MULTIPLIER AND AVERAGING OPERATORS IN THE
BANACH SPACES $\text{ces}(p)$, $1 < p < \infty$

ANGELA A. ALBANESE, JOSÉ BONET, WERNER J. RICKER

Abstract. The Banach sequence spaces $\text{ces}(p)$ are generated in a specified way via the classical spaces ℓ_p, $1 < p < \infty$. For each pair $1 < p, q < \infty$ the (p,q)-multiplier operators from $\text{ces}(p)$ into $\text{ces}(q)$ are known. We determine precisely which of these multipliers is a compact operator. Moreover, for the case of $p = q$ a complete description is presented of those (p,p)-multiplier operators which are mean (resp. uniform mean) ergodic. A study is also made of the linear operator C which maps a numerical sequence to the sequence of its averages. All pairs $1 < p, q < \infty$ are identified for which C maps $\text{ces}(p)$ into $\text{ces}(q)$ and, amongst this collection, those which are compact. For $p = q$, the mean ergodic properties of C are also treated.

1. Introduction.

For each element $x = (x_n)_n = (x_1,x_2,\ldots)$ of $\mathbb{C}^\mathbb{N}$ let $|x| := (|x_n|)_n$ and write $x \geq 0$ if $x = |x|$. Of course, $x \leq y$ means that $(y - x) \geq 0$. The Cesàro operator $C : \mathbb{C}^\mathbb{N} \to \mathbb{C}^\mathbb{N}$, defined by

$$C(x) := (x_1, \frac{x_1 + x_2}{2}, \frac{x_1 + x_2 + x_3}{3}, \ldots), \quad x \in \mathbb{C}^\mathbb{N},$$

satisfies $|C(x)| \leq C(|x|)$ for $x \in \mathbb{C}^\mathbb{N}$ and is a vector space isomorphism of $\mathbb{C}^\mathbb{N}$ onto itself. It is also a topological isomorphism when $\mathbb{C}^\mathbb{N}$ is considered as a (locally convex) Fréchet space with respect to the coordinatewise convergence. For each $1 < p < \infty$ define

$$\text{ces}(p) := \left\{ x \in \mathbb{C}^\mathbb{N} : \|x\|_{\text{ces}(p)} := \| \frac{1}{n} \sum_{k=1}^{n} |x_k| |n\|_p = \|C(|x|)\|_p < \infty \right\}, \quad (1.1)$$

where $\| \cdot \|_p$ denotes the standard norm in ℓ_p. An intensive study of the Banach spaces $\text{ces}(p)$, $1 < p < \infty$, was undertaken in [3]; see also the references therein. In particular, they are reflexive, ρ-concave Banach lattices (for the order induced by $\mathbb{C}^\mathbb{N}$) and the canonical vectors $e_k := (\delta_{nk})_n$, for $k \in \mathbb{N}$, form an unconditional basis, [3], [6]. For any pair $1 < p, q < \infty$ the space $\text{ces}(p)$ is known not to be isomorphic to ℓ_q, [3, Proposition 15.13]. It is shown in Proposition 3.3 (for all $p \neq q$) that $\text{ces}(p)$ is also not isomorphic to $\text{ces}(q)$. It is important to note that the inequality

$$\frac{A_p}{k^{1/p'}} \leq \|e_k\|_{\text{ces}(p)} \leq \frac{B_p}{k^{1/p'}}, \quad k \in \mathbb{N}, \quad (1.2)$$

Key words and phrases. Banach sequence spaces $\text{ces}(p)$, multiplier, compact operator, Cesàro operator, mean ergodic operator.

Mathematics Subject Classification 2010: Primary 46B45, 47B37; Secondary 46B42, 46G10, 47A16, 47B10.
is valid for strictly positive constants \(A_p, B_p \) and with \(\frac{1}{p} + \frac{1}{p'} = 1 \), [3, Lemma 4.7]. It is known, [3, p.26], that \(ces(p) = cop(p) \) with equivalent norms, where

\[
cop(p) := \left\{ x \in \mathbb{C}^N : \|x\|_{cop(p)} := \left\| \left(\sum_{k=n}^{\infty} |x_k| \right)_n \right\|_p < \infty \right\}, \quad 1 < p < \infty.
\]

The dual Banach spaces \((ces(p))', 1 < p < \infty, \) are described in Section 12 of [3]. Yet another equivalent norm in \(ces(p) \), via the dyadic decomposition of \(\mathbb{N} \), is available, [11, Theorem 4.1]. Namely, \(x \in \mathbb{C}^N \) belongs to \(ces(p) \) if and only if

\[
\|x\|_p := \left(\sum_{j=0}^{\infty} 2^{j(1-p)} \left(\sum_{k=2^j}^{2^{j+1}-1} |x_k| \right)^p \right)^{1/p} < \infty. \tag{1.3}
\]

The spaces \(ces(p), 1 < p < \infty, \) also arise in a very different way. Fix \(1 < p < \infty \). Since the Cesàro operator \(C_{p,p} : \ell_p \to \ell_p \), i.e., \(C \) restricted to \(\ell_p \), is a positive operator between Banach lattices, it is natural to look for continuous \(\ell_p \)-valued extensions of \(C_{p,p} \) to Banach lattices \(X \subseteq \mathbb{C}^N \) which are larger than \(\ell_p \) and solid (i.e., \(y \in \mathbb{C}^N \) and \(|y| \leq |x| \) with \(x \in X \) implies that \(y \in X \)). The largest of all those solid Banach lattices in \(\mathbb{C}^N \) for which such a continuous, \(\ell_p \)-valued extension of \(C_{p,p} : \ell_p \to \ell_p \) is possible is precisely \(ces(p) \), [6, p.62]. Of course, this "largest extension" \(C_{c(p),p} : ces(p) \to \ell_p \) is the restriction of \(C \) from \(\mathbb{C}^N \) to \(ces(p) \). Somewhat surprisingly, \(C_{c(p),p} \) also possesses an integral representation. That is, \(ces(p) \) coincides with the \(L^1 \)-space of an \(\ell_p \)-valued vector measure \(m_p \), and \(C_{c(p),p} \) is given by

\[
C_{c(p),p}(x) = \int_{\mathbb{N}} x(n) \, dm_p(n), \quad x \in L^1(m_p) = ces(p).
\]

Here \(m_p : \mathcal{R} \to \ell_p \) is the \(\sigma \)-additive vector measure defined on the \(\delta \)-ring \(\mathcal{R} \) of all finite subsets of \(\mathbb{N} \) by

\[
m_p(A) := C_{p,p}(\chi_A), \quad A \in \mathcal{R}, \tag{1.4}
\]

where \(\chi_A : \mathbb{N} \to \mathbb{C} \) is the element of \(\mathbb{C}^N \) given by \(\chi_A = \sum_{k \in A} e_k \) for each \(A \subseteq \mathbb{N} \). This claim certainly requires a proof. First, the space \(L^1(m_p) \) of all \(m_p \)-integrable functions on \(\mathbb{N} \), as defined in [8], [9], is the optimal domain for the operator \(C_{p,p} \) (in the sense of [9, Corollaries 2.4 and 2.6]) within the class of all Banach function spaces (briefly, B.f.s) over \((\mathbb{N}, \mathcal{R}, \mu) \) which have absolutely continuous norm (briefly, a.c.); here \(\mu \) denotes counting measure. More precisely, \(L^1(m_p) \subseteq \mathbb{C}^N \) contains the domain space \(\ell_p \) of \(C_{p,p} \), the integration map \(I_{m_p} : L^1(m_p) \to \ell_p \) (given by \(x \to \int_{\mathbb{N}} x \, dm_p \) for \(x \in L^1(m_p) \)) satisfies \(I_{m_p}(x) = C_{p,p}(x) \) for each \(x \in \ell_p \subseteq L^1(m_p) \), and \(L^1(m_p) \) is the largest of all B.f.s \(\ell_p \) over \((\mathbb{N}, \mathcal{R}, \mu) \) having a.c.-norm to which \(C_{p,p} \) can be extended while still maintaining its values in \(\ell_p \). To verify this, we observe that an equivalent norm in \(L^1(m_p) \) is given by

