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Abstract

We obtain full description of eigenvalues and eigenvectors of composition operators Cφ :
A (R) → A (R) for a real analytic self map φ : R → R as well as an isomorphic description
of corresponding eigenspaces. We completely characterize those φ for which Abel’s equation
f ◦φ = f+1 has a real analytic solution on the real line. We find cases when the operator Cφ

has roots using a constructed embedding of φ into so-called real analytic iteration semigroups.

1 Introduction and Preliminaries.

Let φ : R → R be a non-constant real analytic map and let A (R) be the space of real analytic
functions defined on R. Each symbol φ : R → R defines a composition operator Cφ : A (R) →
A (R) by Cφ(f) := f ◦ φ, f ∈ A (R). When A (R) is endowed with its natural locally convex
topology (see below), Cφ is a continuous linear operator on A (R). The first purpose of this article
is to determine the eigenvalues and eigenvectors of composition operators Cφ : A (R) → A (R).

Of course, this is just to find a solution f of the equation

(1) Cφ(f) = λf for λ ∈ C.

This is a very classical topic. The equation appeared probably for the first time already in 1871
in a paper of Schröder [38] and was partially solved in 1884 in a paper of Königs [33] also for real
analytic functions. That is why (1) is often called the Schröder equation. There is an impressive
bibliography of the subject (see [34, Chapter 6], [35, Chapter 9] and citations therein or a survey
paper [8, Sec. 8], as well papers on the holomorphic case [18], [40], [41]) but, in spite of extensive
literature inquires, we could not find any known complete solution of the problem in our setting.
The first main result of the paper provides such a full solution describing also corresponding
eigenspaces (later on we also describe the eigenfunctions). In the rest of the article we denote
id (x) = x, x ∈ R, and, for a map φ : R → R, we write φ[0] = id and φ[n] for the n-times
composition of φ, n ∈ N.

Theorem A Let φ : R → R be a real analytic map. Then the map Cφ : A (R) → A (R) has
the following set of eigenvalues:

(a) C\{0} whenever either φ > id and the set of critical points of φ is bounded from above or
φ < id and the set of critical points is bounded from below — in this case every eigenspace
is topologically isomorphic to A (T);

12010 Mathematics Subject Classification. Primary: 47B33, 46E10. Secondary: 47A16, 47A38.
Key words and phrases: Spaces of real analytic functions, composition operator, eigenvalues and eigenvectors,

spectrum, Abel’s functional equation, iteration semigroup, iteration root.

1



(b) {(φ′(u))n : n = 0, 1, 2, . . . } whenever φ[2] has exactly one fixed point u and one of the
following cases hold:

• 0 < |φ′(u)| < 1,

• 1 < |φ′(u)| and φ has no critical points

— in this case eigenspaces are one-dimensional of the form span{fn} where f is an eigen-
vector of Cφ with the eigenvalue φ′(u);

(c) {1,−1} whenever φ[2] = id ̸= φ — in this case the whole space is a direct sum of
eigenspaces and each of them is isomorphic to the space A+(R) of even real analytic func-
tions on R;

(d) {1} whenever φ = id — in this case the whole space A (R) is an eigenspace;

(e) {1} in all other cases — the eigenspace is one dimensional and consists of constant func-
tions.

In cases (a) and (b) the closed linear span of all eigenspaces is equal to A (R) if and only if φ
has no critical points.

The fact that for φ with a fixed point u the eigenvalues λ are powers of φ′(u) was already
known to Königs (comp. [32, Satz 3]) who also proved local existence in the case (b). Since
under the assumption of (b) in that case the attraction basin of the fixed point u is the whole
R, then this particular case above is known (see for instance [34, Th. 6.4, 6.5], comp. [32, Satz
1]). The case (c) is also known see [34, Th. 6.10]. Part (a) is closely related to the so-called
Abel equation

(2) Cφ(f) = f + 1.

In fact any solution f to the Abel equation produces a solution g, g(x) := exp(log(λ)f(x)) of
the Schröder equation for any λ ̸= 0 see [32, p. 57]. The part (a) of Theorem A above is
a consequence of our second main result characterizing when the Abel equation is solvable in
A (R) (in view of the above remarks this case contains the main novelty in Theorem A).

Theorem B Let φ : R → R be a real analytic map. Then the Abel equation

f(φ(x)) = f(x) + 1 for every x ∈ R

has a real analytic solution f : R → C if and only if φ has no fixed points and the set of critical
points of φ is bounded from above (in case φ > id ) or from below (in case φ < id ). Moreover,
in that case there is a real analytic solution f0 : R → R such that its set of critical points is
bounded from above (in case φ > id ) or from below (in case φ < id ) and for every such f0 each
solution f of the Abel equation is of the form f(x) = f0(x) + g ◦ f0(x), where g : R → R is an
arbitrary 1-periodic real analytic function.

The Abel equation is another classical subject. It was probably mentioned for the first time
by Abel in his note [1] published posthumously (comp. also [45]) when a relation between f
and f0 as above was given in the case of strictly increasing solutions of the Abel equation with
some additional assumptions on g. There is also a broad literature about the equation in various
function classes [34, Chapter 7] or [8, Sec. 9]. There are also recent papers [45], [46], and papers
on the holomorphic case, see for instance [18], [17], [15], [16]. So far the Abel equation was
solved in real analytic functions globally on R for φ = exp by Kneser (see [32, p. 64], comp. also
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a series of papers of Walker [48]–[51] for φ(x) = exp(x)− 1 or φ(x) = exp(bx) inspired partially
by numerical analysis) and there was a characterization of real analytic diffeomorphisms φ for
which the Abel equation is solvable (iff φ has no fixed point, see [10, Main Theorem], comp. [11,
Th. 3.6]). In [9, Th. 1.4, Cor. 4.2] it was proved that a necessary condition for real analytic
solvability of the Abel equation is that all compact sets K ⊂ R are wandering, i.e., that there
is ν ∈ N such that for n,m ∈ N, |n −m| > ν holds φ[n](K) ∩ φ[m](K) = ∅. This condition is
strictly weaker than the condition we found.

The motivation of Kneser [32] for solving the Abel equation comes form his problem of
finding an iteration root of exp, i.e., of a real analytic function r such that r[2] = exp. This
is a folklore that if f is an invertible solution of the Abel or Schröder equations (λ > 0) then
G(t, x) = f−1(f(x) + t) or G(t, x) = f−1(λtf(x)), respectively, is a so-called real analytic
iteration semigroup in which φ embeds, i.e., G is real analytic satisfying the following conditions

G : (R+ ∪ {0}) × R → R, G(t+ s, x) = G(t, G(s, x)), G(n, x) = φ[n](x), for n = 0, 1, . . . .

Clearly, r(x) = G(1/2, x) is the required root. We prove the third main result of the paper:

Theorem C A real analytic map φ : R → R embeds into a real analytic iteration semigroup
whenever φ has no critical points and either φ has no fixed points or φ[2] has exactly one fixed
point u and 0 < φ′(u) ̸= 1. In particular in that case there exist roots of the operator Cφ of
arbitrary order.

The notion of an iteration semigroup appears (and it is extensively studied) in [35, Ch. 9]
and its group analogue in [34, Ch. 9] but the concept itself is much older, see for instance, [29,
p. 194-195]. So far it was known that every real analytic diffeomorphism φ without fixed points
embeds into a real analytic iteration semigroup [11, Th. 2.20], but if real analytic φ has no fixed
and critical points then there are real analytic iteration roots of arbitrary order [11, Th. 2.20].
On the other hand, there is no real analytic iteration root for φ(x) = exp(x)− 1 [34, Th. 15.13],
for more information see a series of papers of Baker [2]–[7] and a paper of Szekeres [44]. For
iteration roots we also have a broad literature: see [34, Chapter 15], [8, Sec. 2].

The composition operator is definitely one of the most natural linear operators of analysis
and there is an extensive literature on that subject: see the monographs in case of spaces of
holomorphic functions [19], [39] and the papers on a real analytic case [20], [21], [22], [23], [24],
[13], [14]. For a literature on the space of real analytic functions see a recent survey [20]. The
paper is closely related to questions of real analytic (nonlinear) dynamics of one variable see
[11] which in turn is connected with its holomorphic counterpart [37]. For the theory of one-
dimensional manifolds we refer to [47] although the results are very classical and known much
earlier. For functional analytic tools see [36].

