Dynamics of linear operators on non-metrizable vector spaces

José Bonet
Universitat Politècnica de València

July, 2005, Denison, US

(joint work with L. Frerick, A. Peris and J. Wengenroth)

TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, $T: X \rightarrow X$ a continuous map, and $x \in X$. The orbit of x under T is

$$
\operatorname{Orb}(x, T):=\left\{x, T x, T^{2} x, \ldots\right\}
$$

TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, $T: X \rightarrow X$ a continuous map, and $x \in X$. The orbit of x under T is

$$
\operatorname{Orb}(x, T):=\left\{x, T x, T^{2} x, \ldots\right\}
$$

T is said to be topologically transitive if, for every pair $U, V \subseteq X$ of non-empty open sets, there exists $n \in \mathbb{N}$ such that

$$
T^{n}(U) \cap V \neq \emptyset .
$$

In other words, there is $x \in U$ whose orbit intersects V.
Example:

$$
T:[0,1] \longrightarrow[0,1], \quad T(x)=4 x(1-x) \quad \text { is transitive }
$$

If X is a Baire space, 2AN, without isolated points, then
T admits a dense orbit i.e.,
T is transitive \Leftrightarrow

$$
\exists x \in X: \overline{\operatorname{Orb}(x, T)}=X .
$$

$\left(G_{n}\right)_{n}$ basis of open subsets of X

$$
H:=\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty}\left(T^{m}\right)^{-1}\left(G_{n}\right) \quad \text { dense in } X
$$

T is called chaotic in the sense of Devaney if it is topologically transitive and the set of periodic points of T is dense in X.

GENERAL FRAMEWORK

From now on $T: X \rightarrow X$ will be a (linear and continuous) operator on a separable locally convex space X.

GENERAL FRAMEWORK

From now on $T: X \rightarrow X$ will be a (linear and continuous) operator on a separable locally convex space X.

Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{\operatorname{Orb}(x, T)}=X$. In this case x is a hypercyclic vector for T.

GENERAL FRAMEWORK

From now on $T: X \rightarrow X$ will be a (linear and continuous) operator on a separable locally convex space X.

Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{\operatorname{Orb}(x, T)}=X$. In this case x is a hypercyclic vector for T.

Read, 1988: There are operators T on ℓ^{1} such that every non-zero vector is hypercyclic for T. That is, T admits no non-trivial invariant closed subset.

GENERAL FRAMEWORK

From now on $T: X \rightarrow X$ will be a (linear and continuous) operator on a separable locally convex space X.
Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{\operatorname{Orb}(x, T)}=X$. In this case x is a hypercyclic vector for T.

Read, 1988: There are operators T on ℓ^{1} such that every non-zero vector is hypercyclic for T. That is, T admits no non-trivial invariant closed subset.

Kitai, 1982: No finite dimensional space E admits hypercyclic operators.

Theorem 1. If T is transitive, then the transpose operator

$$
T^{t}: E^{\prime} \rightarrow E^{\prime}
$$

has no eigenvalues.

CLASSICAL AND RECENT RESULTS

Birkhoff, 1929: The translation operator

$$
T_{a}: \mathcal{H}(\mathbb{C}) \rightarrow \mathcal{H}(\mathbb{C}), \quad\left(T_{a} f\right)(z):=f(z+a)
$$

on the Fréchet space $H(\mathbb{C})$ of entire functions is hypercyclic if $a \neq 0$.

MacLane, 1952: The derivative operator $D f=f^{\prime}$ is hypercyclic on $\mathcal{H}(\mathbb{C})$.

Godefroy, Shapiro, 1991: Let T be an operator on $\mathcal{H}\left(\mathbb{C}^{N}\right)$ which commutes with translations (or, equivalently, with the operators of partial differentiation). If T is not a scalar multiple of the identity, then T is chaotic.

- On $C^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ the translation operators are hypercyclic (Duyos-Ruíz, 1983) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (Godefroy, Shapiro, 1991).
- On $C^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ the translation operators are hypercyclic (Duyos-Ruíz, 1983) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (Godefroy, Shapiro, 1991).

