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TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, T : X → X a continuous map, and
x ∈ X. The orbit of x under T is

Orb(x, T ) := {x, Tx, T 2x, . . . }

T is said to be topologically transitive if, for every pair U, V ⊆ X of
non-empty open sets, there exists n ∈ N such that

Tn(U) ∩ V 6= ∅.

In other words, there is x ∈ U whose orbit intersects V .

Example:
T : [0, 1] −→ [0, 1], T (x) = 4x(1− x) is transitive
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If X is a Baire space, 2AN, without isolated points, then

T is transitive ⇔
T admits a dense orbit i.e.,

∃x ∈ X : Orb(x, T ) = X.

(Gn)n basis of open subsets of X

H :=
∞⋂

n=1

∞⋃
m=1

(Tm)−1(Gn) dense in X

T is called chaotic in the sense of Devaney if it is topologically transitive and
the set of periodic points of T is dense in X.
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GENERAL FRAMEWORK

From now on T : X → X will be a (linear and continuous) operator on a
separable locally convex space X.

Definition 2. T is hypercyclic if there exist x ∈ X such that Orb(x, T ) = X .
In this case x is a hypercyclic vector for T .

Read, 1988: There are operators T on `1 such that every non-zero vector is
hypercyclic for T . That is, T admits no non-trivial invariant closed subset.

Kitai, 1982: No finite dimensional space E admits hypercyclic operators.

Theorem 1. If T is transitive, then the transpose operator

T t : E′ → E′

has no eigenvalues.
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CLASSICAL AND RECENT RESULTS

Birkhoff, 1929: The translation operator

Ta : H(C) → H(C), (Taf)(z) := f(z + a)

on the Fréchet space H(C) of entire functions is hypercyclic if a 6= 0.

MacLane, 1952: The derivative operator Df = f ′ is hypercyclic on H(C).

Godefroy, Shapiro, 1991: Let T be an operator on H(CN) which commutes with
translations (or, equivalently, with the operators of partial differentiation). If T is
not a scalar multiple of the identity, then T is chaotic.
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• On C∞(RN) the translation operators are hypercyclic (Duyos-Rúız, 1983) and
every partial differential operator with constant coefficients, which is not a multiple
of the identity, is hypercyclic (Godefroy, Shapiro, 1991).
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• On C∞(RN) the translation operators are hypercyclic (Duyos-Rúız, 1983) and
every partial differential operator with constant coefficients, which is not a multiple
of the identity, is hypercyclic (Godefroy, Shapiro, 1991).

Theorem 2. (J.H. Shapiro) Let G ⊂ C be an open connected set, and let P (D)
be a non-constant polynomial. The following conditions are equivalent:

(1) P (D) is chaotic on H(G)

(2) P (D) is hypercyclic on H(G)

(3) G is simply connected.

Rolewicz, 1969: Let T := λB : `p → `p, 1 ≤ p < ∞, |λ| > 1,

T (x1, x2, . . . ) = (λx2, λx3, . . . )

be the backward shift. Then T is hypercyclic (and chaotic).
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• Every separable infinite dimensional Banach space admits hypercyclic operators
(Ansari, 1997/Bernal 1999). This results solves a problem of Rolewicz.

• The theorem is also true for Fréchet spaces (Bonet, Peris, 1998).

• However, there are infinite dimensional separable Banach spaces which admit
no chaotic operator. This was proved by Bonet, F. Mart́ınez-Giménez, Peris, 2001.

The construction depends on the hereditarily indecomposable Banach spaces of
Gowers and Maurey.
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The space ϕ := ⊕i∈NC of scalar sequences with finitely many coordinates
different from 0 endowed with the finest locally convex topology does not admit
hypercyclic operators, but it admits transitive operators.