Now, we present the organization of the paper in which we look at the considered problems
from the functional analytic or operator theoretical point of view. We discuss in Section 2 the
case when the self map φ has fixed points. Our main result is Theorem 2.9, that gives a complete
picture of the eigenvalues and eigenvectors of the composition operator Cφ : A (R) → A (R)
when φ has fixed points. Section 3 studies the case when φ has no fixed points and Theorem
3.11 gives several characterization of those self maps φ : R → R such that the Abel equation
(or a specific Schröder equation) has a real analytic solution. The method used is inspired by
the method used in [10] (comp. [9]) via the orbit space R/φ of the real analytic map φ. Our
approach allow us to give in Section 4 Theorem 4.2 a characterization of fixed point free φ which
embeds into a real analytic iteration semigroup and give some sufficient conditions for in the
case of φ with fixed points (Proposition 4.3). This implies an extension of Kneser’s [32] and
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Belitskii–Tkachenko’s [11, Th. 2.20] results about the existence of real analytic functions g such
that g ◦ g = φ.

In what follow N0 denotes the set of natural numbers N and 0. The open interval in R with
extreme points a < b is denoted by (a, b). Recall that we denote by id : R → R the identity map
id (x) = x and by I : A (R) → A (R) the identity operator on A (R). The ball in the complex
plane of center z and radius r > 0 is denoted by B(z, r). If T is a continuous linear operator on
a locally convex space E, its kernel and image are denoted respectively by kerT and im T . The
point spectrum σp(T ) of T is the set of all λ ∈ C such that T − λI is not injective. Elements of
σp(T ) are called eigenvalues of T . The spectrum σ(T ) of T is the set of all λ ∈ C such that T−λI
is not a topological isomorphism from E onto E. By the open mapping theorem which works for
surjective endomorphisms of A (R) (see [20]) λ ∈ σ(Cφ) if and only if Cφ − λI : A (R) → A (R)
is bijective.

A description of the natural topology on A (R), that goes back to Martineau, is given, for
instance, in [25]. The space A (R) has very good properties: it is nuclear, separable, complete,
satisfies the closed graph theorem and the uniform boundedness principle, but surprisingly it
has no Schauder basis by [25]. To be precise, the space A (R) is equipped with the unique locally
convex topology such that for any U ⊂ C open, R ⊂ U , the restriction map R : H(U) −→ A (R)
is continuous and for any compact set K ⊂ R the restriction map r : A (R) −→ H(K) is
continuous. We endow the space H(U) of holomorphic functions on U with the compact-open
topology and the space H(K) of germs of holomorphic functions on K with its natural locally
convex inductive limit topology:

H(K) = indn∈N H∞(Un),

where (Un)n∈N is a basis of Cd-neighbourhoods of K. Martineau proved that there is exactly
one topology on A (R) satisfying the condition above. For our purposes, it is important to recall
that a sequence (fn)n∈N in A (R) tends to f if and only if there is a complex neighbourhood W
of R such that each fn and f extend to W and fn → f uniformly on compact subsets of W . The
topology of A(J) for an open interval J in R is defined analogously. A long survey on spaces of
real analytic functions with very precise description of their topology is contained [20].

The following easy result is included for references in the rest of the paper.

Proposition 1.1 Let φ : R → R be a non-constant real analytic map.
(1) 0 is never an eigenvalue of Cφ. In particular, Cφ is injective.
(2) 1 is always an eigenvalue of Cφ and the constant functions are eigenvectors.
(3) Cφ is surjective if and only if it is bijective if and only if φ : R → R is bijective and its

inverse is real analytic, i.e. φ is a real analytic diffeomorphism.
(4) 0 ∈ σ(Cφ) if and only if φ is not a real analytic diffeomorphism.

Proof: (1) If φ is not constant then φ(R) is an interval. So if Cφ(g) = 0 then g|φ(R) ≡ 0
and g ≡ 0. Statement (2) is trivial.

(3) Let φ : R → R be a non-constant analytic map. If φ is a real analytic diffeomorphism, it
is easy to see that Cφ is bijective. If Cφ is surjective, there is f ∈ A (R) such that f(φ(x)) = x
for all x ∈ R. This implies right away that φ is injective in R. As it is continuous, the image
φ(R) is an interval J and φ is strictly increasing or decreasing with a continuous inverse φ−1.
Clearly f(y) = φ−1(y) for each y ∈ J . This implies that φ−1 is real analytic in J and it is the
restriction to J of the real analytic f defined in the whole R. If J is not the whole real line, let
a be an extreme of the interval. By continuity, φ−1(y) tends to +∞ or −∞, and φ−1 cannot
be the restriction of f ∈ A (R) to J . Summarizing, φ is bijective from R onto itself, and the
inverse is real analytic. Now (4) is a direct consequence of (3). 2
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We conclude this section recalling when composition operators on A (R) are open, see [22].

Theorem 1.2 Let φ : R → R be a real analytic map.

(a) im Cφ is dense in A (R) if and only if φ has no critical points.

(b) The following conditions are equivalent for any non-constant φ:

• φ is surjective;

• Cφ : A (R) → A (R) is an isomorphism onto its image;

• im Cφ is closed.

Proof: (a): If φ has no critical points then it is a diffeomorphism onto im φ = (a, b),
where a could be −∞ and b could be +∞. Hence Cφ is an isomorphism of A (a, b) onto A (R).
Since polynomials are dense in A (a, b) then A (R) is dense in A (a, b) thus Cφ(A (R)) is dense
in A (R). On the other hand if φ′(x) = 0 then for any f ∈ im Cφ holds f ′(x) = 0. Thus
im Cφ ⊂ ker δ′x, where δ′x ∈ A (R)′, δ′x(g) = g′(x).

(b): For every non-constant φ : R → R the map Cφ : A (R) → A (R) is injective. If φ is
surjective then it is semi-proper, i.e., for any compact set K ⊂ R there is a compact set L ⊂ R
such that φ(L) = K. Then the result follows from [22, Th. 3.1]. 2

2 Self map with fixed points.

First, we describe precisely eigenvalues and eigenvectors in the case when φ has fixed point. As
it was explained in the introduction much about this case is known. Nevertheless we present
the results and some proofs for the convenience of the reader, since the results are scattered in
the literature. The isomorphic classification of the eigenspaces seems to be new.

Lemma 2.1 Let φ : R → R be a real analytic map with a fixed point u ∈ R. Then either
(a) φ[2] = id or
(b) There is a convergent sequence (xn)n in R such that for each n ̸= k we have xn ̸= xk

and there is m such that φ[m](xn) = xk or φ[m](xk) = xn.

Proof: We distinguish several cases depending on the value of φ′(u).
Case 1. If |φ′(u)| < 1, then the fixed point u is attractive and we can find a sequence (xn)n of

pairwise distinct point converging to u and such that φ(xn) = xn+1. Thus (b) in the statement
is satisfied.

Case 2. If |φ′(u)| > 1, then the fixed point u is repelling and there is ε such that |φ′(y)| > 1
for each y ∈ (u − ε, u + ε). This implies that either φ′(y) > 1 for each y ∈ (u − ε, u + ε) or
φ′(y) < −1 for each y ∈ (u − ε, u + ε). Select a point x1 ∈ φ((u − ε, u + ε)) and define (xn)n
the sequence of the iterates of x1 by the inverse φ−1. It is easy to see that the iteration can be
accomplished and that (xn) is a sequence of pairwise different points converging to u for which
condition (b) in the statement holds.

Case 3. If φ′(u) = 1, there are two possible subcases. The first one is that φ′(x) = 1 for
each x ∈ R. In this case φ(x) = x for each x ∈ R. On the other hand, if we are not in this
case, there is a neighbourhood of u in which φ′ does not coincide with 1. Otherwise, since φ is
real analytic, it would follow φ(x) = x for each x ∈ R. Now we have either φ′(y) > 1 for each
y ∈ (u, u+ ε) or 0 < φ′(y) < 1 for each y ∈ (u, u+ ε) for some ε > 0, and similarly at the other
side (u− ε, u). Proceeding as in cases 1 and 2 in the side where we have the inequality, we can
find the desired sequence (xn) for which statement (b) holds.
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Case 4. In case φ′(u) = −1, then (φ[2])′(u) = 1, and we can proceed as in Case 3. 2

Let us observe that the map f 7→ (x 7→ xf(x)) is an isomorphism of the space A+(R) of
even real analytic functions onto the space A−(R) of odd real analytic functions.

Proposition 2.2 Let φ : R → R be a real analytic map with a fixed point u ∈ R. The following
holds:

(i) If φ = id , then Cφ = I on A (R) and 1 is the only eigenvalue of Cφ.
(ii) If φ[2] = id but φ ̸= id , then Cφ has only two eigenvalues 1 and −1 and φ′(u) = −1. In

this case each f ∈ A (R) can be decomposed as f = f1 + f2, where f1 (resp. f2) is an eigenvalue
with eigenvector 1 (resp. −1). In this case both eigenspaces are isomorphic to the space of even
real analytic functions A+(R) on R.

(iii) If φ[2] ̸= id , then 1 is an eigenvalue of Cφ with one dimensional eigenspace consisting
of constant functions.

