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TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, T : X — X a continuous map, and
x € X. The orbit of x under T 1s

Orb(z,T) := {z, Tz, T*x,...}

T is said to be topologically transitive if, for every pair U,V C X of
non-empty open sets, there exists n € N such that

T (U)NV £ 0.

In other words, there is x € U whose orbit intersects V.

Example:
T:[0,1] — [0,1], T(z)=4x(1 —2x) is transitive

SUMTOPO2005, Denison 1



If X is a Baire space, 2AN, without isolated points, then

T admits a dense orbit i.e.,
T is transitive =

dJre X : Orb(e,T)=X.

(G)n basis of open subsets of X

H = ﬂ (T™)~Y(G,) densein X

n=1 m=1

T" is called chaotic in the sense of Devaney if it is topologically transitive and
the set of periodic points of T is dense in X.
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GENERAL FRAMEWORK

From now on T : X — X will be a (linear and continuous) operator on a
separable locally convex space X.

Definition 2. T' is hypercyclic if there exist x € X such that Orb(z,T) = X .
In this case x 1s a hypercyclic vector for T'.

Read, 1988: There are operators T on ¢! such that every non-zero vector is
hypercyclic for I'. That is, T" admits no non-trivial invariant closed subset.

Kitai, 1982: No finite dimensional space £ admits hypercyclic operators.

Theorem 1. If T is transitive, then the transpose operator
T':E' — E'

has no eigenvalues.
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CLASSICAL AND RECENT RESULTS

Birkhoff, 1929: The translation operator
To : H(C) = H(C), (Tuf)(2) = f(z+a)

on the Fréchet space H(C) of entire functions is hypercyclic if a # 0.

MacLane, 1952: The derivative operator Df = f’ is hypercyclic on H(C).

Godefroy, Shapiro, 1991: Let T be an operator on H(C") which commutes with
translations (or, equivalently, with the operators of partial differentiation). If T is
not a scalar multiple of the identity, then T’ is chaotic.
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e On C°(RY) the translation operators are hypercyclic (Duyos-Ruiz, 1983) and
every partial differential operator with constant coefficients, which is not a multiple
of the identity, is hypercyclic (Godefroy, Shapiro, 1991).
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e On C°(RY) the translation operators are hypercyclic (Duyos-Ruiz, 1983) and
every partial differential operator with constant coefficients, which is not a multiple
of the identity, is hypercyclic (Godefroy, Shapiro, 1991).

Theorem 2. (J.H. Shapiro) Let G C C be an open connected set, and let P(D)
be a non-constant polynomial. The following conditions are equivalent:

(1) P(D) is chaotic on H(G)
(2) P(D) is hypercyclic on H(G)

(3) G is simply connected.

Rolewicz, 1969: Let T := AB : (P — (P, 1 <p < o0, |A| > 1,
T<331,£E2, ce ) = ()\iCQ, )\Q?g, ce )

be the backward shift. Then T is hypercyclic (and chaotic).
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e Every separable infinite dimensional Banach space admits hypercyclic operators
(Ansari, 1997 /Bernal 1999). This results solves a problem of Rolewicz.

e The theorem is also true for Fréchet spaces (Bonet, Peris, 1998).

e However, there are infinite dimensional separable Banach spaces which admit
no chaotic operator. This was proved by Bonet, F. Martinez-Giménez, Peris, 2001.

The construction depends on the hereditarily indecomposable Banach spaces of
Gowers and Maurey.
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The space ¢ := ®;cnC of scalar sequences with finitely many coordinates
different from 0 endowed with the finest locally convex topology does not admit
hypercyclic operators, but it admits transitive operators.

T : ¢ —  continuous hypercyclic, « hypercyclic vector
= {T"x |n=1,2...} dense

= span {1T"x | n € N} closed and dense

m
= = Zai T"x
n=1

= ds: Tz € span(x,Tx,..., T )= H

T'x e H VYn

4

= @ = H contradiction.
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Let 2 be an open subset of RV,

e Given a compact set K C R¥, we denote by D(K) the Fréchet space of all
C'*°-functions with support contained in K.

e The space D(2) of test functions is the (strict) inductive limit of the system
(D(K), K C ) compact).



CONVOLUTION OPERATORS

Let 2 be an open subset of RV,

e Given a compact set K C R¥, we denote by D(K) the Fréchet space of all
C'*°-functions with support contained in K.

e The space D(2) of test functions is the (strict) inductive limit of the system
(D(K), K C ) compact).

e The dual D/(Q2) of D(NQ) is the space of distributions of Laurent Schwartz.

e The space of C* functions on 2 is denoted by £(€2). Its dual £'(€2) is the space
of distributions with compact support.

o £,() and D.(2) denote the corresponding spaces of ultradistributions of
Beurling or Roumieu type.
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Theorem 3. Let G be an open subset of R:. Let u € EL(RY) satisfy G — suppp C
G. If p is not a scalar multiple of the Dirac measure, then 1), 1s hypercyclic and

chaotic on E.(G). If the class is non-quasianalytic, the convolution operator is
also hypercyclic and chaotic on D, (G).

