Dynamics of linear operators on non-metrizable vector spaces

José Bonet

Universitat Politècnica de València

July, 2005, Denison, US

(joint work with L. Frerick, A. Peris and J. Wengenroth)

TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, $T: X \to X$ a continuous map, and $x \in X$. The **orbit** of x under T is

$$Orb(x,T) := \{x,Tx,T^2x,\dots\}$$

TOPOLOGICAL TRANSITIVITY

Definition 1. Let X be a topological space, $T: X \to X$ a continuous map, and $x \in X$. The **orbit** of x under T is

$$Orb(x,T) := \{x,Tx,T^2x,\dots\}$$

T is said to be **topologically transitive** if, for every pair $U, V \subseteq X$ of non-empty open sets, there exists $n \in \mathbb{N}$ such that

$$T^n(U) \cap V \neq \emptyset.$$

In other words, there is $x \in U$ whose orbit intersects V.

Example:

$$T:[0,1] \longrightarrow [0,1], \quad T(x) = 4x(1-x)$$
 is transitive

If X is a Baire space, 2AN, without isolated points, then

$$T \ \text{admits a dense orbit i.e.,}$$

$$T \ \text{is transitive} \qquad \Leftrightarrow \qquad \qquad \exists x \in X: \quad \overline{Orb(x,T)} = X.$$

 $(G_n)_n$ basis of open subsets of X

$$H:=\bigcap_{n=1}^{\infty}\bigcup_{m=1}^{\infty}(T^m)^{-1}(G_n)\quad \text{ dense in }X$$

T is called **chaotic** in the sense of Devaney if it is topologically transitive and the set of periodic points of T is dense in X.

From now on $T:X\to X$ will be a (linear and continuous) operator on a separable locally convex space X.

From now on $T:X\to X$ will be a (linear and continuous) operator on a separable locally convex space X.

Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{Orb(x,T)} = X$. In this case x is a hypercyclic vector for T.

From now on $T:X\to X$ will be a (linear and continuous) operator on a separable locally convex space X.

Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{Orb(x,T)} = X$. In this case x is a hypercyclic vector for T.

Read, 1988: There are operators T on ℓ^1 such that every non-zero vector is hypercyclic for T. That is, T admits no non-trivial invariant closed subset.

From now on $T:X\to X$ will be a (linear and continuous) operator on a separable locally convex space X.

Definition 2. T is hypercyclic if there exist $x \in X$ such that $\overline{Orb(x,T)} = X$. In this case x is a hypercyclic vector for T.

Read, 1988: There are operators T on ℓ^1 such that every non-zero vector is hypercyclic for T. That is, T admits no non-trivial invariant closed subset.

Kitai, 1982: No finite dimensional space E admits hypercyclic operators.

Theorem 1. If T is transitive, then the transpose operator

$$T^t: E' \to E'$$

has no eigenvalues.

CLASSICAL AND RECENT RESULTS

Birkhoff, 1929: The translation operator

$$T_a: \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C}), \quad (T_a f)(z) := f(z+a)$$

on the Fréchet space $H(\mathbb{C})$ of entire functions is hypercyclic if $a \neq 0$.

MacLane, 1952: The derivative operator Df = f' is hypercyclic on $\mathcal{H}(\mathbb{C})$.

Godefroy, Shapiro, 1991: Let T be an operator on $\mathcal{H}(\mathbb{C}^N)$ which commutes with translations (or, equivalently, with the operators of partial differentiation). If T is not a scalar multiple of the identity, then T is chaotic.

• On $C^{\infty}(\mathbb{R}^{\mathbb{N}})$ the translation operators are hypercyclic (**Duyos-Ruíz**, **1983**) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (**Godefroy**, **Shapiro**, **1991**).

• On $C^{\infty}(\mathbb{R}^{\mathbb{N}})$ the translation operators are hypercyclic (**Duyos-Ruíz**, **1983**) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (**Godefroy**, **Shapiro**, **1991**).

Theorem 2. (J.H. Shapiro) Let $G \subset \mathbb{C}$ be an open connected set, and let P(D) be a non-constant polynomial. The following conditions are equivalent:

- (1) P(D) is chaotic on H(G)
- (2) P(D) is hypercyclic on H(G)
- (3) G is simply connected.

• On $C^{\infty}(\mathbb{R}^{\mathbb{N}})$ the translation operators are hypercyclic (**Duyos-Ruíz**, **1983**) and every partial differential operator with constant coefficients, which is not a multiple of the identity, is hypercyclic (**Godefroy**, **Shapiro**, **1991**).

Theorem 2. (J.H. Shapiro) Let $G \subset \mathbb{C}$ be an open connected set, and let P(D) be a non-constant polynomial. The following conditions are equivalent:

- (1) P(D) is chaotic on H(G)
- (2) P(D) is hypercyclic on H(G)
- (3) G is simply connected.