Proof: The proof of part (i) is trivial. In (ii), it is enough to set f1(x) := (f(x)+f(φ(x)))/2
and f2(x) := (f(x) − f(φ(x)))/2, x ∈ R. It is clear that the decomposition is unique and using
this decomposition one proves that no λ ∈ C \ {1,−1} is an eigenvalue.

In order to prove that φ′(u) = −1 in part (ii), we assume without loss of generality that
u = 0. We observe that the graph of φ has to be symmetric with respect to the line y = x.
Moreover, differentiating the equation φ(φ(x)) = x we get φ′(u) · φ′(u) = 1, so φ′(u) = 1 or
φ′(u) = −1. In the first case, since φ is not the identity map but increasing around u, there
is a neighbourhood of u where φ(x) never takes value x except for u. For instance, for some
ε > 0 and every x ∈ (−ε, 0) we have x < φ(x) < 0. Such a function cannot be symmetric with
respect to the line y = x. A similar proof works for the case φ(x) < x. We have proved that
φ′(u) = −1.

Since φ[2] = id , φ is a real analytic diffeomorphism of R onto R so it has no critical points.
Thus for every x ∈ R we have φ′(x) < 0, in particular, φ has only one fixed point u and
limx→+∞ φ(x) = −∞ and limx→−∞ φ(x) = +∞. Define

ψ : R → R, ψ(x) :=
x− φ(x)

2
.

The map ψ is strictly increasing, it has no critical points and it is surjective since

ψ′(x) =
1

2
(1 − φ′(x)) > 0, lim

x→+∞
ψ(x) = +∞, lim

x→−∞
ψ(x) = −∞.

Hence Cψ is an isomorphism of A (R).
Let f ∈ A (R) be even then

Cψ(f) ◦ φ = f

(
φ(x) − x

2

)
= f

(
x− φ(x)

2

)
= Cψ(f).

Analogously for odd f we have Cψ(f) ◦ φ = −Cψ(f). We have proved that Cψ is an isomor-
phism of the space of even/odd real analytic functions A+(R)/A−(R) onto the eigenspace of Cφ
corresponding to the eigenvalue +1/− 1.

If the assumption of (iii) holds, we can apply Lemma 2.1 to find a convergent sequence (xn)n
in R of such that for each n ̸= k we have xn ̸= xk and there is m such that φ[m](xn) = xk or
φ[m](xk) = xn. Clearly Cφ(f) = f holds if f is constant. Any other real analytic function g
such that Cφ(g) = g would be constant on the convergent sequence of pairwise different points
(xn)n. This implies that g is constant. 2
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Proposition 2.3 Let φ : R → R be a real analytic map with a fixed point u ∈ R. If −1 is an
eigenvalue of Cφ, then φ

[2] = id .

Proof: Let f ∈ A (R) be an eigenvector of Cφ for the eigenvalue −1. Then f(φ(x)) = −f(x)
for each x ∈ R. Proceeding by contradiction, if the conclusion does not hold, we apply Lemma
2.1 to find a convergent sequence of pairwise different points (xn)n such that f(xn) = f(x1)
or f(xn) = −f(x1). Passing to a subsequence, it follows that the real analytic function f is
constant. As f(φ(x)) = −f(x), this constant value must be 0; a contradiction. 2

Proposition 2.4 Let φ : R → R be a real analytic map with a fixed point u ∈ R such that
φ[2] ̸= id . Then the only possible eigenvalues λ of Cφ are of the form λ = (φ′(u))n for some
n ∈ N. All of them have at most one dimensional eigenspace consisting of functions f with zero
of order n at u.

Proof: The argument is similar to the standard proof of the König’s theorem in the holomorphic
case [39, Ch. 6.1], see also [32, Satz 3] and [35, Th. 4.6.3]. The fact that eigenspaces are at
most one dimensional follows from [34, Th. 6.1].

2

Proposition 2.5 If φ : R → R is a real analytic function with at least two fixed points, then 1
is the only eigenvalue of Cφ : A (R) → A (R).

Proof: If φ[2] = id then φ has more than one fixed point if and only if φ = id .
Assume that φ[2] ̸= id . By Propositions 2.3 and 1.1, −1 and 0 cannot be eigenvalues for Cφ.
Assume that λ ̸= 0, |λ| ̸= 1 is an eigenvalue of Cφ with a corresponding eigenvector f .

Moreover, let φ(u) = u, φ(w) = w, u < w, and φ(x) ̸= x for all x ∈ (u,w). By Proposition 2.4,
f(u) = f(w) = 0.

There are two cases: either φ(x) > x for all x ∈ (u,w) or φ(x) < x for all x ∈ (u,w).
We consider only the first case since the proof for the other is analogous. If φ(x) < w for all
x ∈ (u,w) then φ′(u) ≥ 1 and 0 ≤ φ′(w) ≤ 1. By Proposition 2.4,

λ = (φ′(u))n = (φ′(w))m for some n,m ≥ 1.

Hence φ′(u) = φ′(w) = 1 and λ = 1; a contradiction. Thus φ(x) > w for some x ∈ (u,w).
Define v0 to be the smallest number v ∈ (u,w) such that φ(v) = w. There is a sequence
(xn)n∈N ⊂ (u,w) such that

φ[n](xn) = v for every n = 1, 2, . . . .

Clearly, u < xn+1 < xn for n = 1, 2, . . . and

f(xn) = (1/λ)f(φ(xn)), f(x1) = (1/λ)f(v) = (1/λ2)f(w) = 0.

We have proved that f(xn) = 0 for every n ∈ N and so f ≡ 0; a contradiction. 2

Theorem 2.6 Let φ : R → R be a real analytic function with a fixed point u such that 0 <
|φ′(u)| < 1. Then either

(a) φ[2] has at least two fixed points and then 1 is the only eigenvalue of Cφ;

(b) or (φ′(u))n is an eigenvalue for every n ∈ N.
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In case (b) for every eigenfunction f of Cφ with the eigenvalue φ′(u) the eigenspace corresponding
to the eigenvalue (φ′(u))n is equal to lin {fn} and f can be chosen real valued. Moreover, the
closed linear span of all eigenspaces is equal to im Cf , i.e. it is equal to A (R) if and only if φ
has no critical points (or, equivalently f has no critical points). If φ is surjective then the closed
linear span of all eigenspaces is isomorphic to A (R).

Proof: Define Ω to be the basin of attraction of u, i.e.,

Ω := {x : lim
n→∞

φ[n](x) = u}.

Clearly φ−1(Ω) = Ω and Ω ⊃ B(u, ε) for some ε > 0. This easily implies that Ω is open. Let
z ̸∈ Ω but (u, z) ⊂ Ω. Clearly, φ(z) ̸∈ Ω and the open interval joining u = φ(u) and φ(z) contains
only points of Ω. We have proved that if Ω0 is the connected component of Ω containing u then
φ(∂Ω0) ⊂ ∂Ω0. It is easily seen that at least one point in ∂Ω0 is fixed for either φ or φ[2].

Summarizing, we have shown that either φ[2] has at least two fixed points or the whole real
line is the basin of attraction for u. Thus the statement (a) follows from Propositions 2.5.

Now, we consider the second case. It is easy to see that if (φ′(u))n is an eigenvalue of Cφ
with eigenvector f , then (φ′(u))nk is en eigenvalue with eigenvector fk. Accordingly, it suffices
to prove the result for n = 1. The construction is now like [32, Satz 1] (comp. [34, Th. 6.4],
[35, 4.6.1], [39, Ch.6.1]) for a locally defined solution. The extension to the whole line goes by
a standard argument (see [34, Th. 6.5]). The statement (b) is thus known (comp. Proposition
2.4). However, the part about the form of the closed linear span of eigenspaces which seems to be
new and we prove it below. Observe that in [12, Th. 4.5] it is proved that if φ is a diffeomorphism
with several fixed points on which |φ′| ̸= 1 then all eigenspaces are finite dimensional (even for
more general operators).

Since φ′(u) is real the real part of every eigenvector is also an eigenvector. It is clear that
the closed linear span of all the eigenspaces is equal to lin {fn : n ∈ N} for any eigenvector f
of Cφ corresponding to the eigenvalue φ′(u). Since polynomials are dense in A (R) we have for
real valued f :

lin {fn : n ∈ N} = im Cf .

Now, we show that φ has a critical point if and only if f has a critical point. Indeed, if φ has a
critical point x then differentiating

(3) f(φ(x)) = φ′(u)f(x)

at x we get f ′(x) = 0. On the other hand, f ′(u) ̸= 0 (Proposition 2.4) and if φ has no critical
points then again differentiating (3) at x we get that f ′(x) = 0 if and only if f ′(φ(x)) = 0. Thus
if f ′(x) = 0 then f ′ vanishes on the whole orbit of x which tends to u and it is infinite since φ is
injective, so f ′ ≡ 0 and f is constant. This contradicts (3) since φ′(u) ̸= 1. Hence, by Theorem
1.2, im Cf = A (R) if and only if φ has no critical points.