Every linear partial differential operator P(D) with constant coefficients
satisfies the assumptions of Theorem 3.




Theorem 3. Let G be an open subset of R:. Let u € EL(RY) satisfy G — suppp C
G. If p is not a scalar multiple of the Dirac measure, then 1), 1s hypercyclic and
chaotic on E.(G). If the class is non-quasianalytic, the convolution operator is
also hypercyclic and chaotic on D,(G).

Every linear partial differential operator P(D) with constant coefficients
satisfies the assumptions of Theorem 3.

The proof depends on:

e The theorem of Godefroy and Shapiro on operators on H(CY).

e Density theorems of H(CY) in £,(Q). Heinrich and Meise for quasyanalytic
functions (2005).

e The following result:
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Theorem 4. Let T' be a continuous and linear operator on a locally convex space
E. Let F be a locally convex space which s continuously and densely contained
in E. If the restriction T|F of T defines a continuous and linear operator on F
which is hypercyclic (resp. chaotic), then T is also hypercyclic (resp. chaotic).

e This type of reduction argument had already been used by Peris and | to show
that certain hypercyclic operators exist on certain LB-spaces.

e The proof depends on the existence of a dense subspace which is a Fréchet
space for a stronger topology, hence the conclusion follows from Baire theorem and
a comparison principle.

e This kind of reduction to the Fréchet case fails if one considers spaces of
test functions such as D, which is a strict inductive limit of Fréchet spaces, due to
Grothendieck factorization theorem.
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We want to show that D(€2) admits a hypercyclic operator T



THE SPACE OF TEST FUNCTIONS

We want to show that D(€2) admits a hypercyclic operator T

To do this we will use the fact that

D(Q) = Djens (Valdivia / Vogt 1982)

where

s:={x = (2,)nen € C" : ||2]; := Z [z, |n" < oo for every t € N}

n=1

is the Fréchet space of all rapidly decreasing sequences.
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Theorem 5. There are hypercyclic operators T on X = @;enlt. More precisely,
there exist x € X whose T-orbit is sequentially dense in X.



Theorem 5. There are hypercyclic operators T on X = @;enlt. More precisely,
there exist x € X whose T-orbit is sequentially dense in X.

Sketch of proof:

We represent the elements © € X as x = (x;.5)i nen, Where (2 )nen € £ for
each 7 € N. We then construct a “snake” backward shift operator 7" on X:

T61,1 = 0.
T@i’j = )\ea(i,j) If (Z,j) 7é (1, 1)

where A\ € C, |A| > 1is fixed, and 0 : Nx N\ {(1,1)} — N x N is certain bijection.
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To construct a hypercyclic vector x, let {vy = (af’j)(i,j)eNQ . k > 1} be a
sequentially dense subset of @;cn¢! such that

sup |af,j| <k, and af,j =0 if i+j5>k+2.
(i,5) €N



To construct a hypercyclic vector x, let {vy = (af’j)(i,j)eNg . k > 1} be a
sequentially dense subset of @;cn¢! such that

sup |af,j| <k, and af,j =0 if i+j5>k+2.
(i,5) €N

There are suitable strictly increasing sequences of positive integers (£(k))r, (m(k))x
and (n(k))r, and (unique) scalars x;, m(k) < j < n(k), such that

n(k)
TN simerd) =ve k=1 fal <k k>
j=m(k)
We then define
oo n(k) .
=) /\e(Jk)elﬂ'
k=1 j=m(k)

which satisfies that {7z : k € N} is sequentially dense in X. W
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Is this operator T valid for D(2) = B;ens?




Is this operator T valid for D(2) = B;ens?

Let us recall that

s:={x = (z,)nen € C" : ||2]; := Z [z, |0t < oo for every t € N}

n=1
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Let us consider the set of indices

J:={jeN : Tey; = Aeyy( for some p(j) € N}.
It turns out that _
lim@ =
jeJ gt
for each t € N.

Therefore the operator T' is not well-defined on D(2).

We modify the “snake-shift” operator:
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(1,4) (L.5)

o —— O

1
0ol
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(4.1)
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SUMTOPO2005, Denison



Under this modification, the new snake-shift operator 1, is so that the set of
indices
J:={j €N : Tey ;= ey p( ) for some p(j) € N}



Under this modification, the new snake-shift operator 1, is so that the set of
indices
J:={j €N : Tey ;= ey p( ) for some p(j) € N}

satisfies
p(j) = o(j%).
This yields that 7" is a (continuous) well-defined operator. We then conclude:



Under this modification, the new snake-shift operator 1, is so that the set of
indices
J:={j €N : Tey ;= ey p( ) for some p(j) € N}
satisfies
p(j) = o(5°).
This yields that 7" is a (continuous) well-defined operator. We then conclude:

Theorem 6. There are hypercyclic operators T on X := D(2) and vectors x € X
whose orbit with respect to T’ is sequentially dense in X.
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