T : ϕ −→ ϕ continuous hypercyclic, x hypercyclic vector

⇒ {Tnx | n = 1, 2 . . .} dense

⇒ span {Tnx | n ∈ N} closed and dense

⇒ x =
m∑

n=1

αi Tnx

⇒ ∃s : T sx ∈ span(x, Tx, . . . , T s−1x) =: H

⇒ Tnx ∈ H ∀n

⇒ ϕ = H contradiction.
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CONVOLUTION OPERATORS

Let Ω be an open subset of RN .

• Given a compact set K ⊂ RN , we denote by D(K) the Fréchet space of all
C∞-functions with support contained in K.

• The space D(Ω) of test functions is the (strict) inductive limit of the system
(D(K),K ⊂ Ω compact).



CONVOLUTION OPERATORS

Let Ω be an open subset of RN .

• Given a compact set K ⊂ RN , we denote by D(K) the Fréchet space of all
C∞-functions with support contained in K.

• The space D(Ω) of test functions is the (strict) inductive limit of the system
(D(K),K ⊂ Ω compact).

• The dual D′(Ω) of D(Ω) is the space of distributions of Laurent Schwartz.

• The space of C∞ functions on Ω is denoted by E(Ω). Its dual E ′(Ω) is the space
of distributions with compact support.

• E ′∗(Ω) and D′∗(Ω) denote the corresponding spaces of ultradistributions of
Beurling or Roumieu type.
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Theorem 3. Let G be an open subset of Rd. Let µ ∈ E ′∗(RN) satisfy G−suppµ ⊂
G. If µ is not a scalar multiple of the Dirac measure, then Tµ is hypercyclic and
chaotic on E∗(G). If the class is non-quasianalytic, the convolution operator is
also hypercyclic and chaotic on D′∗(G).

Every linear partial differential operator P (D) with constant coefficients
satisfies the assumptions of Theorem 3.



Theorem 3. Let G be an open subset of Rd. Let µ ∈ E ′∗(RN) satisfy G−suppµ ⊂
G. If µ is not a scalar multiple of the Dirac measure, then Tµ is hypercyclic and
chaotic on E∗(G). If the class is non-quasianalytic, the convolution operator is
also hypercyclic and chaotic on D′∗(G).

Every linear partial differential operator P (D) with constant coefficients
satisfies the assumptions of Theorem 3.

The proof depends on:

• The theorem of Godefroy and Shapiro on operators on H(CN).

• Density theorems of H(CN) in E∗(Ω). Heinrich and Meise for quasyanalytic
functions (2005).

• The following result:
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Theorem 4. Let T be a continuous and linear operator on a locally convex space
E. Let F be a locally convex space which is continuously and densely contained
in E. If the restriction T |F of T defines a continuous and linear operator on F
which is hypercyclic (resp. chaotic), then T is also hypercyclic (resp. chaotic).

• This type of reduction argument had already been used by Peris and I to show
that certain hypercyclic operators exist on certain LB-spaces.

• The proof depends on the existence of a dense subspace which is a Fréchet
space for a stronger topology, hence the conclusion follows from Baire theorem and
a comparison principle.

• This kind of reduction to the Fréchet case fails if one considers spaces of
test functions such as D, which is a strict inductive limit of Fréchet spaces, due to
Grothendieck factorization theorem.
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THE SPACE OF TEST FUNCTIONS

We want to show that D(Ω) admits a hypercyclic operator T .



THE SPACE OF TEST FUNCTIONS

We want to show that D(Ω) admits a hypercyclic operator T .

To do this we will use the fact that

D(Ω) ∼= ⊕i∈Ns (Valdivia / Vogt 1982)

where

s := {x = (xn)n∈N ∈ CN : ‖x‖t :=
∞∑

n=1

|xn|nt < ∞ for every t ∈ N}

is the Fréchet space of all rapidly decreasing sequences.
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Theorem 5. There are hypercyclic operators T on X := ⊕i∈N`1. More precisely,
there exist x ∈ X whose T -orbit is sequentially dense in X.