\[
\|x\|_{L^1(m_p)} := \sup \left\{ \left. \left\| \int_A x \, dm_p \right\|_p : A \in \mathcal{R} \right\}, \quad x \in L^1(m_p);
\]

see (3) on p.434 of [8]. But, for \(x \in L^1(m_p) \) and each \(A \in \mathcal{R} \), the function \(x\chi_A \) is a \(\mathcal{R} \)-simple function and so it follows from (1.4) that \(\int_A x \, dm_p = C_{p,p}(x\chi_A) \).
Now, for \(x \in ces(\ell) \) fixed, note that

\[
\left\| \int_A x \, dm_p \right\|_p = \left\| C_p,\ell(x \chi_A) \right\|_p = \left\| C_{(p),\ell}(x \chi_A) \right\|_p \leq \left\| C_{(p),\ell}(|x|) \right\|_p = \| x \|_{ces(\ell)} < \infty
\]

for every \(A \in \mathcal{R} \). If we define \(\int_A x \, dm_p := C_{(p),\ell}(x \chi_A) \in \ell_p \) for an arbitrary subset \(A \subseteq \mathbb{N} \), then \(x \) is \(m_p \)-integrable in the sense of [8, p.434], [9, p.133], with \(\| x \|_{L^p(m_p)} \leq \| x \|_{ces(\ell)} \). Since \(ces(p) \) itself is a B.f.s. over \((\mathbb{N}, \mathcal{R}, \mu)\) having an a.c.-norm and containing \(\ell_p \), we can conclude from the optimality of \(L^1(m_p) \) that \(ces(p) \subseteq L^1(m_p) \) with a continuous inclusion. On the other hand, recall that \(ces(p) \) is the largest solid Banach lattice in \(\mathbb{C}^\mathbb{N} \) which contains \(\ell_p \) and \(C \) maps into \(\ell_p \). But, the B.f.s. \(L^1(m_p) \) is such a solid Banach lattice which \(C \) maps into \(\ell_p \). Indeed, since \(L^1(m_p) \subseteq \mathbb{C}^\mathbb{N} \) with \(\ell_p \) dense in \(L^1(m_p) \) (as \(\ell_p \) contains the \(\mathcal{R} \)-simple functions which are known to be dense in \(L^1(m_p) \); [8, p.434]) and \(C \) acts in all of \(\mathbb{C}^\mathbb{N} \), it follows from the fact that norm convergence of a sequence in \(L^1(m_p) \) implies the pointwise convergence \(\mu \)-a.e. of a subsequence, [9, p.134] (in this case meaning coordinatewise convergence in \(\mathbb{C}^\mathbb{N} \)), that the extended operator \(I_{m_p} \) is necessarily given by \(I_{m_p}(x) = C(x) \) for all \(x \in L^1(m_p) \). Accordingly \(L^1(m_p) \subseteq ces(p) \) and hence, \(L^1(m_p) = ces(p) \) with equivalence of the norms \(\| \cdot \|_{L^1(m_p)} \) and \(\| \cdot \|_{ces(p)} \).

It is an important feature that \(m_p \) cannot be extended to a more traditional \(\sigma \)-additive, \(\ell_p \)-valued vector measure defined on the \(\sigma \)-algebra \(2^{\mathbb{N}} \) generated by \(\mathcal{R} \). This is because its range \(m_p(\mathcal{R}) \) is an unbounded subset of \(\ell_p \). Indeed, for \((A_n := \{1, 2, ..., N\}) \in \mathcal{R} \) we have \(m_p(A_N) = \sum_{j=1}^N e_j + N \sum_{j=N+1}^\infty \frac{1}{2} e_j \) and hence, \(\| m_p(A_N) \|_{\ell_p} \geq N^{1/p} \) for all \(N \in \mathbb{N} \).

Having presented several equivalent and varied descriptions of the spaces \(ces(p) \), \(1 < p < \infty \), we now formulate the aim of this note, namely to make a detailed analysis of certain linear operators defined on these spaces. Let us be more precise.

Given a pair \(1 < p, q < \infty \), an element \(a \in \mathbb{C}^\mathbb{N} \) is called a \((p, q) \)-multiplier if it multiplies \(ces(p) \) into \(ces(q) \), that is, if \(ax \in ces(q) \) for every \(x \in ces(p) \), where the product \(ax := (a_n x_n)_n \) is defined coordinatewise. The closed graph theorem ensures that the corresponding linear \((p, q) \)-multiplier operator \(M^a_{pq} : x \mapsto ax \) is then necessarily continuous from \(ces(p) \) into \(ces(q) \). If \(p = q \), then we denote \(M^a_{pp} \) simply by \(M^a_p \) and note that \(M^a_p \) is the diagonal operator acting in \(ces(p) \) via the matrix having the scalars \(\{a_n : n \in \mathbb{N}\} \) in its diagonal. The vector space of all \((p, q) \)-multipliers, denoted by \(\mathcal{M}_{pq} \) (or \(\mathcal{M}_p \) if \(p = q \)), has been completely determined by G. Bennett; see [3, pp.69-70], after recalling that \(cop(p) = ces(p) \) for all \(1 < p < \infty \).

In Section 2 we investigate various properties of the multiplier operators \(M^a_{pq} \) for all pairs \(1 < p, q < \infty \) and \(a \in \mathcal{M}_{pq} \). For instance, those multipliers \(a \in \mathcal{M}_{pq} \) for which \(M^a_{pq} \) is a compact operator are characterized; see Propositions 2.2 and 2.5. Also, given \(a \in \mathcal{M}_p = \ell_\infty \) it is shown that the spectrum of \(M^a_p \) is the set

\[\sigma(M^a_p) = \overline{\{a(n) : n \in \mathbb{N}\}}, \quad 1 < p < \infty, \]

where \(a(\mathbb{N}) := \{a_n : n \in \mathbb{N}\} \subseteq \mathbb{C} \), and that \(\| M^a_p \|_{op} = \| a \|_\infty \) with \(\| \cdot \|_{op} \) denoting the operator norm of \(M^a_p : ces(p) \to ces(p) \); see Lemma 2.6 and Proposition 2.7. Furthermore, those \(a \in \mathcal{M}_p \) are identified for which the operator \(M^a_p \) is mean
ergodic (cf. Proposition 2.8) as well as those for which \(M_p^a \) is uniformly mean ergodic (cf. Proposition 2.10).

It is clear from (1.1) and the discussions above that the Cesàro operator \(C \) is intimately connected to the Banach spaces \(ces(p) \), \(1 < p < \infty \). Indeed, Hardy's classical inequality states, for \(1 < p < \infty \), that

\[
\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} b_k \right)^p \leq K_p \sum_{n=1}^{\infty} b_n^p
\]

for all choices of non-negative numbers \(\{b_n\}_{n=1}^{\infty} \) and some constant \(K_p > 0 \). Setting \(b_n := |x_n| \), for \(n \in \mathbb{N} \) and each \(x \in \ell_p \), it is immediate that \(||C_p(|x|)||_p \leq K_p^{1/p} ||x||_p \), that is, \(\ell_p \subseteq ces(p) \) with a continuous inclusion; Remark 2.2 of [6] shows that this containment is strict. Moreover, the Cesàro operator \(C_{(p),p} : ces(p) \rightarrow \ell_p \) is continuous; this was already implicitly used above. To see this fix \(x \in ces(p) \). Using the fact that \(|| \cdot ||_p \) is a Banach lattice norm yields

\[
||C_{(p),p}(x)||_p = ||C(x)||_p \leq ||C(|x|)||_p = ||x||_{ces(p)}.
\]

The connection between \(C \) and \(ces(p) \) is further exemplified by the following remarkable result of Bennett, [3, Theorem 20.31].

Proposition 1.1. Let \(1 < p < \infty \) and \(x \in \mathbb{C}^N \). Then

\[
x \in ces(p) \quad \text{if and only if} \quad C(|x|) \in ces(p).
\]

Further examples of Banach spaces \(X \subseteq \mathbb{C}^N \) such that \(C(X) \subseteq X \) and for which Proposition 1.1 is valid (with \(X \) in place of \(ces(p) \)) are identified in [5], [6], [7].