If φ is surjective then every point x ∈ R has an infinite backward orbit {φ[−n](x) : n ∈ N}.
Moreover, since f(u) = 0, f ′(u) ̸= 0, it follows that there exists x+, x− such that f(x+) > 0,
f(x−) < 0. Additionally,

f
(
φ[−n](x+)

)
=

1

(φ′(u))n
f(x+), f

(
φ[−n](x−)

)
=

1

(φ′(u))n
f(x−)

thus f is surjective. By Theorem 1.2,

Cf : A (R) → im Cf = im Cf

is a topological isomorphism. 2
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Proposition 2.7 Let φ : R → R be a real analytic function with a fixed point u such that
1 < |φ′(u)|. The following holds

(a) If φ[2] has at least two fixed points, then 1 is the only eigenvalue of Cφ;

(b) φ′(x) = 0 for some x ∈ R and φ[2] has only one fixed point, then 1 is the only eigenvalue
of Cφ

(c) If φ′(x) ̸= 0 for each x ∈ R and φ[2] has only one fixed point, then (φ′(u))n is an eigenvalue
for every n ∈ N with a real valued eigenfunction. Moreover, in that case, the closed linear
span of all eigenspaces is equal to A (R) and every real valued eigenfunction f for an
eigenvalue φ′(u) is a diffeomorphism of R onto R.

Proof: (a) If φ[2] has at least two fixed points, then we can apply Proposition 2.5 to
conclude that 1 is the only eigenvalue of Cφ[2] . This implies that the only possible eigenvalues

of Cφ are 1 and −1. However, φ[2] ̸= id since 1 < |φ′(u)|, hence by Proposition 2.3, −1 is not
an eigenvalue of Cφ.

(b) The proof requires some preparation. We consider first the case when there is x0 ∈ R
such that φ′(x0) = 0, φ′(u) > 1 and φ has exactly one fixed point. We have

φ(x) < x for all x < u φ(x) > x for all x > u.

It is easy to see that there is a sequence (xn)n converging to u such that φ(xn+1) = xn, n ∈ N,
and φ(x1) = x0. Now, if f ∈ A (R) is an eigenvector of Cφ with eigenvalue λ ̸= 0, we have
f(φ(x)) = λf(x), x ∈ R. Thus f ′(φ(x))φ′(x) = λf ′(x), x ∈ R. Since φ′(x0) = 0, we have
f ′(x0) = 0. Evaluating now at x = x1, we get f ′(x0)φ

′(x1) = f ′(φ(x1))φ
′(x1) = λf ′(x1), hence

f ′(x1) = 0. Proceeding by recurrence, f ′(xn) = 0 for each n ∈ N. This implies that f ′ ≡ 0 so f
is constant. Therefore 1 is the only eigenvalue of Cφ.

We are ready for the proof of (b). Suppose that φ satisfies φ′(x0) = 0 for some x0 ∈ R and
that φ[2] has only one fixed point. Then φ[2] satisfies the assumptions of the proof just given, but
φ[2] ̸= id . So 1 is the only eigenvalue of Cφ[2] and, by Proposition 2.3, −1 is not the eigenvalue
of Cφ. So the proof of part (b) is complete.

(c) Suppose now that φ′(x) ̸= 0 for each x ∈ R and φ[2] has exactly one fixed point. Since
(φ[2])′(u) > 1, we conclude that φ[2](x) > x if x > u and φ[2](x) < x if x < u. From this it
follows easily that φ[2] is surjective, hence it is a diffeomorphism. Its inverse φ[−2] has exactly
one fixed point and 0 < |(φ−1)′(u)| < 1. Thus φ is a diffeomorphism of R. We can apply
Theorem 2.6 to φ−1 to conclude that (φ′(u))n is an eigenvalue of Cφ for every n ∈ N.

Let f be an eigenvector of Cφ for the eigenvalue φ′(u) and of Cφ−1 for the eigenvalue
(φ′(u))−1. By Proposition 2.4, f ′(u) ̸= 0. Observe that by the proof of Theorem 2.6, u is
an attracting fixed point for φ−1 with the attraction basin equal to R. Moreover, f ′(φ(x)) = 0
if and only if f ′(x) = 0. Thus if f ′ has a critical point x then it is zero on the full orbit
{φ[k](x) : k ∈ Z} of φ (or φ−1). The point u is a condensation point of such an orbit so f ′ ≡ 0;
this contradicts f(φ(y)) = φ′(u)f(y) for φ′(u) ̸= 1. We have proved that f has no critical points.

We may take f real valued by taking the real part of any eigenfunction. Since f(u) = 0 and
f ′(u) ̸= 0, f takes both positive and negative values. Since |φ′(u)| > 1 and

f(φ[k](x)) = (φ′(u))kf(x) for k ∈ N

it follows that f is surjective on R. We have proved that f : R → R is a diffeomorphism.
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Finally, the eigenspace for (φ′(u))n is equal to lin {fn}. The linear span of all eigenspaces
is equal to the image of the subspace of polynomials in A (R) by the topological isomorphism
Cf : A (R) → A (R) so dense in A (R) (see Theorem 1.2). 2

Let us note that from Theorem 2.6 and Proposition 2.7 the values (φ′(u))n are sometimes
eigenvalues and sometimes they are not. Surprisingly, they are always elements of the spectrum
by a result that is proved with a technique due to Hammond [28, Prop. 4.1].

Proposition 2.8 Let φ : R → R be a real analytic function and let Cφ : A (R) → A (R) be
the associated composition operator. If u is a fixed point of φ such that |φ′(u)| ̸= 1, 0, then
φ′(u)n ∈ σ(Cφ) for each n ∈ N0.

Proof: If n = 0, then φ′(u)n = 1 ∈ σp(Cφ) by Proposition 1.1. Fix n ∈ N. Proceeding by
contradiction, assume that there is f ∈ A (R) such that

f(φ(x)) − φ′(u)nf(x) = (x− u)n, x ∈ R.

Since |φ′(u)| ̸= 1, f(u) = 0. Suppose by induction that f (k)(u) = 0, 0 ≤ k ≤ j − 1. Taking the
j-th derivative in the equality above, j < n, we get

dj

dxj
(f(φ(x))

∣∣
x=u

− φ′(u)nf (j)(u) =
dj

dxj
((x− u)n)

∣∣
x=u

= 0.

The first term consists of φ′(u)jf (j)(u) plus some other summands involving lower order deriva-
tives of f at u, that vanish by the induction hypothesis. Therefore

0 = φ′(u)j(1 − φ′(u)n−j)f (j)(u),

hence f (j)(u) = 0. Now taking the n-th derivative we reach a contradiction:

0 ̸= dn

dxn
((x− u)n)

∣∣
x=u

=
dn

dxn
(f(φ(x)))

∣∣
x=u

− φ′(u)nf (n)(u) =

= φ′(u)nf (n)(u) − φ′(u)nf (n)(u) = 0.

2

Summarizing, we have obtained complete description of eigenvalues and the dimension of
the corresponding eigenspaces for all Cφ whenever φ has a fixed point as follows (so it completes
the proof of Theorem A in the fixed point case).

Theorem 2.9 Let φ : R → R be a real analytic function with a fixed point u and let us consider
the map Cφ : A (R) → A (R).

(a) If φ′(u) = 1 then 1 is the only eigenvalue and

(i) either φ = id and in this case the eigenspace is equal to A (R)

(ii) or φ ̸= id and the eigenspace is one dimensional.

(b) If φ′(u) = −1 then

(i) either φ[2] = id but φ ̸= id and in this case there are two eigenvalues ±1 and A (R)
is a direct sum of two eigenspaces

(ii) or φ[2] ̸= id , 1 is the only eigenvalue and its eigenspace is one-dimensional.
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(c) If φ′(u) = 0 then 1 is the only eigenvalue and its eigenspace is one-dimensional.

(d) If 0 < |φ′(u)| < 1 then

(i) either φ[2] has at least two fixed points and then 1 is the only eigenvalue and its
eigenspace is one-dimensional

(ii) or ((φ′(u))n)n∈N is the sequence of eigenvalues and all of them have one-dimensional
eigenspaces.

(e) If 1 < |φ′(u)| then

(i) either φ[2] has at least two fixed points or φ has a critical point and then in both cases
1 is the only eigenvalue and its eigenspace is one-dimensional

(ii) or ((φ′(u))n)n∈N is the sequence of eigenvalues and all of them have one-dimensional
eigenspaces.

Our results in this section permit us to determine the eigenvalues and the eigenspaces of Cφ
for φ(x) = xs, s ∈ N, φ(x) = sin(x), φ(x) = ex−1 and φ(x) = arctan(x) among other examples.

3 Self map without fixed points and the Abel equation.

Let φ : R → R be a real analytic function without a fixed point. Recall that the Abel equation
is the equation

f ◦ φ = f + 1.

