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STATEMENT OF THE PROBLEM

Let
P (D)uλ = fλ (1)

be a linear partial differential equation with constant
coefficients, where each fλ is a distribution, ultradistribu-
tion, real analytic function or ultradifferentiable function,
etc.

We consider the question whether the equation (1) is
solvable in such a way that

If fλ depends “nicely” on the parameter λ
(e.g. holomorphically, smoothly, etc.),

⇓

The solution uλ can be chosen depending
on λ in the same way
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The problem of parameter dependence of solutions
can be translated into the question of surjectivity of the
tensorized operator

P (D)⊗ id : X⊗̂πE −→ X⊗̂πE,

where X is the class of objects to which f and u belong
and E corresponds to the parameter dependence.

For instance, if

P (D) : D′(Ω) −→ D′(Ω), Ω ⊆ Rd, open,

is surjective, we ask when

P (D)⊗ id : D′(Ω, E) −→ D′(Ω, E) ' D′(Ω)⊗̂πE

is surjective for suitable function space E.
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In particular, we show that a linear partial differential
operator with constant coefficients P (D) is surjective on
the space of E-valued ultradistributions over an arbitrary
convex set if E′ is a nuclear Fréchet space with property
(DN) of Vogt. In particular, this holds if E is isomorphic
to the space of tempered distributions S ′ or to the space
of germs of holomorphic functions over a one-point set
H({0}).

≡≡≡≡≡≡≡≡≡≡

The spaces of vector valued distributions and ope-
rators between them were introduced by L. Schwartz,
1957-59.

D′(Ω, E) := L(D(Ω), E) = D′(Ω)⊗̂εE

Problems similar to those treated here for spaces
of vector valued infinitely differentiable functions were
considered before.
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Suppose that P (D) : E(Ω) −→ E(Ω), Ω ⊆ Rd, open,
is surjective, and consider the operator

P (D)⊗ id : E(Ω, E) −→ E(Ω, E).

(1) Grothendieck, 1955
If E is Fréchet, then P (D)⊗ id is surjective on E(Ω, E).

(2) Vogt, 1983
If E = D(Ω) or E = E ′(Ω) and P (D) is elliptic, then
P (D)⊗ id is not surjective on E(Ω, E).

(3) Vogt, 1983
If E = F ′

b is the strong dual of a Fréchet space with the
property (DN) and P (D) is hypoelliptic, then P (D)⊗ id
is surjective on E(Ω, E).

(4) Vogt, 1975
If P (D) is the Cauchy Riemann operator on C = R2

and E = F ′
b is the strong dual of a Fréchet space, then

P (D)⊗ id is surjective on E(C, E) if and only if F has
the property (DN).
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CONTEXT

We consider the case when X is a PLN-space, like
the space of distributions

D′(Ω)

or, more generally, the space of ultradistributions of
Beurling type

D′(ω)(Ω)

in the sense of Bjorck or Braun, Meise and Taylor, or a
space of real analytic functions

A(Ω)

or a space of ultradifferentiable function of Roumieu type

E{ω}(Ω)

both non-quasianalytic and quasianalytic.
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A locally convex space X is a PLS-space (resp.
PLN-space) if it is a projective limit of a sequence of
strong duals of Fréchet -Schwartz (resp. nuclear Fréchet)
spaces. Roughly speaking, PLS-spaces are “regular” spa-
ces of the form⋂

N∈N

⋃
n∈N

XN,n, XN,n Banach spaces,

with the natural topology.

Every PLS-space X satisfies

X := projN∈N indn∈N XN,n

where XN,n are Banach spaces,

XN := indn∈N XN,n denotes the locally convex in-
ductive limit of a sequence (XN,n)n∈N with compact
linking maps, and

X = projN∈N XN denotes the topological projective
limit of a sequence (XN)N∈N of locally convex spaces.

The linking maps will be denoted by

iKN : XK → XN and iN : X −→ XN .

We denote the closed unit ball of XN,n by BN,n.



In what follows Ω ⊆ Rd is an open domain and
(KN)N∈N, K1 b K2 b · · · b Ω, is a compact exhaus-
tion.

• The space of distributions D′(Ω) is the strong dual
of the space

D(Ω) = indN∈N DKN

of test functions. It is a PLN-space.

• The space of real analytic functions is denoted by

A(Ω) := {f : Ω −→ C : f analytic}.

A(Ω) is equipped with the unique locally convex
topology such that

- for any U ⊆ Cd open, Rd ∩ U = Ω, the restriction
map R : H(U) −→ A(Ω) is continuous, and

- for any compact set K ⊆ Ω the restriction map
r : A(Ω) −→ H(K) is continuous.
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• We endow the space H(U) of holomorphic func-
tions on U with the compact-open topology and the
space H(K) of germs of holomorphic functions on K
with its natural topology:

H(K) = indn∈N H∞(Un),

where (Un)n∈N is a basis of Cd-neighbourhoods of K.

Martineau proved that there is exactly one topology
on A(Ω) satisfying the condition above and endowed
with this topology one has

A(Ω) = projN∈N H(KN).