In Section 3 it is shown that \(C \) maps \(ces(p) \) into \(ces(q) \), necessarily continuously, if and only if \(1 < p \leq q < \infty \); see Proposition 3.5. Furthermore, all pairs \(1 < p,q < \infty \) are identified for which \(C \) maps \(\ell_p \) into \(ces(q) \) and for which \(C \) maps \(ces(p) \) into \(\ell_q \), as well as the subclass of these continuous operators which are actually compact. Two important facts in this regard are that the Cesàro operator \(C_{(p),c(p)} : ces(p) \rightarrow ces(p) \) has spectrum

\[
\sigma(C_{(p),c(p)}) = \{ \lambda \in \mathbb{C} : |\lambda - \frac{p}{2}| \leq \frac{p}{2} \}, \quad 1 < p < \infty,
\]

[6, Theorem 5.1], and that the natural inclusion map \(ces(p) \hookrightarrow ces(q) \) is compact whenever \(1 < p < q \); see Proposition 3.4. A consequence of (1.6) is that \(C_{(p),c(p)} \) and \(C_{p,p} \) are never mean ergodic.

2. Multiplier operators from \(ces(p) \) into \(ces(q) \).

According to Table 16 on p.69 of [3], given \(1 < p \leq q < \infty \) an element \(a = (a_n)_n \in \mathbb{C}^N \) belongs to \(M_{p,q} \) if and only if the element \((a_n, n^{\frac{1}{q} - \frac{1}{p}})_n \in \ell_\infty \). Observe that \((\frac{1}{q} - \frac{1}{p}) \leq 0 \). In particular, \(\ell_\infty \subseteq M_{p,q} \) and, if \(p = q \), then \(M_p = \ell_\infty \). For fixed \(a \in \ell_\infty \), via the inequality \(C(|au|) \leq ||u||_\infty C(|u|) \), for \(u \in \mathbb{C}^N \), that \(||M_p^a(x)||_{ces(p)} = ||C(|ax|)||_p \leq ||a||_\infty ||C(|x|)||_p = ||a||_\infty ||x||_{ces(p)} \), for all \(x \in ces(p) \). Hence, \(M_p^a : ces(p) \rightarrow ces(p) \) satisfies

\[
||M_p^a||_{op} \leq ||a||_\infty, \quad a \in \ell_\infty, \quad 1 < p < \infty.
\]

Here \(|| \cdot ||_{op} \) denotes the operator norm. We begin with a result which is probably known; due to the lack of a reference we include a proof. Let \(\varphi \) be the
vector subspace of \mathbb{C}^N consisting of all elements with only finitely many non-zero coordinates.

Lemma 2.1. Let $T : \mathbb{C}^N \to \mathbb{C}^N$ be a continuous linear operator and X, Y be a Banach sequence spaces satisfying $\varphi \subseteq X \subseteq \mathbb{C}^N$ and $\varphi \subseteq Y \subseteq \mathbb{C}^N$ with continuous inclusions such that $T(X) \subseteq Y$. Then the restriction $T : X \to Y$ is a compact operator if and only if it satisfies the following property (K), namely:

(K) If a norm bounded sequence $\{x_m\}_{m=1}^\infty \subseteq X$ satisfies $\lim_{m \to \infty} x_m = 0$ in the Fréchet space \mathbb{C}^N, then $\lim_{m \to \infty} T(x_m) = 0$ in the Banach space Y.

Proof. By the closed graph theorem $T : X \to Y$ is continuous.

Suppose first that $T : X \to Y$ is compact. Let $\{x_m\}_{m=1}^\infty \subseteq X$ be any sequence in X satisfying $\lim_{m \to \infty} x_m = 0$ in \mathbb{C}^N. Assume that the sequence $\{T(x_m)\}_{m=1}^\infty$ does not converge to 0 in Y. Select a subsequence $\{x_{m_k}\}_{k=1}^\infty$ of $\{x_m\}_{m=1}^\infty$ and $r > 0$ such that

$$\|T(x_{m_k})\|_Y \geq r, \quad k \in \mathbb{N}. \quad (2.2)$$

By compactness of T there exists $y \in Y$ and a subsequence $\{x_{m_{k(i)}}\}_{i=1}^\infty$ of $\{x_{m_k}\}_{k=1}^\infty$ such that $\lim_{i \to \infty} \|T(x_{m_{k(i)}}) - y\|_Y = 0$. Continuity of the inclusion $Y \subseteq \mathbb{C}^N$ implies that also $\lim_{i \to \infty} T(x_{m_{k(i)}}) = y$ in \mathbb{C}^N. But, $\lim_{m \to \infty} x_{m_k} = 0$ in \mathbb{C}^N and $T : \mathbb{C}^N \to \mathbb{C}^N$ is continuous. Accordingly, $\lim_{i \to \infty} T(x_{m_{k(i)}}) = 0$ in \mathbb{C}^N and so $y = 0$; contradiction to (2.2). Hence, necessarily $T(x_m) \to 0$ in Y for $m \to \infty$.

This establishes that T has property (K).

Conversely, suppose that T has property (K). Let $\{x_i\}_{i=1}^\infty$ be any bounded sequence in X. To show that T is compact we need to argue that $\{T(x_i)\}_{i=1}^\infty$ has a convergent subsequence in Y. Since the inclusion $X \subseteq \mathbb{C}^N$ is continuous, the sequence $\{x_i\}_{i=1}^\infty$ is also bounded in the Fréchet-Montel space \mathbb{C}^N. Hence, there is a subsequence $u_j := x_{i_j}$, for $j \in \mathbb{N}$, of $\{x_i\}_{i=1}^\infty$ and $x \in \mathbb{C}^N$ such that $\lim_{j \to \infty} u_j = x$ in \mathbb{C}^N. Suppose that $\{T(u_j)\}_{j=1}^\infty$ is not convergent in Y. Then $\{T(u_j)\}_{j=1}^\infty$ cannot be a Cauchy sequence in Y and hence, there exists $a > 0$ such that, for every $j \in \mathbb{N}$, there exist $k_j, l_j \in \mathbb{N}$ with $j < k_j < l_j$ such that $\|T(u_{k_j}) - T(u_{l_j})\|_Y < a$. Via this inequality we can choose for $j = 1$ natural numbers $1 < k_1 < l_1$, then for $j := 1 + l_1$ natural numbers $1 + l_1 < k_2 < l_2$ and so on, such that $1 < k_1 < l_1 < k_2 < l_2 < k_3 < l_3 \ldots$ and, for these natural numbers $\{k_n, l_n\}_{n=1}^\infty$, we have

$$\|T(u_{k_n}) - T(u_{l_n})\|_Y \geq a, \quad n \in \mathbb{N}. \quad (2.3)$$

Then $z_n := u_{k_n} - u_{l_n}$, for $n \in \mathbb{N}$, is a bounded sequence in X. Since $\lim_{j \to \infty} u_j = x$ in \mathbb{C}^N, it follows that $\lim_{n \to \infty} z_n = 0$ in \mathbb{C}^N. By property (K), $\lim_{n \to \infty} T(z_n) = 0$ in Y, that is, $\lim_{n \to \infty} (T(u_{k_n}) - T(u_{l_n})) = 0$ in Y which contradicts (2.3). Hence, $\{T(u_j)\}_{j=1}^\infty$ does converge in Y and is a subsequence of $\{T(x_i)\}_{i=1}^\infty$. The compactness of T is thereby verified. \qed

Proposition 2.2. Let $1 < p \leq q < \infty$ and $a \in M_{p,q}$. Then the continuous multiplier operator $M_p^a : ces(p) \to ces(q)$ is compact if and only if $(a_n \frac{1}{n^{\frac{1}{q}-\frac{1}{p}}})_n \in c_0$.