Clearly, if φ has a fixed point, there is no solution of the Abel equations.
Observe that if F1 and F2 are two real analytic solutions of the Abel equation F (φ(x)) =

F (x) + 1, then f := F2 − F1 is a real analytic fixed point of the composition operator Cφ :
A (R) → A (R).

First, we collect results about the relation between the solutions of the Abel type equations
and eigenvalues of Cφ : A (R) → A (R). They are known — see, for instance, [32, p. 57]:

Proposition 3.1 Let φ : R → R be a real analytic map such that the Abel equation f ◦φ = f+1
has a real analytic solution f0. Then each λ ∈ C \ {0} is an eigenvalue of Cφ : A (R) → A (R)
and this operator has an infinite dimensional eigenspace for the eigenvalue λ. Moreover, for
every λ ̸= 0 there is an eigenvector f which does not vanish at any point.

Proof: Observe first that the function f0 cannot be constant. Let p be a periodic function
with period 1 and define f := p ◦ f0. We have

Cφ(f)(x) = f(φ(x)) = (p ◦ f0)(φ(x)) = p(f0(x) + 1) = p(f0(x)) = f(x).

Thus Cφ(f) = f . The infinite dimensionality follows varying p. This settles the case λ = 1.
Taking a non-vanishing periodic function p we get the desired non vanishing eigenvector.

Take now λ ∈ C \ {0, 1}. Select a complex number µ such that eµ = λ. Set G(x) :=
exp(µf0(x)), x ∈ R (this is taken from [32, par. 1]). We have

Cφ(G)(x) = G(φ(x)) = exp(µf0(φ(x))) = exp(µ(f0(x) + 1)) = eµ exp(µf0(x)) = λG(x).

Hence G is an eigenvector of Cφ with eigenvalue λ.
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If F ∈ A (R) is a fixed point of Cφ (and there is an infinite dimensional subspace of such
functions), we get Cφ(FG) = λFG. This implies that the eigenspace of the eigenvector λ is also
infinite dimensional.

2

The following proposition is in fact an observation due to Kneser [32, p. 57].

Proposition 3.2 Let φ : R → R be a real analytic map such that some λ ∈ C \ {0, 1} is an
eigenvalue of Cφ : A (R) → A (R) with a never vanishing eigenvector f0 ∈ A (R). Then the Abel
equation f ◦ φ = f + 1 has a real analytic solution f .

Proof: Clearly f0 extends to a non vanishing holomorphic function on some one-connected
complex neighbourhood U of R. Thus f0(x) = exp(h(x)) for some holomorphic function h on
U (so the restriction of h to R is real analytic). Select a complex number µ such that eµ = λ.
Since f0(φ(x)) = λf0(x), x ∈ R, we have:

exp(h(φ(x)) = exp(µ+ h(x)).

Since λ ̸= 1 we have for some k ∈ Z

h(φ(x)) = h(x) + µ+ 2kπi, where µ+ 2kπi ̸= 0.

Then f , f(x) := 1
µ+2kπih(x), is the required solution of the Abel equation.

2

The next three lemmas prepare the proof of a necessary condition for solvability of the Abel
equation which is our crucial result. Let φ : R → R be a continuous functions such that φ > id .
We can define the lower hull φ̂ of φ as follows:

φ̂(t) := inf{φ(s) : s ≥ t} = inf{φ(s) : t ≤ s ≤ φ(t)} mφ := inf{φ̂(t) : t ∈ R}.

Lemma 3.3 Let φ : R → R be a continuous functions such that φ > id . The function φ̂ : R →
R is non-decreasing, continuous and φ̂(t) > t for every t ∈ R. Thus mφ exists (possibly = −∞)
and φ̂(R) ⊃ (mφ,+∞).

Proof: Only the continuity requires a proof. It is clearly enough to prove that φ̂ is
continuous on an arbitrary interval (a, b). Set B := max{φ(x)|x ∈ [a, b]}. For each t ∈ (a, b),
φ̂(t) = min{φ(s) : t ≤ s ≤ B}. Fix t0 ∈ (a, b). Let s0 = min{s|t0 ≤ s ≤ B,φ(s) = φ̂(t0)}. If
t0 < s0, there is r > 0 such that a < t0 − r < t0 + r < s0 and φ(t) > φ(s0) for t ∈ (t0 − r, s0).
In this case, it is easy to see that φ̂(t) = φ(s0) for each t ∈ (t0 − r, s0) and φ̂ is continuous at t0.
Now, if t0 = s0, then φ̂(t0) = φ(t0). Given ε > 0, select δ > 0 such that (t0−δ, t0+δ) ⊂ (a, b) and
|φ(t)−φ(t0)| < ε when t ∈ (t0− δ, t0 + δ). It is now easy to see that φ̂(t0)− ε ≤ φ̂(t) ≤ φ̂(t0) + ε
for each t ∈ (t0 − δ, t0 + δ), and φ̂ is also continuous at t0 in this case. 2

Lemma 3.4 Let φ : R → R be a continuous functions such that φ > id . For every a > mφ and
every y ≥ a there is ŷ ∈ [a, φ̂(a)] such that y = φ[k](ŷ)for some k ∈ N.

Proof: We define (use Lemma 3.3)

ψ : (mφ,+∞) → R, ψ(z) := sup φ̂−1(z).

Since φ̂(z) > z, the supremum above exists for any z ∈ (mφ,+∞) ⊂ φ̂(R). Moreover,

φ̂(ψ(z)) = φ(ψ(z)) = z,
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and so ψ(z) < z.
Let y ≥ a > mφ, then we construct a decreasing sequence ψ[n](y) for all n such that

ψ[n−1](y) > mφ. If this sequence is infinite and bounded from below by a, it has a limit and

φ
(

lim
n
ψ[n](y)

)
= lim

n
φ
(
ψ[n](y)

)
= lim

n
ψ[n](y);

a contradiction since φ > id . Thus there is n ∈ N such that

ψ[n+1](y) < a ≤ ψ[n](y) and ŷ := ψ[n](y) = φ̂
(
ψ[n+1](y)

)
≤ φ̂(a)

by monotonicity of φ̂. 2

Lemma 3.5 Let λ ∈ C \ {0}, r ∈ C, φ : R → R be a real analytic function satisfying φ > id .
If there is a real analytic non-constant function f : R → C which solves the equation:

f ◦ φ = λf + r,

then the set of critical points of φ is bounded from above; in particular, φ is strictly increasing
from some point on.

Remark 3.6 Of course, an analogous result holds for φ < id if the set of critical points of φ
bounded from below.

Proof: We start with some claims.
Claim 1. If φ[n] has a critical point of order k at x0 (i.e., the derivative has zero of order k

at x0) then f has a critical point of order k at x0.
Proof of the Claim 1.: Since

f ◦ φ[n] = λnf + constant

we get

f (l)(x0) =
1

λn
dl

dxl

(
f ◦ φ[n]

)
(x0).

It is easily seen that for l = 1, . . . , k

dl

dxl

(
f ◦ φ[n]

)
(x0) = 0.

This completes the proof of Claim 1.
Claim 2. If for some x0 there is a sequence 0 ≤ n1 < n2 < · · · < nk of natural numbers such

that φ[nj ](x0) for j = 1, . . . , k are critical points of φ, then φ[n] for n > nk has a critical point
of order ≥ 2k − 1 at x0.

Proof of Claim 2.: If φ has critical point of order l at x and of order m at φ(x), then φ[2]

has a critical point of order ml +m+ l at x. Indeed, let us take

φ(z) = φ(x) +

∞∑
j=l+1

aj(z − x)j , φ(w) = φ(φ(x)) +

∞∑
j=m+1

bj(w − φ(x))j .

Hence

φ[2](z) = φ(φ(x)) +

∞∑
j=m+1

bj

 ∞∑
p=l+1

ap(z − x)p

j

= φ(φ(x)) +

∞∑
j=ml+m+l+1

cj(z − x)j .
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Thus x is a critical point of order (ml +m+ l + 1) − 1. Inductively we will get Claim 2.
Now, we prove our Lemma. Let a > mφ. Then by Lemma 3.4, for every y ≥ a there is

ŷ ∈ [a, φ̂(a)] such that
y = φ[n](ŷ) for some n ∈ N.

If φ has infinitely many distinct critical points (xn)n∈N ⊂ [a,∞), then there is a sequence
(x̂n)n∈N ⊂ [a, φ̂(a)] such that

∀ n ∈ N ∃ kn ∈ N φ[kn](x̂n) = xn.

Case (a): There are infinitely many distinct points in the sequence (x̂n)n∈N. By Claim 1.,
there are infinitely many distinct critical points of f on [a, φ̂(a)]. Thus the set of critical points
has an accumulation point and thus f ′ ≡ 0; a contradiction.