Theorem 2. (J.H. Shapiro) Let $G \subset \mathbb{C}$ be an open connected set, and let $P(D)$ be a non-constant polynomial. The following conditions are equivalent:
(1) $P(D)$ is chaotic on $H(G)$
(2) $P(D)$ is hypercyclic on $H(G)$
(3) G is simply connected.

- On $C^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ the translation operators are hypercyclic (Duyos-Ruíz, 1983) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (Godefroy, Shapiro, 1991).

Theorem 2. (J.H. Shapiro) Let $G \subset \mathbb{C}$ be an open connected set, and let $P(D)$ be a non-constant polynomial. The following conditions are equivalent:
(1) $P(D)$ is chaotic on $H(G)$
(2) $P(D)$ is hypercyclic on $H(G)$
(3) G is simply connected.

Rolewicz, 1969: Let $T:=\lambda B: \ell^{p} \rightarrow \ell^{p}, 1 \leq p<\infty,|\lambda|>1$,

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(\lambda x_{2}, \lambda x_{3}, \ldots\right)
$$

be the backward shift. Then T is hypercyclic (and chaotic).

- Every separable infinite dimensional Banach space admits hypercyclic operators (Ansari, 1997/Bernal 1999). This results solves a problem of Rolewicz.
- The theorem is also true for Fréchet spaces (Bonet, Peris, 1998).
- However, there are infinite dimensional separable Banach spaces which admit no chaotic operator. This was proved by Bonet, F. Martínez-Giménez, Peris, 2001.

The construction depends on the hereditarily indecomposable Banach spaces of Gowers and Maurey.

The space $\varphi:=\oplus_{i \in \mathbb{N}} \mathbb{C}$ of scalar sequences with finitely many coordinates different from 0 endowed with the finest locally convex topology does not admit hypercyclic operators, but it admits transitive operators.
$T: \varphi \longrightarrow \varphi$ continuous hypercyclic, x hypercyclic vector
$\Rightarrow \quad\left\{T^{n} x \mid n=1,2 \ldots\right\}$ dense
$\Rightarrow \quad$ span $\left\{T^{n} x \mid n \in \mathbb{N}\right\}$ closed and dense
$\Rightarrow \quad x=\sum_{n=1}^{m} \alpha_{i} T^{n} x$
$\Rightarrow \quad \exists s: T^{s} x \in \operatorname{span}\left(x, T x, \ldots, T^{s-1} x\right)=: H$
$\Rightarrow \quad T^{n} x \in H \quad \forall n$
$\Rightarrow \quad \varphi=H \quad$ contradiction.

CONVOLUTION OPERATORS

Let Ω be an open subset of \mathbb{R}^{N}.

- Given a compact set $K \subset \mathbb{R}^{N}$, we denote by $\mathcal{D}(K)$ the Fréchet space of all C^{∞}-functions with support contained in K.
- The space $\mathcal{D}(\Omega)$ of test functions is the (strict) inductive limit of the system ($\mathcal{D}(K), K \subset \Omega$ compact).

CONVOLUTION OPERATORS

Let Ω be an open subset of \mathbb{R}^{N}.

- Given a compact set $K \subset \mathbb{R}^{N}$, we denote by $\mathcal{D}(K)$ the Fréchet space of all C^{∞}-functions with support contained in K.
- The space $\mathcal{D}(\Omega)$ of test functions is the (strict) inductive limit of the system $(\mathcal{D}(K), K \subset \Omega$ compact).
- The dual $\mathcal{D}^{\prime}(\Omega)$ of $\mathcal{D}(\Omega)$ is the space of distributions of Laurent Schwartz.
- The space of C^{∞} functions on Ω is denoted by $\mathcal{E}(\Omega)$. Its dual $\mathcal{E}^{\prime}(\Omega)$ is the space of distributions with compact support.
- $\mathcal{E}_{*}^{\prime}(\Omega)$ and $\mathcal{D}_{*}^{\prime}(\Omega)$ denote the corresponding spaces of ultradistributions of Beurling or Roumieu type.