The space H(KN) is a DFN-space and A(Ω) is a
PLN-space.
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We define the Roumieu class of ultradifferentiable
functions E{ω}(Ω).

Let ω : [0,∞[−→ [0,∞[ be a continuous increasing
function (called weight) satisfying the following condi-
tions:

(α) ω(2t) = O(ω(t)) (β) ω(t) = O(t)

(γ) log t = o(ω(t)) (δ) ϕ is a convex function

Let ϕ∗(t) := sup
x≥0

(xt− ϕ(t)) be the Young conjugate

of ϕ(t) := ω(et).

E{ω}(Ω) := {f ∈ C∞(Ω) :

∀ N ∈ N ∃ m ∈ N : ‖f‖N,m < ∞},

where

‖f‖N,m := sup
x∈KN

sup
α∈Nd

|f (α)(x)| exp
(
− 1

m
ϕ∗ (|α|m)

)
.
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These classes were systematically studied by Bjorck
and Braun, Meise and Taylor.

The Gevrey classes (i.e., E{ω} with ω(t) = t1/p,
p ∈ (0, 1)) are of that type.

For ω(t) = t, we obtain the spaces of real analytic
functions.

Clearly,

E{ω}(Ω) = projN∈N indn∈N E{ω},N,n(KN)

and

E{ω},N,n(KN) = {f ∈ C∞(KN) : ‖f‖N,n < ∞}

are Banach spaces with norms ‖f‖N,n.

• If ∫ ∞

0

ω(t)
1 + t2

dt = ∞

then the class (or the weight) is quasianalytic (i.e.,
there are no non-trivial elements with compact support in
E{ω}(Ω) ). Otherwise the class is non-quasianalytic.
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The class of ultradistributions of Beurling type
D′(ω)(Ω), ω a non-quasianalytic weight, is a PLN-space.
It is defined to be the strong dual of

D(ω)(Ω) = ind N∈N D(ω)(KN),

D(ω)(KN) := {f ∈ D(ω)(Ω) : supp f ⊆ KN}.

• The weight ω(t) = log(1 + |t|) does not satisfy condi-
tion (γ). As it is well-known for this weight we have

D′(ω)(Ω) = D′(Ω).
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THE CASE OF BANACH VALUED
ULTRADISTRIBUTIONS

Theorem 1. Let X = proj XN be an ultrabornological
PLN-space, and let Y = proj YN be a PLN-space. If
T : X → Y is a surjective operator, then

T ⊗ id : X⊗̂πE −→ Y ⊗̂πE

is always surjective for any Banach space E.

Corollary 2. Let E be a Banach space, let ω be a weight,
and let

T : D′(ω)(Ω) −→ D′(ω)(Ω), T : E{ω}(Ω) −→ E{ω}(Ω)

be surjective operators. The operators

T ⊗ id : D′(ω)(Ω, E) −→ D′(ω)(Ω, E),

T ⊗ id : E{ω}(Ω, E) −→ E{ω}(Ω, E)
are surjective.
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FUNCTIONAL ANALYTIC INGREDIENTS

The problem of parameter dependence of solutions is
related to the splitting of short exact sequences and to
the functor Proj1 . This relation gives the only accessible
way to obtain the consequences mentioned before. The
so called functor Proj1 was introduced in the theory of
locally convex spaces by Palamodov, and developed by
Vogt.

We concentrate below in the case when E is the
strong dual of a Fréchet Schwartz space F . The following
topological invariants were introduced by Vogt:

A Fréchet space F satisfies the property (DN) if

∃ ν ∀ µ, θ ∈]0, 1[ ∃ κ, C2 ∀ y ∈ F :

‖y‖µ ≤ C2 ‖y‖θ
ν ‖y‖1−θ

κ .

F has property (DN) if the quantifier at θ is “exists”
instead of “for all”.
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Proposition 3. Let E be an LS-space , let ω be a non-
quasianalytic weight, and let

T : D′(ω)(Ω) −→ D′(ω)(Ω) , T : E{ω}(Ω) −→ E{ω}(Ω)

be surjective operators.

T ⊗ id : D′(ω)(Ω, E) −→ D′(ω)(Ω, E),

T ⊗ id : E{ω}(Ω, E) −→ E{ω}(Ω, E)
are surjective

m

Proj1 N∈N L(E′, XN) = 0

where
ker T ' projN∈N XN , XN LS-spaces.
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Theorem 4. Let F be a Fréchet space, F =
proj ν∈N Fν, let X = projN∈N XN be a PLS-space,
and assume that both projective spectra are reduced.
Let XN = indn∈N XN,n be LS-spaces, XN,n Banach
spaces. If

Proj1 N∈NL(F,XN) = 0
then the pair (F,X) satisfies the condition (H), i.e.,

∀ N ∃ M ≥ N ∀ K ≥ M ∃ ν, n ∀ µ ≥ ν, m ≥ n

∃ κ ≥ µ, k ≥ m,S > 0 ∀ y ∈ F ∀ x′ ∈ X ′
N :

‖y‖µ ‖x′ ◦ iMN ‖∗M,m ≤

≤ S
(
‖y‖κ ‖x′ ◦ iKN‖∗K,k + ‖y‖ν‖x′‖∗N,n

)
.