Case (b): There is a point x̂ ∈ [a, φ̂(a)] and an infinite increasing sequence (kn) such that for
all n ∈ N the number φ[kn](x̂) is a critical point of φ. By Claim 2., for any m > kn the number
x̂ is a critical point of φ[m] of order ≥ 2n − 1. By Claim 1., f has a critical point x̂ of order ∞
so f ′ ≡ 0; a contradiction. 2

Now, we are ready to formulate our necessary condition for real analytic solvability of the
Abel equation (the condition turns out to be sufficient as well). So far the best necessary
condition for solvability of the Abel equation is due to Belitskii and Lyubich [9, Th. 1.4]: all
compact sets in R must be wandering, i.e., for every compact K there is an integer ν such
that for any two n,m ∈ N such that |n − m| > ν the sets φ[n](K) and φ[m](K) are disjoint.
This condition is strictly weaker than our condition. For diffeomorphisms φ the condition is
equivalent with lack of fixed points but in general it only implies that φ is fixed point free. It
is known that for solvability in continuous functions of all equations f ◦ φ = f + γ for every
continuous function γ it is necessary and sufficient that φ has no fixed points and φ is strictly
increasing on some set [c,+∞) (in case φ > id ) or on (−∞, c] (in case φ < id ), see [9, Th.
1.9] or [11, Th. 2.3], nevertheless this condition is not necessary for solvability in continuous
functions of the Abel equation [11, Ex.2.3].

Corollary 3.7 If φ has no fixed point but the set of critical points is unbounded from above (if
φ > id ) or from below (if φ < id ) then the only eigenvalue of Cφ : A (R) → A (R) is 1 and
the corresponding eigenspace consists of constant functions only. Moreover, the Abel equation
f ◦ φ = f + 1 has no real analytic solution f ∈ A (R).

Proof: We consider only the case φ > id — the other one is analogous. If λ ̸= 1 then the
eigenvectors cannot be constant. The result follows from Lemma 3.5. 2

Next part is devoted to the proof of sufficiency of our condition. The method of the proof is
“topological” in nature and inspired by [10]. In that paper only the case of diffeomorphisms φ
is considered. Transferring it to the general real analytic functions φ required some new ideas.

Let φ : R → R be a real analytic map. Then for any x ∈ R we denote by O(x) the full orbit
of x via φ, i.e.,

O(x) := {y : ∃ k, l ∈ N : φ[k](x) = φ[l](y)}.

The full orbits form a partition of R. The quotient topological space with respect to that
partition is denoted by R/φ and the corresponding (continuous) canonical quotient map we
denote by πφ : R → R/φ. It is worth noting that R/φ need not be Hausdorff. By Lemma 3.4
we get:

Corollary 3.8 Let φ : R → R be a real analytic map without fixed points. Then R/φ is compact.
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Proof: We consider only the case φ > id . Then for any w ∈ R its full orbit O(w) is
unbounded from above. By Lemma 3.4, there is z ∈ O(w) ∩ [a, φ̂(a)] for any fixed a > mφ. We
have proved that πφ maps continuously [a, φ̂(a)] onto R/φ. This completes the proof by [26,
1.1.7.8]. 2

Now, we study the natural manifold structure on R/φ. The next two results are generaliza-
tions to the case of non-diffeomorphic φ of the method presented by Belitskii and Lyubich in
[10, Th. 3.1].

Lemma 3.9 Let φ : R → R be real analytic and φ > id . If the set of critical points of φ
is bounded from above then R/φ is homeomorphic to the circle T and there is a real analytic
structure on R/φ which makes it diffeomorphic to T and makes the canonical map πφ : R → R/φ
real analytic, such that its set of critical points coincides with the set of critical points of all the
maps φ[n] for n ∈ N.

Proof: Assume that every critical point of φ is strictly smaller than a, in particular φ is
strictly increasing on [a,+∞). Hence for x ≥ a we have φ(x) = φ̂(x). By Lemma 3.4, [x, φ(x)]
intersects every full orbit. If a ≤ x < y < z < φ(x) then x < φ[n](x) < φ[n](y) < φ[n](z) <
φ[n+1](x) for every n ∈ N and O(y) ̸= O(z). Moreover,

∪
w∈(y,z)

O(w) =
∪
k∈N

(
φ[k]
)−1

(∪
n∈N

φ[n](y, z)

)

=
∪
k∈N

(
φ[k]
)−1

(∪
n∈N

(
φ[n](y), φ[n](z)

))

is an open set in R. Therefore πφ((y, z)) is an open set.
We have proved that for every x ≥ a the map πφ restricted to (x, φ(x)) is a homeomorphism

onto an open set (clearly a Hausdorff one). Since every pair of distinct full orbits O(y), O(z) is
contained in one of these open sets it follows that the whole space R/φ is Hausdorff. Summariz-
ing, by Corollary 3.8, the space R/φ is a connected compact Hausdorff one dimensional locally
euclidean space, i.e., a connected compact manifold of dimension 1 without boundary. By [47,
Th. 3.2], R/φ is homeomorphic to the circle T.

Now, we define a real analytic structure on R/φ. For any x ≥ a we define a chart

fx : πφ((x, φ(x))) → (x, φ(x)), fx :=
(
πφ|(x,φ(x))

)−1

Take a ≤ x < y, O(x) ̸= O(y), then there is n ∈ N such that φ[n](x) < y < φ[n+1](x). We
consider πφ((x, φ(x)) ∩ πφ((y, φ(y)) then

fx [πφ((x, φ(x))) ∩ πφ((y, φ(y)))] =

(
x,
(
φ[n]

)−1
(y)

)
∪
((

φ[n]
)−1

(y), φ(x)

)
,

fy [πφ((x, φ(x))) ∩ πφ((y, φ(y)))] =
(
y, φ[n+1](x)

)
∪
(
φ[n+1](x), φ(y)

)
.
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Therefore,

fy ◦ f−1
x

∣∣∣∣((φ[n])
−1

(y),φ(x)
) = φ[n],

fy ◦ f−1
x

∣∣∣∣(x,(φ[n])
−1

(y)
) = φ[n+1],

fx ◦ f−1
y

∣∣∣(y,φ[n+1](x)) =
(
φ[n]|(x,φ(x))

)−1
,

fx ◦ f−1
y

∣∣∣(φ[n+1](x),φ(y)) =
(
φ[n+1]|(x,φ(x))

)−1
.

Since for every m ∈ N the map φ[m] has no critical points on [a,+∞) the above maps are real
analytic.

We have proved that the charts defined above form a real analytic atlas. Moreover, the real
analytic structure on R/φ must be diffeomorphic to the standard one on T by [47, Th. 6.3].

Let us take any point y ∈ R then there is n ∈ N such that φ[n](y) > a so some neighbourhood
U of y is mapped via φ[n] into a neighbourhood of φ[n](y), contained in (x, φ(x)) where x > a.
Now, the map

fx ◦ πφ : U → (x, φ(x)), fx ◦ πφ|U = φ[n]|U
is real analytic on U . The map πφ has a critical point in y if and only if φ[n] has it. 2

We will make use of the notion of the contractible map by which we mean a map homotopic
to a constant one.

Lemma 3.10 Let φ : R → R be a real analytic map such that R/φ is a real analytic manifold
with πφ : R → R/φ real analytic. If d : R/φ → T is a non-contractible real analytic map then
the Abel equation f ◦φ = f +1 has a real analytic solution f on R with real values. The solution
f has critical points exactly in the critical points of d ◦ πφ (i.e., f has critical points if and only
if d or πφ has critical points).

Proof: Let us denote by q : R → T, q(x) = exp(2πix) the standard quotient map. Clearly,
q is a local diffeomorphism. Since R is contractible then, by [27, Th. 6.1] the map d◦πφ : R → T
lifts to a continuous map Φ : R → R with respect to q, i.e., the following diagram commutes:

R Φ−−−−→ Ryπφ q

y
R/φ −−−−→

d
T.

Since q is a real analytic local diffeomorphism then the lifting Φ has to be real analytic and its
critical points are exactly critical points of d ◦ πφ.

Moreover, Φ(φ(x)) = Φ(x)+n(x), where n : R → Z is a continuous (hence constant) function
n(x) := n.

Now, we will use the well-known facts concerning liftings of homotopy but for the reader’s
convenience we provide details. If n = 0 then we can define a continuous map

F : R× [0, 1] → R, F (x, t) = tΦ(x)

Therefore
F (φ(x), t) = tΦ(φ(x)) = tΦ(x) = F (x, t)
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and F (·, t) is constant on full orbits of φ for every t ∈ [0, 1]. We can define a continuous map

G : R/φ× [0, 1] → R, G(O(x), t) := F (x, t)

and q ◦G is a homotopy joining d with the constant function; a contradiction.
We have proved that n ̸= 0 so we can define f : R → R, f(x) := 1

nΦ(x), to be a real analytic
solution of the Abel equation. As we have seen its critical points are exactly the critical points
of d ◦ πφ. 2

Now, we summarize our knowledge about eigenvalues of Cφ : A (R) → A (R) and their
corresponding eigenspaces as well on solvability of the Abel equation in case of φ with no fixed
point (so it completes the proof of Theorem B).