Theorem 3. Let G be an open subset of \mathbb{R}^{d}. Let $\mu \in \mathcal{E}_{*}^{\prime}\left(\mathbb{R}^{N}\right)$ satisfy G - supp $\mu \subset$ G. If μ is not a scalar multiple of the Dirac measure, then T_{μ} is hypercyclic and chaotic on $\mathcal{E}_{*}(G)$. If the class is non-quasianalytic, the convolution operator is also hypercyclic and chaotic on $\mathcal{D}_{*}^{\prime}(G)$.

Every linear partial differential operator $P(D)$ with constant coefficients satisfies the assumptions of Theorem 3.

Theorem 3. Let G be an open subset of \mathbb{R}^{d}. Let $\mu \in \mathcal{E}_{*}^{\prime}\left(\mathbb{R}^{N}\right)$ satisfy $G-$ supp $\mu \subset$ G. If μ is not a scalar multiple of the Dirac measure, then T_{μ} is hypercyclic and chaotic on $\mathcal{E}_{*}(G)$. If the class is non-quasianalytic, the convolution operator is also hypercyclic and chaotic on $\mathcal{D}_{*}^{\prime}(G)$.

Every linear partial differential operator $P(D)$ with constant coefficients satisfies the assumptions of Theorem 3.

The proof depends on:

- The theorem of Godefroy and Shapiro on operators on $H\left(\mathbb{C}^{N}\right)$.
- Density theorems of $H\left(\mathbb{C}^{N}\right)$ in $\mathcal{E}_{*}(\Omega)$. Heinrich and Meise for quasyanalytic functions (2005).
- The following result:

Theorem 4. Let T be a continuous and linear operator on a locally convex space E. Let F be a locally convex space which is continuously and densely contained in E. If the restriction $T \mid F$ of T defines a continuous and linear operator on F which is hypercyclic (resp. chaotic), then T is also hypercyclic (resp. chaotic).

- This type of reduction argument had already been used by Peris and I to show that certain hypercyclic operators exist on certain LB-spaces.
- The proof depends on the existence of a dense subspace which is a Fréchet space for a stronger topology, hence the conclusion follows from Baire theorem and a comparison principle.
- This kind of reduction to the Fréchet case fails if one considers spaces of test functions such as \mathcal{D}, which is a strict inductive limit of Fréchet spaces, due to Grothendieck factorization theorem.

THE SPACE OF TEST FUNCTIONS

We want to show that $\mathcal{D}(\Omega)$ admits a hypercyclic operator T.

THE SPACE OF TEST FUNCTIONS

We want to show that $\mathcal{D}(\Omega)$ admits a hypercyclic operator T.
To do this we will use the fact that

$$
\mathcal{D}(\Omega) \cong \oplus_{i \in \mathbb{N}^{s}} \quad \text { (Valdivia / Vogt 1982) }
$$

where

$$
s:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}:\|x\|_{t}:=\sum_{n=1}^{\infty}\left|x_{n}\right| n^{t}<\infty \text { for every } t \in \mathbb{N}\right\}
$$

is the Fréchet space of all rapidly decreasing sequences.

Theorem 5. There are hypercyclic operators T on $X:=\oplus_{i \in \mathbb{N}} \ell^{1}$. More precisely, there exist $x \in X$ whose T-orbit is sequentially dense in X.

Theorem 5. There are hypercyclic operators T on $X:=\oplus_{i \in \mathbb{N}} \ell^{1}$. More precisely, there exist $x \in X$ whose T-orbit is sequentially dense in X.