Proof. Suppose first that $w = (w_n)_n := (a_n \frac{1}{n^{\frac{1}{q}-\frac{1}{p}}})_n \in c_0$. Define the element $w_N := (w_1, \ldots, w_N, 0, 0, \ldots)$ for each $N \in \mathbb{N}$ in which case $(w - w_N) \in \ell_{\infty}$. So,
by (2.1), \(\| M_p^w - M_p^{w_N} \|_{op} = \| M_p^{w - w_N} \|_{op} \leq \| w - w_N \|_{\infty} \). Since \(w \in c_0 \), it follows that \(\lim_{N \to \infty} \| w - w_N \|_{\infty} = 0 \) and hence, \(M_p^w : ces(p) \to ces(p) \) is compact as each \(M_p^{w_N} \), for \(N \in \mathbb{N} \), is a finite rank operator. Define \(v_n := n^{\frac{p}{q} - \frac{1}{q}} \), for \(n \in \mathbb{N} \), in which case \(v := (v_n)_n \in \mathcal{M}_{p,q} \) by Bennett’s multiplier criterion mentioned above, that is, \(M_p^v : ces(p) \to ces(p) \) is continuous. Since \(M_{p,q}^a = M_p^v \), it follows that \(M_{p,q}^a \) is compact.

Conversely, suppose that \(M_{p,q}^a \) is a compact operator. According to (1.2), the sequence \(f_j := j^{1/p'} e_j \), for \(j \in \mathbb{N} \), is bounded in \(ces(p) \). Clearly \(\{f_j\}_{j=1}^{\infty} \) converges to 0 in the Fréchet space \(\mathbb{C}^N \). Moreover, \(M_{p,q}^a(f_j) = j^{1/p'} a_j e_j \), for \(j \in \mathbb{N} \), and \(M_{p,q}^a(f_j) \to 0 \) in \(\mathbb{C}^N \) for \(j \to \infty \) (as the multiplier operator \(M^a : \mathbb{C}^N \to \mathbb{C}^N \) given by \(x \mapsto ax \) is continuous). Applying Lemma 2.1 to the setting \(X := ces(p) \), \(Y := ces(q) \) and the continuous multiplier operator \(T = M^a : \mathbb{C}^N \to \mathbb{C}^N \) (whose restriction to \(X \) is \(M_{p,q}^a \)), it follows that \(\{M_{p,q}^a(f_j)\}_{j=1}^{\infty} \) converges to 0 in \(ces(q) \), that is, \(\lim_{j \to \infty} j^{1/p'}|a_j| \cdot \|e_j\|_{ces(q)} = \lim_{j \to \infty} j^{1/p'}a_j e_j \|_{ces(q)} = 0 \). On the other hand, (1.2) implies that \(A_q \leq j^{1/p'} \| e_j \|_{ces(q)} = B_q \) for \(j \in \mathbb{N} \). It follows that \(\lim_{j \to \infty} j^{1/p'}|a_j| \cdot j^{1/q'} = 0 \). Since \(\frac{1}{p'} - \frac{1}{q'} = \frac{1}{q'} - \frac{1}{p} \) we can conclude that \((a_n n^{\frac{1}{p} - \frac{1}{q}})_n \) is in \(c_0 \).

For the case when \(p = q \) and \(a \in \mathcal{M}_p = \ell_\infty \), Proposition 2.2 implies that the multiplier operator \(M_{p,q}^a : ces(p) \to ces(p) \) is compact if and only if \(a \in c_0 \).

To treat the cases when \(p > q \) we recall, for each \(r > 1 \), the Banach space

\[
d(r) := \{ x \in \mathbb{C}^N : \| x \|_{d(r)} := \| \hat{x} \|_r < \infty \},
\]

where \(\hat{x} = (\hat{x}_n)_n := (\sup_{k \geq n} |x_k|)_n \) and \(\| \hat{x} \|_r \) is its norm in \(\ell_r \), [3, pp.3-4].

Lemma 2.3. Let \(1 < r < \infty \) and \(x \in d(r) \). Then \(\lim_{N \to \infty} \| x - x^{(N)} \|_{d(r)} = 0 \), where \(x^{(N)} := (x_1, \ldots, x_N, 0, 0, \ldots) \) for each \(N \in \mathbb{N} \).

Proof. Given \(N \in \mathbb{N} \) observe that \(x - x^{(N)} = (0, \ldots, 0, x_{N+1}, x_{N+2}, \ldots) \) and hence, \((x - x^{(N)})^r = (\hat{x}_{N+1}, \ldots, \hat{x}_{N+1}, \hat{x}_{N+2}, \ldots) \) where the first \((N+1) \)-coordinates are constant \(\hat{x}_{N+1} \). It follows that

\[
\| x - x^{(N)} \|_{d(r)}^r = (N+1)(\hat{x}_{N+1})^r + \sum_{n=N+2}^{\infty} (\hat{x}_n)^r, \quad N \in \mathbb{N}.
\]

Since \((\hat{x}_n)^r \) is a decreasing sequence of non-negative terms which belongs to \(\ell_1 \), it is classical that \(\lim_{n \to \infty} n(\hat{x}_n)^r = 0 \), [14, §3.3 Theorem 1]. Let \(\varepsilon > 0 \). Choose \(K \in \mathbb{N} \) such that \(n(\hat{x}_n)^r < \frac{\varepsilon}{2} \) and \(\sum_{n=K}^{\infty} (\hat{x}_n)^r < \frac{\varepsilon}{2} \) for all \(n \geq K \). It follows from (2.4) that \(\| x - x^{(N)} \|_{d(r)}^r \to 0 \) for all \(N \geq K \). The proof is thereby complete. \(\square \)

Let \(1 < q < p < \infty \) and choose \(r \) according to \(\frac{1}{r} = \frac{1}{q} - \frac{1}{p} \). Then it follows from table 32 on p.70 of [3] that

\[
\mathcal{M}_{p,q} = d(r).
\]

Lemma 2.4. Let \(1 < q < p < \infty \) and \(r \) satisfy \(\frac{1}{r} = \frac{1}{q} - \frac{1}{p} \). Then there exists a constant \(D_{p,q} > 0 \) such that

\[
\| M_{p,q}^a \|_{op} \leq D_{p,q} \| a \|_{d(r)}, \quad a \in \mathcal{M}_{p,q} = d(r).
\]
Proof. For Banach spaces X, Y let $L(X, Y)$ denote the Banach space of all continuous linear operators from X into Y, equipped with the operator norm $\| \cdot \|_{op}$. According to (2.5) the linear map $\Phi: d(r) \rightarrow L(\text{ces}(p), \text{ces}(q))$ specified by $\Phi(a) := M^a_{p,q}$ is well defined. To establish the existence of $D_{p,q}$ it suffices to show that Φ has closed graph. This is a standard argument after noting that convergence of a sequence in $d(r)$ implies its coordinatewise convergence. □

The following result shows, for $p > q > 1$, that every multiplier operator $M^a_{p,q}$ for $a \in M_{p,q}$ is compact.

Proposition 2.5. Let $p > q > 1$. For $a \in \mathbb{C}^N$ the following assertions are equivalent.

(i) $a \in M_{p,q}$, that is, $M^a_{p,q}: \text{ces}(p) \rightarrow \text{ces}(q)$ is continuous.

(ii) $M^a_{p,q}: \text{ces}(p) \rightarrow \text{ces}(q)$ is compact.

(iii) $a \in d(r)$ where $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$.

Proof. (i) \iff (iii) is precisely the characterization (2.5) of Bennett.

(ii) \implies (i) is clear as every compact linear operator is continuous.

(iii) \implies (ii). Let $a(N) := (a_1, \ldots, a_N, 0, 0, \ldots)$ for $N \in \mathbb{N}$. Then $a - a(N) \in d(r)$ for $N \in \mathbb{N}$ and $\lim_{N \to \infty} \|a - a(N)\|_{d(r)} = 0$; see Lemma 2.3. By (2.5) the operators $M^a_{p,q}, M^{a(N)}_{p,q}$ and $M^{a(N)}_{p,q} = M^a_{p,q} - M^{a(N)}_{p,q}$ all belong to $L(\text{ces}(p), \text{ces}(q))$. Lemma 2.4 yields that $\|M^a_{p,q} - M^{a(N)}_{p,q}\|_{op} \leq D_{p,q}\|a - a(N)\|_{d(r)}$, for $N \in \mathbb{N}$. Hence, $M^a_{p,q}$ is compact as each operator $M^{a(N)}_{p,q}$ has finite rank. □

We now consider further properties of multiplier operators for the case when $p = q$. The space $L(\text{ces}(p), \text{ces}(p))$ is simply denoted by $L(\text{ces}(p))$.

