})$ and it even has a continuous linear right inverse

$$K_\lambda f(z) := e^{\lambda z} \int_0^z e^{-\lambda \xi} f(\xi) d\xi, \quad z \in \mathbb{C}.$$

This was proved by Atzmon, Brive (2006) for $a = 0$.
Proposition.

For the weight $v(r) = r^a e^{-\alpha r}$ ($\alpha > 0$, $a \in \mathbb{R}$) for r big enough, we have

- $\|J^n\|_{a,\alpha} \cong 1/\alpha^n$, with the equality for $a = 0$.

- $\sigma_{a,\alpha}(J) = (1/\alpha)\mathbb{D}$.

- $J - \lambda I$ is not surjective on $B_{\infty,\infty}(a, \alpha)$ or $B_{\infty,0}(a, \alpha)$ if $|\lambda| \leq 1/\alpha$.
Proposition.

Let $T = D$ or $T = J$ and assume $T : H^\infty_v(\mathbb{C}) \to H^\infty_v(\mathbb{C})$ is continuous. The following conditions are equivalent:

(i) $T : H^\infty_v(\mathbb{C}) \to H^\infty_v(\mathbb{C})$ is uniformly mean ergodic.

(ii) $T : H^0_v(\mathbb{C}) \to H^0_v(\mathbb{C})$ is uniformly mean ergodic.

(iii) $\lim_{N \to \infty} \|T + \cdots + T^N\|_v = 0$.

Moreover, if $1 \in \sigma_v(T)$, then T is not uniformly mean ergodic.
Mean ergodicity. Two useful results.

Theorem (Lin)

Let $T \in \mathcal{L}(X)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ uniformly mean ergodic } \iff (I - T)X \text{ is closed}.$$

Theorem (Lotz)

Let $T \in \mathcal{L}(H_\alpha^\infty)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ mean ergodic } \iff T \text{ uniformly mean ergodic}.$$

H_α^∞ is a Grothendieck Banach space with the Dunford-Pettis property, since it is isomorphic to ℓ_∞ by a result due to Galbis.
Recall

\[f \in H^\infty_\alpha(\mathbb{C}) \iff \sup_{z \in \mathbb{C}} |f(z)| \exp(-\alpha |z|) < \infty \]

and

\[f \in H^0_\alpha(\mathbb{C}) \iff \lim_{|z| \to \infty} |f(z)| \exp(-\alpha |z|) = 0. \]
Mean ergodicity of the differentiation operator.

Theorem.

Let \(v(r) = e^{-\alpha r}, \ r \geq 0. \)

- \(D \) is power bounded on \(H^\infty_\alpha(\mathbb{C}) \) or \(H^0_\alpha(\mathbb{C}) \) if and only if \(\alpha < 1. \)
- \(D \) is uniformly mean ergodic on \(H^\infty_\alpha(\mathbb{C}) \) and \(H^0_\alpha(\mathbb{C}) \) if \(\alpha < 1. \)
- \(D \) not mean ergodic if \(\alpha > 1, \) and
- \(D \) is not mean ergodic on \(H^\infty_1(\mathbb{C}) \) and not uniformly mean ergodic on \(H^0_1(\mathbb{C}). \)
Theorem.

Let $\nu(r) = e^{-\alpha r}$, $r \geq 0$.

- J is never hypercyclic.
- J is power bounded on $H^\infty_\alpha(\mathbb{C})$ or $H^0_\alpha(\mathbb{C})$ if and only if $\alpha \geq 1$.
- If $\alpha > 1$, J is uniformly mean ergodic on $H^\infty_\alpha(\mathbb{C})$ and $H^0_\alpha(\mathbb{C})$.
- J is not mean ergodic on these spaces if $\alpha < 1$.
- If $\alpha = 1$, then J is not mean ergodic on $H^\infty_1(\mathbb{C})$, and mean ergodic but not uniformly mean ergodic on $H^0_1(\mathbb{C})$.
<table>
<thead>
<tr>
<th></th>
<th>$0 < \alpha < 1$</th>
<th>$\alpha = 1$</th>
<th>$\alpha > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power bounded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hypercyclic on H^0_α</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Mean ergodic on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H^∞_α</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$0 < \alpha < 1$</th>
<th>$\alpha = 1$</th>
<th>$\alpha > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power bounded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hypercyclic on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Top. mixing on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Chaotic on H^0_α</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H^0_α</td>
<td>yes</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>Mean ergodic on H^∞_α</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
(1) Is the operator of differentiation D mean ergodic on $H^0_1(\mathbb{C})$?

In other words:

Assume that $f \in H(\mathbb{C})$ satisfies $\lim_{|z| \to \infty} |f(z)| \exp(-|z|) = 0$. Does it follow that

$$\lim_{n \to \infty} \frac{1}{n} \sup_{z \in \mathbb{C}} |f'(z) + \cdots + f^{(n)}(z)| \exp(-|z|) = 0?$$
(2) Are there mean ergodic operators on a separable Banach space that are hypercyclic?

It is clear that no power bounded operator can be hypercyclic. However, there are examples of mean ergodic operators T on a Banach space such that the sequence $(\|T^n\|)_n$ tends to infinity. Classical examples are due to Hille in 1945. A general construction was presented by Tomilov and Zemanek in 2004.