Sketch of proof:
We represent the elements $x \in X$ as $x=\left(x_{i, n}\right)_{i, n \in \mathbb{N}}$, where $\left(x_{i, n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ for each $i \in \mathbb{N}$. We then construct a "snake" backward shift operator T on X :

$$
\begin{gathered}
T e_{1,1}=0 . \\
T e_{i, j}=\lambda e_{\sigma(i, j)} \text { if }(i, j) \neq(1,1) .
\end{gathered}
$$

where $\lambda \in \mathbb{C},|\lambda|>1$ is fixed, and $\sigma: \mathbb{N} \times \mathbb{N} \backslash\{(1,1)\} \rightarrow \mathbb{N} \times \mathbb{N}$ is certain bijection.

$$
\begin{aligned}
& (1,17)(1,18) \\
& (1,4)(1,5) \\
& (1,3)(1,6)(1,9) \text {. } \\
& (1,1)(1,2)(1,7)(1,8)(1,27) .
\end{aligned}
$$

Row 1

Row 1

Row $2 \longrightarrow \quad(2,1) \quad(2,2)(2,3) \cdot$

Row 1 $(1,17)(1,18)$

$$
\begin{aligned}
& (1,4)(1,5) \\
& \vdots \\
& \vdots(1,3)(1,6)(1,9)
\end{aligned}
$$

$$
(1,1) \quad(1,2)(1,7)(1,8)(1,27)
$$

Row $2 \quad(2,1) \quad(2,2)(2,3)$
Row $3 \longrightarrow(3,1)(3,2)$
$(4,1)^{\bullet}$

Row 1

$\begin{array}{lllll}(1,4)(1,5) \\ \bullet & & & \vdots & \vdots \\ (1,3)(1,6) & \vdots & \vdots & \vdots \\ (1,9) & & & & \\ & & \end{array}$
$(1,1)(1,2)(1,7)(1,8)(1,27)$.

Row $2 \quad(2,1) \quad(2,2)(2,3)$
Row $3 \longrightarrow(3,1)(3,2)$
Row $4 \longrightarrow(4,1)$ •

Row 1 $(1,17)(1,18)$

$$
\begin{gathered}
(1,4)(1,5) \\
\bullet \\
\vdots \\
(1,3)(1,6)(1,9)
\end{gathered}
$$

$$
(1,1) \quad(1,2)(1,7)(1,8)(1,27)
$$

Row $2(2,1) \quad(2,2)(2,3)$ •
Row $3 \longrightarrow(3,1)(3,2)$ •
Row $4 \longrightarrow(4,1)$ -

- .

Row 1 $(1,17)(1,18)$

$$
\begin{aligned}
& (1,4)(1,5) \\
& \vdots \\
& \vdots(1,3)(1,6)(1,9)
\end{aligned}
$$

$$
(1,1) \quad(1,2)(1,7)(1,8)(1,27)
$$

$$
\text { Row } 2 \quad(2,1) \quad(2,2)(2,3) \cdot
$$

Row $3 \longrightarrow(3,1)(3,2)$
Row $4 \longrightarrow(4,1)$ -
Row $5 \longrightarrow$ •

Row 1 $(1,17)(1,18)$

$$
\begin{array}{cc}
(1,4)(1,5) \\
\bullet & \vdots \\
(1,3)(1,6) & \vdots \\
\vdots
\end{array} \quad \vdots .
$$

$$
(1,1)(1,2)(1,7)(1,8)(1,27)
$$

$$
\text { Row } 2-(2,1) \quad(2,2)(2,3) \cdot
$$

Row $3 \longrightarrow(3,1)(3,2) \cdot$
Row $4 \longrightarrow(4,1)$ •
Row 5—•
. .