Lemma 2.6. Let $1 < p < \infty$. Then

$$
\|M^a_{p}\|_{op} = \|a\|_{\infty}, \quad a \in \ell_{\infty} = M_p. \tag{2.6}
$$

Proof. Just prior to Proposition 2.2 it was noted that $\|M^a_{p}\|_{op} \leq \|a\|_{\infty}$. On the other hand, since $M^a_{p}(e_j) = a_j e_j$ for $j \in \mathbb{N}$, it is clear that the point spectrum $\sigma_{pt}(M^a_{p})$, consisting of all the eigenvalues of M^a_{p}, satisfies

$$
a(N) := \{a_j : j \in \mathbb{N}\} \subseteq \sigma_{pt}(M^a_{p}) \subseteq \sigma(M^a_{p}).
$$

Then the spectral radius inequality for operators, [10, Ch. VII, Lemma 3.4], yields

$$
\|M^a_{p}\|_{op} \geq r(M^a_{p}) := \sup\{\|\lambda\| : \lambda \in \sigma(M^a_{p})\} \geq \sup_{j \in \mathbb{N}} |a_j| = \|a\|_{\infty}.
$$

□

The spectrum of multiplier operators in $L(\text{ces}(p))$ can now be determined.

Proposition 2.7. Let $1 < p < \infty$. Then

$$
\sigma(M^a_{p}) = a(\overline{N}) = \{a_j : j \in \mathbb{N}\}, \quad a \in M_p. \tag{2.7}
$$

Proof. From the proof of Lemma 2.6 we have $a(\overline{N}) \subseteq \sigma_{pt}(M^a_{p}) \subseteq \sigma(M^a_{p})$. Since $\sigma(M^a_{p})$ is a closed set in \mathbb{C}, it follows that $a(\overline{N}) \subseteq \sigma(M^a_{p})$.

Suppose that $\lambda \notin a(\overline{N})$. Then $b = (b_n)_n$ with $b_n := \frac{1}{\lambda - a_n}$ for $n \in \mathbb{N}$ belongs to $\ell_{\infty} = M_p$. Using the formula $\lambda I - M^a_{p} = M^\lambda_{I-a}$ (with I the identity operator
on $ces(p)$ and $1 := (1, 1, \ldots)$ it is routine to check that $(\lambda I - M_p^a)M_p^b = I = M_p^b(\lambda I - M_p^a)$. Hence, $\lambda I - M_p^a$ is invertible in $\mathcal{L}(ces(p))$ and so λ lies in the resolvent set of M_p^a. This establishes the inclusion $\sigma(M_p^a) \subseteq \sigma(N)$. \hfill \square

For a Banach space X, an operator $T \in \mathcal{L}(X) := \mathcal{L}(X, X)$ is mean ergodic (resp. uniformly mean ergodic) if its sequence of Cesàro averages

$$T_{[n]} := \frac{1}{n} \sum_{m=1}^{n} T^m, \quad n \in \mathbb{N},$$

converges to some operator $P \in \mathcal{L}(X)$ in the strong operator topology τ_s, i.e.,

$$\lim_{n \to \infty} T_{[n]}(x) = P(x) \text{ for each } x \in X, \quad [10, \text{Ch. VIII}] \text{ (resp. in the operator norm topology } \tau_b).$$

According to [10, Ch. VIII, Corollary 5.2] there then exists the direct sum decomposition

$$X = \text{Ker}(I - T) \oplus (I - T)(X).$$

Moreover, we have the identities

$$(I - T)T_{[n]} = T_{[n]}(I - T) = \frac{1}{n}(T - T^{n+1}), \quad n \in \mathbb{N},$$

and, setting $T_{[0]} := I$, that

$$\frac{1}{n} T^n = T_{[n]} - \frac{(n - 1)}{n} T_{[n-1]}, \quad n \in \mathbb{N}. \quad (2.10)$$

An operator $T \in \mathcal{L}(X)$ is called power bounded if $\sup_{n \in \mathbb{N}} \|T^n\|_{op} < \infty$. In this case it is clear that necessarily $\lim_{n \to \infty} \frac{\|T^n\|_{op}}{n} = 0$. A standard reference for mean ergodic operators is [15]. Finally, define $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$.

Proposition 2.8. Let $1 < p < \infty$ and $a \in \mathcal{M}_p = \ell_\infty$. The following statements are equivalent.

(i) $\|a\|_\infty \leq 1$.

(ii) The multiplier operator $M_p^a \in \mathcal{L}(ces(p))$ is power bounded.

(iii) The multiplier operator $M_p^a \in \mathcal{L}(ces(p))$ is mean ergodic.

(iv) The spectrum $\sigma(M_p^a) \subseteq \mathbb{D}$.

(v) $\lim_{n \to \infty} \frac{(M_p^a)^n}{n} = 0$ relative to τ_s in $\mathcal{L}(ces(p))$.

Proof. (i) \implies (ii). Since \mathcal{M}_p is an algebra under coordinatewise multiplication in \mathbb{C}^N we have $(M_p^a)^n = M_p^{a^n}$ (where $a^n := (a^n_j)_j$ for $a = (a_j)_j$) and so, via Lemma 2.6,

$$\|(M_p^{a^n})\|_{op} = \|M_p^{a^n}\|_{op} = \|a^n\|_{\infty} \leq 1, \quad n \in \mathbb{N}. \quad (2.7)$$

(ii) \implies (iii). Power bounded operators in reflexive Banach spaces are always mean ergodic, [19].

(i) \implies (iv). Since $\|a\|_{\infty} = \sup\{|\lambda| : \lambda \in a(\mathbb{N})\} \leq 1$, (2.7) implies $\sigma(M_p^a) \subseteq \mathbb{D}$.

(iv) \implies (i). Clear from (2.7).

(iii) \implies (i). Suppose that $\|a\|_{\infty} > 1$. Then there exists $k \in \mathbb{N}$ such that $|a_k| > 1$. Since $(M_p^a)^n(e_k) = a^n_k e_k$ for $n \in \mathbb{N}$, it follows that

$$\frac{\|(M_p^a)^n(e_k)\|_{ces(p)}}{n} = \frac{|a^n_k|^n}{n} \|e_k\|_{ces(p)}, \quad n \in \mathbb{N},$$

with $|a_k| > 1$. Hence, the sequence $\{(M_p^a)^n\}^\infty_{n=1}$ cannot converge to $0 \in \mathcal{L}(ces(p))$ in the topology τ_s, thereby violating a necessary condition for M_p^a to be mean ergodic (see (2.10)); contradiction! So, $\|a\|_{\infty} \leq 1$.

(iii) \(\iff\) (v). This follows from (2.10).
(v) \(\iff\) (i). See the proof of (iii) \(\iff\) (i).

\[\]
(i) \(M^a_p \) is uniformly mean ergodic.

(ii) \(\|a\|_\infty \leq 1 \) and \(1 \not\in a(\mathbb{N}) \setminus \{1\} \).

Proof. (i) \(\implies \) (ii). By the discussion immediately after Proposition 2.8 we know that (i) implies \(\|a\|_\infty \leq 1 \) and the range of \(I - M^a_p = M^{1-a}_p \) is closed in \(\text{ces}(p) \). Then \(w := 1 - a \) satisfies the hypothesis of Lemma 2.9. Accordingly, \(0 \not\in ((1-\alpha)X(1-a))(\mathbb{N}) \) which is equivalent to \(1 \not\in a(\mathbb{N}) \setminus \{1\} \).