Theorem 5. There are hypercyclic operators T on X := ⊕i∈N`1. More precisely,
there exist x ∈ X whose T -orbit is sequentially dense in X.

Sketch of proof:

We represent the elements x ∈ X as x = (xi,n)i,n∈N, where (xi,n)n∈N ∈ `1 for
each i ∈ N. We then construct a “snake” backward shift operator T on X:

Te1,1 = 0.

T ei,j = λeσ(i,j) if (i, j) 6= (1, 1).

where λ ∈ C, |λ| > 1 is fixed, and σ : N×N\{(1, 1)} → N×N is certain bijection.
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To construct a hypercyclic vector x, let {vk = (ak
i,j)(i,j)∈N2 : k ≥ 1} be a

sequentially dense subset of ⊕i∈N`1 such that

sup
(i,j)∈N2

|ak
i,j| ≤ k, and ak

i,j = 0 if i + j > k + 2.



To construct a hypercyclic vector x, let {vk = (ak
i,j)(i,j)∈N2 : k ≥ 1} be a

sequentially dense subset of ⊕i∈N`1 such that

sup
(i,j)∈N2

|ak
i,j| ≤ k, and ak

i,j = 0 if i + j > k + 2.

There are suitable strictly increasing sequences of positive integers (`(k))k, (m(k))k

and (n(k))k, and (unique) scalars xj, m(k) ≤ j ≤ n(k), such that

T `(k)(
n(k)∑

j=m(k)

xj

λ`(k)
e1,j) = vk, k ≥ 1, |xj| ≤ k, k ≥ 1.

We then define

x :=
∞∑

k=1

n(k)∑
j=m(k)

xj

λ`(k)
e1,j

which satisfies that {T `(k)x : k ∈ N} is sequentially dense in X. �
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Is this operator T valid for D(Ω) = ⊕i∈Ns?



Is this operator T valid for D(Ω) = ⊕i∈Ns?

Let us recall that

s := {x = (xn)n∈N ∈ CN : ‖x‖t :=
∞∑

n=1

|xn|nt < ∞ for every t ∈ N}

SUMTOPO2005, Denison 15



t t
t
t

t
t

t

t
t

t t

t
t t

t

t t

t
t

····
····

·····

·····

t tt t t t t
t tt t t t t
t t t t t t t
t tt t t t t

t t t tt tt

���
0 �

6

	

?

?

�

6

6

�

6

	

	

	

?

?

�

6

6

�

�

	

	

?

?

�

6

6

�

�

�

6

	

�

�

	

	

	

	

�

�

�

	

	

�

	

	

SUMTOPO2005, Denison 16



t t
t
t

t
t

t

t
t

t t

t
t t

t

t t

t
t

····
····

·····

·····

t tt t t t t
t tt t t t t
t t t t t t t
t tt t t t t

t t t tt tt

���

SUMTOPO2005, Denison 17



Let us consider the set of indices

J := {j ∈ N : Te2,j = λe1,p(j) for some p(j) ∈ N}.
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for each t ∈ N.
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J := {j ∈ N : Te2,j = λe1,p(j) for some p(j) ∈ N}.
It turns out that
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j∈J

p(j)
jt

= ∞

for each t ∈ N.

Therefore the operator T is not well-defined on D(Ω).



Let us consider the set of indices

J := {j ∈ N : Te2,j = λe1,p(j) for some p(j) ∈ N}.
It turns out that

lim
j∈J

p(j)
jt

= ∞

for each t ∈ N.

Therefore the operator T is not well-defined on D(Ω).

We modify the “snake-shift” operator:
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Under this modification, the new snake-shift operator T , is so that the set of
indices

J := {j ∈ N : Te2,j = λe1,p(j) for some p(j) ∈ N}
satisfies

p(j) = o(j2).

This yields that T is a (continuous) well-defined operator. We then conclude:

Theorem 6. There are hypercyclic operators T on X := D(Ω) and vectors x ∈ X
whose orbit with respect to T is sequentially dense in X.
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