Row 1 $(1,17)(1,18)$

$$
\text { Row } 2 \quad(2,1) \quad(2,2)(2,3) \cdot
$$

$$
\text { Row } 3 \longrightarrow(3,1)(3,2) \cdot
$$

Row $5 \longrightarrow$ •

Row 6

$$
\begin{aligned}
& (1,4)(1,5) \\
& (1,3)(1,6)(1,9) \quad \vdots \\
& (1,1)(1,2)(1,7)(1,8)(1,27) \text {. }
\end{aligned}
$$

To construct a hypercyclic vector x, let $\left\{v_{k}=\left(a_{i, j}^{k}\right)_{(i, j) \in \mathbb{N}^{2}}: k \geq 1\right\}$ be a sequentially dense subset of $\oplus_{i \in \mathbb{N}} \ell^{1}$ such that

$$
\sup _{(i, j) \in \mathbb{N}^{2}}\left|a_{i, j}^{k}\right| \leq k, \quad \text { and } \quad a_{i, j}^{k}=0 \quad \text { if } i+j>k+2
$$

To construct a hypercyclic vector x, let $\left\{v_{k}=\left(a_{i, j}^{k}\right)_{(i, j) \in \mathbb{N}^{2}}: k \geq 1\right\}$ be a sequentially dense subset of $\oplus_{i \in \mathbb{N}} \ell^{1}$ such that

$$
\sup _{(i, j) \in \mathbb{N}^{2}}\left|a_{i, j}^{k}\right| \leq k, \quad \text { and } \quad a_{i, j}^{k}=0 \quad \text { if } \quad i+j>k+2
$$

There are suitable strictly increasing sequences of positive integers $(\ell(k))_{k},(m(k))_{k}$ and $(n(k))_{k}$, and (unique) scalars $x_{j}, m(k) \leq j \leq n(k)$, such that

$$
T^{\ell(k)}\left(\sum_{j=m(k)}^{n(k)} \frac{x_{j}}{\lambda^{\ell(k)}} e_{1, j}\right)=v_{k}, k \geq 1, \quad\left|x_{j}\right| \leq k, \quad k \geq 1
$$

We then define

$$
x:=\sum_{k=1}^{\infty} \sum_{j=m(k)}^{n(k)} \frac{x_{j}}{\lambda^{\ell(k)}} e_{1, j}
$$

which satisfies that $\left\{T^{\ell(k)} x: k \in \mathbb{N}\right\}$ is sequentially dense in X.

Is this operator T valid for $\mathcal{D}(\Omega)=\oplus_{i \in \mathbb{N}} s$?

$$
\text { Is this operator } T \text { valid for } \mathcal{D}(\Omega)=\oplus_{i \in \mathbb{N}} s \text { ? }
$$

Let us recall that

$$
s:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}:\|x\|_{t}:=\sum_{n=1}^{\infty}\left|x_{n}\right| n^{t}<\infty \text { for every } t \in \mathbb{N}\right\}
$$

Let us consider the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

Let us consider the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

It turns out that

$$
\lim _{j \in J} \frac{p(j)}{j^{t}}=\infty
$$

for each $t \in \mathbb{N}$.

Let us consider the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

It turns out that

$$
\lim _{j \in J} \frac{p(j)}{j^{t}}=\infty
$$

for each $t \in \mathbb{N}$.
Therefore the operator T is not well-defined on $\mathcal{D}(\Omega)$.

Let us consider the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

It turns out that

$$
\lim _{j \in J} \frac{p(j)}{j^{t}}=\infty
$$

for each $t \in \mathbb{N}$.
Therefore the operator T is not well-defined on $\mathcal{D}(\Omega)$.
We modify the "snake-shift" operator:

Under this modification, the new snake-shift operator T, is so that the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

Under this modification, the new snake-shift operator T, is so that the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

satisfies

$$
p(j)=o\left(j^{2}\right) .
$$

This yields that T is a (continuous) well-defined operator. We then conclude:

Under this modification, the new snake-shift operator T, is so that the set of indices

$$
J:=\left\{j \in \mathbb{N}: T e_{2, j}=\lambda e_{1, p(j)} \text { for some } p(j) \in \mathbb{N}\right\}
$$

satisfies

$$
p(j)=o\left(j^{2}\right) .
$$

This yields that T is a (continuous) well-defined operator. We then conclude:

Theorem 6. There are hypercyclic operators T on $X:=\mathcal{D}(\Omega)$ and vectors $x \in X$ whose orbit with respect to T is sequentially dense in X.