Theorem 3.11 Let φ : R → R be an analytic function. The following assertions are equivalent.

(a) Every complex λ ̸= 0 is an eigenvalue of Cφ with at least one real analytic eigenvector
non-vanishing at any point.

(a’) Every complex λ ̸= 0 is an eigenvalue of Cφ with an infinite dimensional eigenspace.

(b) There is a complex eigenvalue λ ̸= 1 for Cφ with at least one real analytic eigenvector
non-vanishing at any point.

(b’) There is a complex eigenvalue λ ̸= 1 for Cφ and φ has no fixed point.

(c) There is a non-constant eigenvector for the eigenvalue 1 and φ[2] ̸= id .

(d) Either φ > id and the set of critical points of φ is bounded from above or φ < id and the
set of critical points of φ is bounded from below.

(e) The space R/φ of full orbits of φ is a manifold homeomorphic to T which has a real analytic
structure making the canonical map πφ : R → R/φ real analytic (and, of course, then R/φ
is real analytic diffeomorphic to T).

(f) The Abel equation f ◦ φ = f + 1 has a real analytic solution f .

If these conditions hold then for λ > 0 there is at least one strictly positive eigenvector. Moreover,
there is a real analytic solution f0 of the Abel equation with real values such that the set of critical
points is bounded from above (in case φ > id ) or bounded from below (in case φ < id ). In that
case for every complex λ ̸= 0, eµ = λ, the map

Tλ : A (T) → ker(Cφ − λI), Tλ(g) := [exp ◦(µf0)] · [g ◦ q ◦ f0] ,

is a topological isomorphism of A (T) onto the eigenspace of Cφ for λ (here q : R → T, q(x) :=
exp(2πix)).

Remark 3.12 (1) Theorem 3.11 generalizes simultaneously the result on the solvability of the
Abel equation for φ = exp due to Kneser [32, p. 64] and the results for φ a fixed-point free
diffeomorphism due to Belitskii, Lyubich [10, Main Theorem] that for a diffeomorphism φ the
Abel equation is solvable in A (R) if and only if φ has no fixed point. In [12, Th. 4.1] (comp.
[11, Th. 3.6]) it is proved that for a fixed point free diffeomorphism φ even a more general
equations are real analytic solvable.

(2) The last statement in Theorem 3.11 means that every fixed point of Cφ on A (R) is of
the form p ◦ f0, where p is a periodic real analytic function with period 1. Clearly, for any real
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analytic solution f of the Abel equation all real analytic solutions of this equation are of the
form f + f1 where f1 is a fixed point of Cφ, by the above theorem f1 = g ◦ q ◦ f0 for some
g ∈ A (T). This result improves the result of Abel true only for strictly increasing solutions; see
[1] or [45].

(3) If φ is a diffeomorphism without fixed points then in [12, Th. 4.2] some 1 − 1 corre-
spondence between periodic functions and eigenfunctions for Cφ with arbitrary fixed λ ̸= 0 is
established.

Proof: (a)⇒(b) is obvious. The implication (b)⇒(f) follows from Proposition 3.2 and
(f)⇒(a), (a’) from Proposition 3.1. The implications (a’)⇒(b’), (c) are consequences of Theorem
2.9.

We prove now (b’), (c)⇒(d): First of all, by Theorem 2.9, (c) implies that φ has no fixed
point, and (b’) implies that there is a non-constant eigenvector for some complex eigenvalue
λ ̸= 1 (comp. Proposition 1.1). Since both cases φ > id and φ < id are analogous, we assume
φ > id , and the conclusion (d) follows from Lemma 3.5.

(d)⇒(e) is Lemma 3.9 in case φ > id , the other case is analogous.
(e)⇒(f): By [47, Th. 6.3], R/φ is real analytic diffeomorphic to T and, obviously, this

diffeomorphism is a non-contractible real analytic map d from R/φ→ T. Apply Lemma 3.10 to
conclude.

So far we have completed the proof of the equivalence of all the assertions.
For a real eigenvalue λ with a non-vanishing eigenvector f , the real part Re f and the

imaginary part Im f of f are also such vectors. Clearly, (Re f)2 + (Im f)2 is a strictly positive
eigenvector for the eigenvalue λ2.

It remains to show the last part of the statement. We consider only the case φ > id . By (e),
there is a diffeomorphism d̃ : R/φ→ T and as in the proof of Lemma 3.10 we produce a solution
of the Abel equation f0 : R → R. By Lemma 3.10 and Lemma 3.9, f0 has critical points exactly
at critical points of φ[n] for any n ∈ N so its set is bounded from above. Since exp ◦(µf0) is a
non-vanishing function and

Cφ(exp ◦(µf0)) = λ exp ◦(µf0),

we get that the map

Gµ : ker(Cφ − I) → ker(Cφ − λI), Gµ(g) := (exp ◦(µf0)) · g,

is a topological isomorphism. So it suffices to consider the case λ = 1, µ = 0 and T1(g) = Cq◦f0 .
It is easy to observe that T1 : A (T) → ker(Cφ − I) continuously. Since f0(R) is a halfline

unbounded from above (or the whole line) we get q ◦ f0(R) = T. Then by [21, Th. 3.2], Cq◦f0 is
open onto its image. Since Cq◦f0 is injective it follows that this map is a topological isomorphism.

Now, we can prove that Cq◦f0 is surjective onto ker(Cφ − I) for the above choice of f0. Let

Cφ(f) = f , then f is constant on every full orbit O(x), x ∈ R. Thus f = f̂ ◦ πφ for some

continuous map f̂ : R/φ→ C. Since πφ is a local diffeomorphism on a halfline of R mapped via

πφ onto the whole R/φ the map f̂ is also real analytic.
Let us take the map q◦f0 : R → T, clearly q◦f0 is constant on full orbits of φ so q◦f0 = d◦πφ

for some continuous map d : R/φ → T. Since q ◦ f0 has no critical points on a halfline of
R unbounded from above which is mapped via πφ onto the whole R/φ, πφ is there a local
diffeomorphism and q ◦ f0(R) = T then d : R/φ → T is real analytic, surjective and has no
critical points. We will show that d is injective. In order to show that we have to show that
q ◦ f0 does not glue together two different orbits. Now, for x big enough φ is strictly increasing
on (x, φ(x)) and also f0 is injective on the same interval. Moreover, f0(φ(x)) = f0(x) + 1. This
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implies that for any y ∈ (x, φ(x)) the difference between f0(x) and f0(y) is non-integer. On the
other hand by Lemma 3.4 every orbit different from O(x) intersects (x, φ(x)). We have proved
that q ◦ f0 cannot glue this orbit with O(x). Finally, d : R/φ→ T is a diffeomorphism.

Therefore

f = f̂ ◦ d−1 ◦ d ◦ πφ = Cq◦f0(f̂ ◦ d−1), where f̂ ◦ d−1 ∈ A (T).

2

Theorem 3.11 can be used to conclude that the Abel equation f(φ(x)) = f(x) + 1 has a real
analytic solution f ∈ A (R) for φ(x) = eαx, α > 0 (see [32]) and it does not have a real analytic
solution for φ(x) = x + 1 + α sin(α−1x), 0 < α < 1, since this function is real analytic, it is a
(continuous) homeomorphism on R, has no fixed points, but it has an unbounded sequence of
critical points, namely φ′(x) = 0 if and only if x = 2sπα, s ∈ Z. The later example is mentioned
in [9, Example 6.2] in connection with the smooth solvability of the cohomological equation.
Observe that the point spectrum of Cφ for φ(x) = eαx, α > 0 coincides with the spectrum and
it is equal C \ {0}, and that for φ(x) = x + 1 + α sin(α−1x), 0 < α < 1, the only eigenvalue of
Cφ is 1.

Proposition 3.13 If the conditions of Theorem 3.11 hold then the closed linear span of all
eigenspaces is equal to im Cf0 ⊂ A (R) for any solution f0 like in Theorem 3.11. This space
is equal to the whole A (R) if and only if φ has no critical points. If φ is surjective then this
invariant space is isomorphic to A (R).

Proof: The space of periodic real analytic functions is the closed linear span of

(exp(2πik · ))k∈Z .

Thus the closed linear span of all eigenspaces is equal to the closed linear span of

(exp ◦((µ+ 2πik)f0))k∈Z,µ∈C = (Cf0(exp(µ · )))µ∈C .

It is well-known that (exp(µ·))µ∈C is linearly dense in A (R) (see e.g. [30, Prop. 3.2 and Cor.
3.3]), this yields the conclusion.