(ii) \(\implies \) (i). The condition \(1 \not\in a(\mathbb{N}) \setminus \{1\} \) implies that \(u := (1-a)^{-1}X(1-a) \) belongs to \(\ell_{\infty} \). In particular, \(M^a_p \in \mathcal{L}(\text{ces}(p)) \). Moreover, \(w := (1-a) \in \ell_{\infty} \) satisfies (in \(\mathcal{L}(\text{ces}(p)) \)) the identity \(M^w_p = M^{X(w)}_p \). It follows from (2.11) that \(M^w_p(\text{ces}(p)) \subseteq M^{X(w)}_p(\text{ces}(p)) = X_{w,p} \) (see (2.12)). It is routine to verify the reverse inclusion and so actually \(M^w_p = X_{w,p} \). In particular, the range of \(M^{1-a}_p = I - M^a_p \) is closed in \(\text{ces}(p) \). Since \(\|a\|_\infty \leq 1 \) implies that \(M^a_p \) is power bounded (cf. Proposition 2.8), it follows that \(\lim_{n \to \infty} \|M^a_p\|^n_{\text{ces}} = 0 \). Hence, the criterion of Lin can be applied to conclude that \(M^a_p \) is uniformly mean ergodic. \(\square \)

An example of a multiplier operator which is mean ergodic but not uniformly ergodic is \(M^a_p \) with \(a := (1 - \frac{1}{n})_n \).

In (2.9), with \(X := \text{ces}(p) \) and \(T := M^a_p \) (for \(\|a\|_\infty \leq 1 \)), note that

\[\text{Ker}(I - M^a_p) = \{ x \in \text{ces}(p) : x_n = 0 \text{ for all } n \in \mathbb{N} \text{ with } a_n \neq 1 \}. \]

Concerning the linear dynamics of a continuous linear operator \(T : X \to X \) defined on a separable, locally convex Hausdorff space \(X \), recall that \(T \) is hypercyclic if there exists \(x \in X \) whose orbit \(\{ T^n x : n \in \mathbb{N}_0 := \{0\} \cup \mathbb{N} \} \) is dense in \(X \). If, for some \(x \in X \), the projective orbit \(\{ \lambda T^n x : \lambda \in \mathbb{C}, n \in \mathbb{N}_0 \} \) is dense in \(X \), then \(T \) is called supercyclic. Since this projective orbit coincides with \(\cup_{n=0}^{\infty} T^n(\text{span}\{x\}) \) we see that supercyclic is the same as 1-supercyclic as defined in [4]. Hypercyclicity always implies supercyclicity but not conversely.

Lemma 2.11. Let \(a = (a_n)_n \in \mathbb{C}^\mathbb{N} \) and define the multiplier operator \(M^a : \mathbb{C}^\mathbb{N} \to \mathbb{C}^\mathbb{N} \) by \(M^a(x) := ax \) for \(x \in \mathbb{C}^\mathbb{N} \). Then \(M^a \) is not supercyclic in the Fréchet space \(\mathbb{C}^\mathbb{N} \).

Proof. The continuous dual space \((\mathbb{C}^\mathbb{N})' \) of \(\mathbb{C}^\mathbb{N} \) is the space \(\varphi \). Clearly \(M^a \) is continuous on \(\mathbb{C}^\mathbb{N} \) and its dual operator \((M^a)' : \varphi \to \varphi \) is given by \((M^a)'(y) = ay\) for \(y \in \varphi \). Moreover, it follows from \((M^a)'(e_j) = a_j e_j \) for \(j \in \mathbb{N} \) that each canonical basis vector \(e_j \in \varphi \) is an eigenvector of \((M^a)'\). According to Theorem 2.1 of [4] the operator \(M^a \in \mathcal{L}(\mathbb{C}^\mathbb{N}) \) cannot be supercyclic. \(\square \)

Given \(1 < p < \infty \) and \(a \in \mathbb{C}^\mathbb{N} \) the multiplier operator \(M^a : \mathbb{C}^\mathbb{N} \to \mathbb{C}^\mathbb{N} \) maps \(\ell_p \) into \(\ell_p \) if and only if \(a \in \ell_{\infty} \), [3, 1, p.69]. Denote this restricted operator by \(M^a_{(p)} : \ell_p \to \ell_p \).

Proposition 2.12. Let \(1 < p < \infty \) and \(a \in \ell_{\infty} \).

(i) The multiplier operator \(M^a_{(p)} \in \mathcal{L}(\ell_p) \) is not supercyclic.

(ii) The multiplier operator \(M^a_{(p)} \in \mathcal{L}(\text{ces}(p)) \) is not supercyclic.

Proof. (i) Since \(\ell_p \) is dense in \(\mathbb{C}^\mathbb{N} \) (as it contains \(\varphi \)) and the natural inclusion \(\ell_p \to \mathbb{C}^\mathbb{N} \) is continuous, the supercyclicity of \(M^{a}_{(p)} \in \mathcal{L}(\ell_p) \) would imply the
supercyclicity of $M^a \in \mathcal{L}(\mathbb{C}^N)$, which is not the case (cf. Lemma 2.11). Hence, $M^a_{\{p\}}$ is not supercyclic.

(ii) Since $ces(p)$ is dense in \mathbb{C}^N and the inclusion $ces(p) \hookrightarrow \mathbb{C}^N$ is continuous, the analogous argument to that of part (i) applies.

\section{The Cesàro operators}

Consider a pair $1 < p, q < \infty$. Denote by $C_{c(p),c(q)}$ (resp. $C_{c(p),q}$; $C_{p,c(q)}$; $C_{p,q}$) the Cesàro operator C when it acts from $ces(p)$ into $ces(q)$ (resp. $ces(p)$ into ℓ_q; ℓ_p into $ces(q)$; ℓ_p into ℓ_q), whenever this operator exists. The closed graph theorem then ensures that this operator is continuous. We use the analogous notation for the natural inclusion maps $i_{c(p),c(q)}$; $i_{c(p),q}$; $i_{p,c(q)}$; $i_{p,q}$ whenever they exist. The main aim of this section is to identify all pairs p, q for which these inclusion operators and Cesàro operators do exist and, for such pairs, to determine whether or not the operator is compact. For each $1 < p < \infty$, the spectrum of $C_{p,p} \in \mathcal{L}(\ell_p)$ is well known, [16, Theorem 2], [20, Theorem 4], and coincides with the spectrum of $C_{c(p),c(p)} \in \mathcal{L}(ces(p))$; see (1.6).

We begin with a preliminary result.

\begin{lemma}
Let $1 < p < \infty$.

(i) The operator $C_{c(p),p} : ces(p) \to \ell_p$ exists and satisfies $\|C_{c(p),p}\|_{op} \leq 1$.

(ii) The largest amongst the class of spaces ℓ_r, for $1 \leq r < \infty$, which satisfy $\ell_r \subseteq ces(p)$ is the space ℓ_p.

\end{lemma}

\begin{proof}
(i) Follows from the discussion immediately prior to Proposition 1.1.

(ii) See Remark 2.2(iii) of [6].
\end{proof}

\begin{proposition}
Let $1 < p, q < \infty$ be an arbitrary pair.

(i) The inclusion map $i_{p,q} : \ell_p \to \ell_q$ exists if and only if $p \leq q$, in which case $\|i_{p,q}\|_{op} = 1$.

(ii) The inclusion map $i_{p,c(q)} : \ell_p \to ces(q)$ exists if and only if $p \leq q$, in which case $\|i_{p,c(q)}\|_{op} \leq q'$.

(iii) The inclusion map $i_{c(p),c(q)} : ces(p) \to ces(q)$ exists if and only if $p \leq q$, in which case $\|i_{c(p),c(q)}\|_{op} \leq 1$.

(iv) $ces(p) \not\subseteq \ell_q$ for all choices of $1 < p, q < \infty$.

\end{proposition}

\begin{proof}
(i) This is well known.

(ii) Lemma 3.1(ii) shows that $\ell_p \not\subseteq ces(q)$ if $p > q$.

Let $p \leq q$. For $x \in \ell_p$ we have $\|i_{p,c(q)}(x)\|_{ces(q)} = \|x\|_{ces(q)}$ with

$$\|x\|_{ces(q)} := \|C(|x|)\|_q \leq \|C_{q,q}\|_{op}\|x\|_q \leq \|C_{q,q}\|_{op}\|x\|_p,$$

where the last inequality follows via part (i). Since $\|C_{q,q}\|_{op} = p'$, [13, Theorem 326], the desired conclusion is clear.