The condition is also sufficient if one of the fo-
llowing assumptions is satisfied:

(a) F is nuclear;

(b) F is a Fréchet-Schwartz Köthe sequence space of
order 1, i.e., F ' λ1(A);

(c) X is a Köthe type PLS-space of order ∞, i.e., X '
Λ∞(A). 15



In order to evaluate condition (H), we introduce

analogues for PLS-spaces of conditions (Ω) and (Ω) of
Vogt, which are known for Fréchet spaces.

We call them (PΩ) and (PΩ) respectively.

They coincide with Vogt’s conditions for Fréchet
spaces, and are satisfied by every LS-space.

We do not give here the precise formulation. We pre-
fer to mention examples and a result which constitutes
a generalization of the famous (DN)-(Ω) Vogt-Wagner
Splitting Theorem, due to the relation between the va-
nishing of the functors Proj1 and Ext1.
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EXAMPLES.

Proposition 5. If ω is a non-quasianalytic weight and
Ω ⊆ Rd is an open domain, then D′(Ω), D′(ω)(Ω) and

E{ω}(Ω) have (PΩ).

Theorem 6. If the weight ω is subadditive, then the
space E{ω}(Ω) satisfies (PΩ) for every open convex set
Ω ⊆ Rd.

Corollary 7. The space A(Ω) has (PΩ) for every open
(non-necessarily convex) set Ω ⊆ Rd.
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Theorem 8.

a) If F is a Fréchet space
with (DN)-property and

Xis a PLS-space with (PΩ)

 ⇒ (F,X) satisfies (H).

b) If F is a Fréchet space
with (DN) and

Xis a PLS-space with (PΩ)

 ⇒ (F,X) satisfies (H).

Corollary 9. Let α be a stable sequence, X a PLS-space
with Proj1 X = 0. Then

(Λ0(α), X) has (H) ⇔ X has (PΩ)

(Λ∞(α), X) has (H) ⇔ X has (PΩ)
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MAIN RESULTS

As before, E is the strong dual of a Fréchet Schwartz
space F . We state now the consequences of our abstract
results for the problem we consider.

Proposition 10. Let Ω ⊆ Rd be an arbitrary open set,
let F be either a nuclear Fréchet space or F ' λ1(A)
be a Fréchet-Schwartz space. If T is an elliptic partial
differential operator, then

T ⊗ id : A(Ω, F ′) → A(Ω, F ′)

is surjective if F has (DN). If Ω is convex then the
condition is also necessary.

Proposition 11. Let T : D′(ω)(Ω) −→ D′(ω)(Ω) be a
surjective operator. Then ker T has (PΩ) if and only
if

T ⊗ id : D′(ω)(Ω× R) −→ D′(ω)(Ω× R)
is surjective.

Corollary 12. If Ω ⊆ Rd is a convex, open set and
P (D) : D′(ω)(Ω) −→ D′(ω)(Ω) is surjective, then
ker P (D) has (PΩ).
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Proposition 13. Let µ ∈ E ′(ω)(R
d) be an ultradistibution

of compact support and let Tµ : D′(ω)(R
d) −→ D′(ω)(R

d)
be a surjective convolution operator. Then ker Tµ has
(PΩ).

Proposition 14. Let Ω ⊆ Rd be a convex, open set.
If E is an LS-space, E′ has (DN) and either E is an
LN-space or E ' k∞(v) then

P (D) : D′(ω)(Ω, E) −→ D′(ω)(Ω, E) is surjective.

Proposition 15. Let µ ∈ E ′(ω)(R
d) be an ultradistribu-

tion of compact support and let

Tµ : D′(ω)(R
d) −→ D′(ω)(R

d)

be surjective convolution operator. If E is an LS-space,
E′ has (DN) and either E is an LN-space or E '
k∞(v) then

Tµ : D′(ω)(R
d, E) −→ D′(ω)(R

d, E) is surjective.
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Proposition 16. If E is an LS-space and

Tµ : D′(ω)(R) −→ D′(ω)(R)

is a surjective convolution operator then

Tµ ⊗ id : D′(ω)(R, E) −→ D′(ω)(R, E)

is surjective whenever E′ has (DN).

If there exist a subsequence (zj) of zeros of the
Fourier-Laplace transform µ̂ of µ and a constant C
such that

| Im zj|
ω(zj)

→∞ and | Im zj+1| ≤ C| Im zj|

then the converse holds as well.
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Proposition 17. Let ω be a non-quasianalytic weight
and let

T : E{ω}(Ω) −→ E{ω}(Ω)

be a surjective operator. The map

T ⊗ id : E{ω}(Ω× R) −→ E{ω}(Ω× R)

is surjective if and only if ker T has (PΩ).

Corollary 18. Let ω be a non-quasianalytic weight and
let P (D) : E{ω}(Rd) −→ E{ω}(Rd) be surjective and
homogeneous, then

ker P (D) has (PΩ) ⇔
(

P (D) has a continuous
linear right inverse.

)
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