Observe that φ has critical points if and only if f0 has critical points (see the proof of
Theorem 3.11). Thus, by Theorem 1.2, im Cf0 is dense in A (R) if and only if φ has no critical
points.

If φ is surjective then f0 is also surjective and then, by Theorem 1.2, the map Cf0 is an
isomorphism of A (R) onto a closed subspace of A (R). 2

We have completed the proof of Theorem A and Theorem B.

4 Iteration semigroups and the Abel equation

In the paper of Kneser [32] it is in fact constructed a solution of the Abel equation f ◦φ = f + 1
for φ = exp which is additionally increasing without critical points. This allowed Kneser to
show that there is a real analytic function g : R → R, g[2] = exp. We find a generalization of
this result nearly in its sharp form.

Let us say that the real analytic map φ : R → R embeds into a real analytic iteration
semigroup whenever there is a real analytic map (a real analytic iteration semigroup or flow)

Φ : (R+ ∪ {0}) × R → R, Φ(t+ s, x) = Φ(t,Φ(s, x)) for every t, s ∈ R+ ∪ {0}, x ∈ R
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such that
Φ(n, x) = φ[n](x) for every n ∈ N0, x ∈ R.

Clearly, if φ embeds into a real analytic iteration semigroup Φ then there are real analytic

functions gn such that g
[n]
n = φ, one takes gn(x) := Φ(1/n, x), i.e. iteration roots of order n.

In the book of Kuczma [34, Chapter 9] it is considered the so-called iteration group (in case of
dependence on t ∈ R). Iteration roots are considered in [34, Chapter 15], [35, Chapter 11], [8,
Section 2].

Lemma 4.1 Let φ : R → R be a real analytic map embedded into a real analytic iteration
semigroup Φ.

(a) The function Φ(t, ·) (in particular, φ) has no critical points for any t ∈ R and it is always
strictly increasing.

(b) If φ has no fixed point then

Φ(t, x) ̸= Φ(s, x),
∂Φ

∂t
(t, x) ̸= 0 for every s, t ∈ R+ ∪ {0}, s ̸= t, x ∈ R.

Proof: (a): Denote by ∂2 to be a partial derivative with respect to the second variable.
Observe that if ∂2Φ(s, y) = 0 then

∂2Φ(t+ s, y) = ∂2Φ(t,Φ(s, y)) · ∂2Φ(s, y) = 0, for every t > 0.

Thus the real analytic function ∂
∂yΦ(·, y) ≡ 0. This is a contradiction, since Φ(0, x) ≡ x and so

∂2Φ(0, y) = 1.
Now, the derivative of φ must be real and cannot change the sign. If φ has no fixed point

it must be increasing. If φ has a fixed point u then (φ[2])′(u) > 0. If φ′(u) < 0 then the real
function ∂2Φ(t, y) must change the sign somewhere between t = 1 and t = 2 and this contradicts
the first statement. We have proved that φ′(u) > 0 and so φ′ > 0 everywhere.

(b): Assume that Φ(t, x) = Φ(s, x) for some t < s. Hence

Φ(t, x) = Φ (s− t,Φ(t, x)) ,

i.e., there is y ∈ R and t > 0 such that Φ(t, y) = y, and, obviously, Φ(nt, y) = y for any n ∈ N.
We consider only the case φ > id since the other case is analogous.

In that case Φ(n, y) = φ[n](y) tends to +∞ for n → +∞. This means that t is not rational
but then for any ε > 0, N > 0 there are m,n ∈ N, m > N , such that

0 < m− nt < ε.

Since Φ(·, y) is continuous this is a contradiction with:

Φ(m, y) = Φ(m− nt,Φ(nt, y)) = Φ(m− nt, y).

Now, observe that Φ(·, x) is the only real analytic solution of the Cauchy problem

F ′(t) = G(F (t)), F (0) = x,

where G(z) := ∂Φ
∂t (0, z). If ∂Φ

∂t (w, u) = 0 then G(Φ(w, u)) = 0 and the constant function
F ≡ Φ(w, u) is the solution of the above Cauchy problem for x = Φ(w, u). Hence Φ(·,Φ(w, u))
is constant; a contradiction. 2
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Theorem 4.2 Let φ : R → R be a real analytic map. The following assertions are equivalent:

(a) The map φ has no fixed point and it embeds into a real analytic iteration semigroup.

(b) The Abel equation f ◦ φ = f + 1 has a real analytic solution f without critical points and
with only real values.

(c) The map φ has no fixed and no critical points.

If these equivalent conditions are satisfied, then there is a real analytic function g such that
g[n] = φ, i.e., the map Cφ : A (R) → A (R) has a n-th root Cg in the algebra of operators on
A (R).

Kneser [32] considered the case φ = exp, Belitskii and Tkachenko proved [11, Th. 2.20] that
(c) implies existence of arbitrary iteration roots without using iteration semigroup. They also
showed in the same place that if φ is a diffeomorphism then (a) holds.

Proof: (a)⇒(c): Lemma 4.1 (a).
(b)⇒(a): Solvability of the Abel equation implies that φ has no fixed point. Since f has

no critical points it is either strictly increasing or strictly decreasing. The image of f is always
unbounded from above so it must be of the form (a,+∞) where a could be −∞. It is easily
seen (in fact this is an observation of Abel [1], comp. [34, p. 198] and [32, p. 57]) that

Φ(t, x) := f−1(f(x) + t), t ≥ 0,

is a real analytic flow in which φ embeds.
(c)⇒(b): Follows from Lemma 3.9 and Lemma 3.10, see the proof of (e)⇒(f) in Theorem

3.11. 2

The observation that the existence of invertible solution of a Schröder equation implies
embedding into an iteration semigroup is a folklore.

Proposition 4.3 Let φ : R → R be a real analytic map without critical points. If φ[2] has exactly
one fixed point u and 0 < φ′(u) ̸= 1 then φ embeds into a real analytic iteration semigroup. In
particular, in that case there exist roots of the operator Cφ of arbitrary order.

Proof: By Proposition 2.7, if φ′(u) > 1 then the solution f : R → R of the equation
Cφ(f) = φ′(u)f is a diffeomorphism. We get the iteration semigroup:

(4) Φ(t, x) := f−1
(
(φ′(u))t · f(x)

)
.

Assume that 0 < φ′(u) < 1. By Theorem 2.6, there is a solution f : R → R of the equation
Cφ(f) = φ′(u)f without critical points, f(u) = 0. Since φ′(u) < 1 then for any x ∈ R the value
(φ′(u))t ·f(x) belongs to the image of f . So we can define the iteration semigroup be the formula
(4).

2

We have completed the proof of Theorem C. Unfortunately, in the case of self maps φ with
fixed points we cannot characterize when φ embeds into a real analytic iteration semigroup.
Nevertheless, we suspect that the following conjecture is true.

Conjecture A real analytic map φ : R → R embeds into a real analytic iteration semigroup
if and only if it has no critical point, has at most one fixed point u and in that case 0 < φ′(u) ̸= 1.
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In [8, Section 2] examples of polynomials φ without embedding into an iteration semigroup
are mentioned. By [34, Th. 15.13], the function φ(x) = exp(x) − 1 without critical points
which has exactly one fixed point u = 0 with φ′(u) = 1 cannot be embedded into an iteration
semigroup. Let us observe that if φ embeds into an iteration semigroup Φ then φ commutes
with every map gt := Φ(t, ·), i.e., gt ◦ φ = φ ◦ gt. Then the necessary condition for existence
of Φ is the existence of many functions commuting with φ. This is the method used by Baker
to show that such Φ does not exist for a wide class of φ defined locally around a fixed point or
for some meromorphic φ; see [34, Th. 10.11] and the papers [2]–[7], [44], where a description of
analytic functions defined locally around the fixed point and commuting with fixed φ is given
as well as some criteria of existence of entire functions commuting with some φ are given.

Especially interesting are papers [5] and [6] where the case of φ with a fixed point u, φ′(u) = 1,
is considered — i.e., the case we cannot decide here. In particular, from [5, Th. 2] it follows
that if a real analytic function φ : R → R extends to a function meromorphic on C or to an
entire function with a fixed point u, φ′(u) = 1, then the function φ cannot be embedded into an
iteration semigroup. In [6] more examples related to embeddability into an iteration semigroup
are given but mostly they are not real analytic on the whole line.

The case of functions φ with two fixed points is considered in [31], again it implies that
many functions φ cannot be embed into an iteration semigroup. In order to solve the problem
of characterization of φ which embeds into an iteration semigroup we need to describe global
real analytic functions which commute with φ. We believe that the question of characterizing φ
with real analytic iteration roots is even more difficult although also in that case iteration roots
of φ commute with φ so the same necessary condition works.
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Umultowska 87
61-614 Poznań, POLAND
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