(iii) If $p > q$, then $ces(p) \not\subseteq ces(q)$. Indeed, by Lemma 3.1(ii) there exists $y \in \ell_p$ with $y \not\in ces(q)$. By part (ii), $y \in ces(p)$.

Let $p \leq q$. Fix $x \in ces(p)$. By Lemma 3.1(i) we have $C(|x|) \in \ell_p$ and hence, by part (i), $C(|x|) \in \ell_q$. Accordingly,

$$\|x\|_{ces(q)} := \|C(|x|)\|_q \leq \|C(|x|)\|_p = \|x\|_{ces(p)}.$$

This shows that $i_{c(p),c(q)}$ exists and $\|i_{c(p),c(q)}\|_{op} \leq 1$.

(iv) For arbitrary $1 < p < \infty$ there exists $x \in ces(p)$ with $x \notin \ell_\infty$, [6, Remark 2.2(ii)]. Then also $x \notin \ell_q$ for every $1 < q < \infty$. \hfill \square

If $1 < p < q < \infty$, then the inclusion $ces(p) \subseteq ces(q)$ as guaranteed by Proposition 3.2(ii) is actually proper. Indeed, by Lemma 3.1(ii) there exists $x \in \ell_q$ with $x \notin ces(p)$. Then $y := C(|x|) \in ces(q)$; see Proposition 3.2(ii). But, $x \notin ces(p)$ implies $|x| \notin ces(p)$ and so $y \notin ces(p)$; see Proposition 1.1. That $ces(p) \subsetneq ces(q)$ also follows from the next result.

Proposition 3.3. Let $1 < p, q < \infty$ with $p \neq q$. Then $ces(p)$ is not Banach space isomorphic to $ces(q)$.

Proof. According to (1.3) the closed (sectional) subspace

$$Y := \{x \in ces(p) : x_k = 0 \text{ unless } k = 2^j \text{ for some } j = 0, 1, 2, \ldots\}$$

is isomorphic to a weighted ℓ_p-space (as $\|x\|_p = (\sum_{j=0}^{\infty} 2^{j(1-p)}|x_{2^j}|^p)^{1/p}$ for $x \in Y$) and hence, also isomorphic to ℓ_p. Suppose that $ces(p)$ is isomorphic to $ces(q)$. Then ℓ_p is isomorphic to a closed subspace of $ces(q)$. Since $ces(q)$ is isomorphic to a closed subspace of the infinite ℓ_p-sum $\ell_q(E_n)$ with each $E_n, n \in \mathbb{N}$, a finite dimensional space, [21, Theorem 1], it follows that ℓ_p is isomorphic to a closed subspace of $\ell_q(E_n)$. But, $X := \ell_p$ has a shrinking basis (it is reflexive) and so is isomorphic to $\ell_q(D_k)$ with each $D_k, k \in \mathbb{N}$, a finite dimensional space, [18, Theorem 2.d.1]. Since ℓ_q is clearly isomorphic to a closed (sectional) subspace of $\ell_q(D_k)$, it follows that ℓ_q is isomorphic to a closed subspace of ℓ_p with $p \neq q$, which is not the case, [18, p. 54]. So, $ces(p)$ is not isomorphic to $ces(q)$. \hfill \square

Via Proposition 3.2 we now determine which inclusion maps are compact.

Proposition 3.4. Let $1 < p \leq q < \infty$ be arbitrary.

(i) The inclusion $i_{p,q} : \ell_p \rightarrow \ell_q$ is never compact.

(ii) The inclusion $i_{c(p),c(q)} : ces(p) \rightarrow ces(q)$ is compact if and only if $p < q$.

(iii) The inclusion $i_{p,c(q)} : \ell_p \rightarrow ces(q)$ is compact if and only if $p < q$.

Proof. (i) The image under $i_{p,q}$ of the unit basis vectors $\{e_n : n \in \mathbb{N}\} \subseteq \ell_p$ has no Cauchy subsequence (hence, no convergent subsequence) in ℓ_q because $\|e_n - e_m\|_q = 2^{q/2}$ for all $n \neq m$.

(ii) Since $i_{c(p),c(p)}$ is the identity operator on $ces(p)$ it is surely not compact.

So, assume that $p < q$. Then the constant element $a := 1$ satisfies $(a_n \frac{1}{n^{1-p}})_n = (\frac{1}{n^{1-p}})_n \in c_0$ and hence, by Proposition 2.2 the multiplier operator $M^1_{p,q} \in \mathcal{L}(ces(p), ces(q))$ is compact. But, $M^1_{p,q}$ is precisely the inclusion operator $i_{c(p),c(q)}$.

(iii) Since $C_{p,p}$ is not compact (by (1.6) its spectrum is an uncountable set) and $C_{p,p} = C_{c(p),c(p)} i_{c(p),c(p)}$, also $i_{p,c(q)}$ fails to be compact. So, assume that $p < q$. Then the factorization $i_{p,c(q)} = i_{c(p),c(q)} i_{p,c(p)}$ together with the compactness of $i_{c(p),c(q)}$ (see part (ii)) shows that $i_{p,c(q)}$ is compact. \hfill \square

Now that the continuity and compactness of the various inclusion operators are completely determined we can do the same for the Cesàro operators $C : X \rightarrow Y$ where $X, Y \in \{\ell_p, ces(q) : p, q \in (1, \infty)\}$. We begin with continuity.

Proposition 3.5. Let $1 < p, q < \infty$ be an arbitrary pair.

(i) $C_{p,q} : \ell_p \rightarrow \ell_q$ exists if and only if $p \leq q$, in which case $\|C_{p,q}\|_{op} \leq p'$.

(ii) $C_{p,c(q)} : \ell_p \rightarrow ces(q)$ exists if and only if $p \le q$, in which case $\|C_{p,c(q)}\|_{op} \le p' q'$.

(iii) $C_{c(p),c(q)} : ces(p) \rightarrow ces(q)$ exists if and only if $p \le q$, in which case $\|C_{c(p),c(q)}\|_{op} \le q'$.

(iv) $C_{(p),q} : ces(p) \rightarrow \ell_q$ exists if and only if $p \le q$, in which case $\|C_{(p),q}\|_{op} \le 1$.

Proof. (ii) Let $p > q$. According to Lemma 3.1(ii) there exists $x \in \ell_p \setminus ces(q)$, in which case also $|x| \in \ell_p \setminus ces(q)$. If $C(|x|) \in ces(q)$, then Proposition 1.1 implies that also $|x| \in ces(q)$; contradiction. So, $|x| \in \ell_p$ but $C(|x|) \notin ces(q)$, i.e.,

"$C_{p,c(q)}"$ does not exist.

Suppose then that $p \le q$. Then $C_{p,p} \in \mathcal{L}(\ell_p)$ exists with $\|C_{p,p}\|_{op} = p'$ and $i_{p,c(q)} : \ell_p \rightarrow ces(q)$ exists with $\|i_{p,c(q)}\|_{op} \le q'$ (cf. Proposition 3.2(ii)). Hence, the composition $C_{p,c(q)} = i_{p,c(q)} C_{p,p}$ exists and $\|C_{p,c(q)}\|_{op} \le p' q'$.

(i) Let $p > q$. If $C_{p,q}$ exists, then by Proposition 3.2(ii) $C_{p,c(q)} = i_{p,c(q)} C_{p,q}$ also exists. This contradicts part (ii) which was just proved.

So, assume that $p \le q$. Then $C_{p,p} \in \mathcal{L}(\ell_p)$ exists with $\|C_{p,p}\|_{op} = p'$ and $i_{q,c(q)} \in \ell_q$ exists with $\|i_{q,c(q)}\|_{op} = 1$ (cf. Proposition 3.2(i)). Hence, $C_{p,q} = i_{p,q} C_{p,p}$ exists and $\|C_{p,q}\|_{op} \le p'$.

(ii) Let $p > q$. If $C_{c(p),c(q)}$ exists, then by Proposition 3.2(i) also $C_{p,c(q)} = C_{c(p),c(q)} i_{p,c(p)}$ exists. This contradicts part (ii) above.

So, assume that $p \le q$. Fix $x \in ces(p)$. Then also $|x| \in ces(p)$ and $C(|x|) \in \ell_p \subseteq \ell_q$; see Lemma 3.1(i) and Proposition 3.2(i). Moreover, $|C(x)| \in \ell_q$ as $|C(x)| \le C(|x|)$. Hence,

$$\|C(x)\|_{ces(q)} := \|C(|C(x)|)\|_q \le \|C_{q,q}\|_{op} \|C(x)\|_q \le q' \|C(|x|)\|_q \le q' \|C(x)\|_q \le p' \|x\|_{ces(p)}.$$

This shows that $C_{p,c(q)}$ exists and $\|C_{c(p),c(q)}\|_{op} \le q'$.

(iii) Let $p > q$. If $C_{c(p),q}$ exists, then also $C_{p,c(q)} = i_{c(p),c(q)} C_{c(p),q}$ exists (cf. Proposition 3.2(ii)). This contradicts part (iii).

Assume now that $p \le q$. Since $C_{c(p),p}$ exists with $\|C_{c(p),p}\|_{op} \le 1$ (cf. Lemma 3.1(i)) and $i_{p,q}$ exists with $\|i_{p,q}\|_{op} = 1$ (cf. Proposition 3.2(i)), it follows that the composition $C_{c(p),q} = i_{p,q} C_{c(p),p}$ exists and $\|C_{c(p),q}\|_{op} \le 1$.

Concerning the proof of part (iii) of Proposition 3.5 when $p \le q$, it is also clear from $C_{c(p),c(q)} = i_{c(p),c(q)} C_{c(p),c(p)}$ that $C_{c(p),c(q)}$ exists. However, since $\|i_{c(p),c(q)}\|_{op} \le 1$ (cf. Proposition 3.2(iii)) and $\|C_{c(p),c(p)}\|_{op} = p'$, this approach only yields $\|C_{c(p),c(q)}\|_{op} \le p'$ whereas the given proof of (iii) yields $\|C_{c(p),c(q)}\|_{op} \le q'$ which is a better estimate when $p < q$.

We now have all the facts needed to prove the main result of this section.

Proposition 3.6. Let $1 < p \le q < \infty$ be arbitrary.

(i) The Cesàro operator $C_{p,q} : \ell_p \rightarrow \ell_q$ is compact if and only if $p < q$.

(ii) The Cesàro operator $C_{p,c(q)} : \ell_p \rightarrow ces(q)$ is compact if and only if $p < q$.

(iii) The Cesàro operator $C_{c(p),c(q)} : ces(p) \rightarrow ces(q)$ is compact if and only if $p < q$.

(iv) The Cesàro operator $C_{(p),q} : ces(p) \rightarrow \ell_q$ is compact if and only if $p < q$.

Proof. (i) Since $\sigma(C_{p,p})$ is an uncountable set (see the comments prior to Lemma 3.1), it is clear that $C_{p,p}$ is not compact. So, assume that $p < q$. Since $C_{p,q} = C_{c(q),c(p)}$ with $C_{c(q),q} : ces(q) \to \ell_q$ continuous (cf. Lemma 3.1(i)) and $i_{c(p),c(q)} : \ell_p \to ces(q)$ compact (by Proposition 3.4(iii)), it follows that $C_{p,q}$ is compact.

(ii) For $p = q$ observe that $(C_{(p),(p)})^2 = C_{p,c(p)}C_{c(p),p}$. By (1.6) and the spectral mapping theorem, [10, Ch. VII, Theorem 3.11], we see that

$$\sigma((C_{(p),(p)})^2) = \{ \lambda^2 : |\lambda - \frac{p'}{2}| \leq \frac{p'}{2} \}$$

is an uncountable set and so $(C_{(p),(p)})^2$ is not compact. Hence, also $C_{p,c(p)}$ is not compact.

Assume then that $p < q$. Since the inclusion $i_{c(p),c(q)} : ces(p) \to ces(q)$ is compact (cf. Proposition 3.4(ii)), it is clear from the factorization $C_{p,c(q)} = i_{c(p),c(q)}C_{p,c(p)}$ that also $C_{p,c(q)}$ is compact.

(iii) For $p = q$ it follows from (1.6) that $\sigma(C_{p,c(p)})$ is an uncountable set and $C_{p,c(p)}$ is not compact. Suppose now that $p < q$. Since the inclusion $i_{c(p),c(q)} : ces(p) \to ces(q)$ is compact (by Proposition 3.4(ii)), the factorization $C_{p,c(q)} = i_{c(p),c(q)}C_{p,c(p)}$ shows that $C_{c(p),c(q)}$ is compact.

(iv) For $p = q$ we have $C_{c(p),c(p)} = i_{c(p),c(p)}C_{c(p),p}$. By part (iii) the operator $C_{c(p),c(p)}$ is not compact and hence, also $C_{p,c(p)}$ is not compact.

Assume now that $p < q$. Select any r satisfying $p < r < q$, in which case we have $C_{c(p),q} = C_{c(r),q}i_{c(p),c(r)}$ with $C_{c(r),q}$ continuous (by Proposition 3.5(iv)) and $i_{c(p),c(r)}$ compact (via Proposition 3.4(ii)). Hence, also $C_{c(p),q}$ is compact. \qed

Our final result concerns the mean ergodicity and linear dynamics of Cesàro operators.

Proposition 3.7. Let $1 < p < \infty$.

(i) The Cesàro operator $C_{p,p} : \ell_p \to \ell_p$ is not power bounded, not mean ergodic and not supercyclic.

(ii) The Cesàro operator $C_{c(p),c(p)} : ces(p) \to ces(p)$ is not power bounded, not mean ergodic and not supercyclic.

Proof. (i) That $C_{p,p}$ is neither power bounded nor mean ergodic is Proposition 4.2 of [1]. It is known that the Cesàro operator $C : \mathbb{C}^N \to \mathbb{C}^N$ is not supercyclic, [2, Proposition 4.3]. Since ℓ_p is dense in \mathbb{C}^N and the natural inclusion $\ell_p \subseteq \mathbb{C}^N$ is continuous, the supercyclicity of $C_{p,p}$ in ℓ_p would imply that $C : \mathbb{C}^N \to \mathbb{C}^N$ is supercyclic. Hence, $C_{p,p} \in \mathcal{L}(\ell_p)$ is not supercyclic.

(ii) Suppose that $C_{c(p),c(p)}$ is mean ergodic. According to (2.10) we have

$$\lim_{n \to \infty} \frac{(C_{c(p),c(p)})^n}{n} = 0$$

for $\tau_n \in \mathcal{L}(ces(p))$ and hence, $\sigma(C_{c(p),c(p)}) \subseteq \mathbb{B}$, [10, Ch. VIII, Lemma 8.1]. This contradicts (1.6). Hence, $C_{c(p),c(p)}$ cannot be mean ergodic. Since power bounded operators in reflexive Banach spaces are always mean ergodic, [19], it follows that $C_{c(p),c(p)}$ is not power bounded. Arguing as in part (i), since $ces(p)$ is dense in \mathbb{C}^N and the inclusion $ces(p) \subseteq \mathbb{C}^N$ is continuous, it follows that $C_{c(p),c(p)}$ is not supercyclic. \qed

Acknowledgements. The research of the first two authors was partially supported by the project MTM2016-76647-P (Spain). The second author thanks the Mathematics Department of the Katholische Universität Eichstätt-Ingolstadt.
(Germany) for its support and hospitality during his research visit in the period September 2016 - July 2017.

REFERENCES

ANGELA A. ALBANESE, DIPARTIMENTO DI MATEMATICA E FISICA “E. DE GIORGI”, UNIVERSITÀ DEL SALENTO- C.P. 193, I-73100 LECCE, ITALY
E-mail address: angela.albanese@unisaletto.it

JOSÉ BONET, INSTITUTO UNIVERSITARIO DE MATEMÁTICA PURA Y APLICADA IUMPA, UNIVERSITAT POLITECNICA DE VALENCIA, E-46071 VALENCIA, SPAIN
E-mail address: jbonet@mat.upv.es

WERNER J. RICKER, MATH.-GEOR. FAKULTÄT, KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT, D-85072 EICHSTÄTT, GERMANY
E-mail address: werner.ricker@hu.de