Rolewicz, 1969: Let $T:=\lambda B:\ell^p\to\ell^p$, $1\leq p<\infty$, $|\lambda|>1$,

$$T(x_1, x_2, \dots) = (\lambda x_2, \lambda x_3, \dots)$$

be the backward shift. Then T is hypercyclic (and chaotic).

• Every separable infinite dimensional Banach space admits hypercyclic operators (Ansari, 1997/Bernal 1999). This results solves a problem of Rolewicz.

• The theorem is also true for Fréchet spaces (Bonet, Peris, 1998).

• However, there are infinite dimensional separable Banach spaces which admit no chaotic operator. This was proved by Bonet, F. Martínez-Giménez, Peris, 2001.

The construction depends on the hereditarily indecomposable Banach spaces of Gowers and Maurey.

The space $\varphi := \bigoplus_{i \in \mathbb{N}} \mathbb{C}$ of scalar sequences with finitely many coordinates different from 0 endowed with the finest locally convex topology does not admit hypercyclic operators, but it admits transitive operators.

 $T: \varphi \longrightarrow \varphi$ continuous hypercyclic, x hypercyclic vector

- $\Rightarrow \{T^nx \mid n=1,2\ldots\}$ dense
- \Rightarrow span $\{T^nx \mid n \in \mathbb{N}\}$ closed and dense

$$\Rightarrow \quad x = \sum_{n=1}^{m} \alpha_i \ T^n x$$

- $\Rightarrow \exists s: T^s x \in \operatorname{span}(x, Tx, \dots, T^{s-1}x) =: H$
- $\Rightarrow T^n x \in H \quad \forall n$
- $\Rightarrow \varphi = H$ contradiction.

CONVOLUTION OPERATORS

Let Ω be an open subset of \mathbb{R}^N .

- ullet Given a compact set $K\subset \mathbb{R}^N$, we denote by $\mathcal{D}(K)$ the Fréchet space of all C^∞ -functions with support contained in K.
- The space $\mathcal{D}(\Omega)$ of test functions is the (strict) inductive limit of the system $(\mathcal{D}(K), K \subset \Omega \text{ compact}).$

CONVOLUTION OPERATORS

Let Ω be an open subset of \mathbb{R}^N .

- ullet Given a compact set $K\subset \mathbb{R}^N$, we denote by $\mathcal{D}(K)$ the Fréchet space of all C^∞ -functions with support contained in K.
- The space $\mathcal{D}(\Omega)$ of test functions is the (strict) inductive limit of the system $(\mathcal{D}(K), K \subset \Omega \text{ compact})$.
- The dual $\mathcal{D}'(\Omega)$ of $\mathcal{D}(\Omega)$ is the space of distributions of Laurent Schwartz.
- The space of C^{∞} functions on Ω is denoted by $\mathcal{E}(\Omega)$. Its dual $\mathcal{E}'(\Omega)$ is the space of distributions with compact support.
- $\mathcal{E}'_*(\Omega)$ and $\mathcal{D}'_*(\Omega)$ denote the corresponding spaces of ultradistributions of Beurling or Roumieu type.

Theorem 3. Let G be an open subset of \mathbb{R}^d . Let $\mu \in \mathcal{E}'_*(\mathbb{R}^N)$ satisfy G-supp $\mu \subset G$. If μ is not a scalar multiple of the Dirac measure, then T_{μ} is hypercyclic and chaotic on $\mathcal{E}_*(G)$. If the class is non-quasianalytic, the convolution operator is also hypercyclic and chaotic on $\mathcal{D}'_*(G)$.

Every linear partial differential operator P(D) with constant coefficients satisfies the assumptions of Theorem 3.

Theorem 3. Let G be an open subset of \mathbb{R}^d . Let $\mu \in \mathcal{E}'_*(\mathbb{R}^N)$ satisfy G-supp $\mu \subset G$. If μ is not a scalar multiple of the Dirac measure, then T_{μ} is hypercyclic and chaotic on $\mathcal{E}_*(G)$. If the class is non-quasianalytic, the convolution operator is also hypercyclic and chaotic on $\mathcal{D}'_*(G)$.

Every linear partial differential operator P(D) with constant coefficients satisfies the assumptions of Theorem 3.

The proof depends on:

- ullet The theorem of Godefroy and Shapiro on operators on $H(\mathbb{C}^N)$.
- Density theorems of $H(\mathbb{C}^N)$ in $\mathcal{E}_*(\Omega)$. Heinrich and Meise for quasyanalytic functions (2005).
- The following result:

Theorem 4. Let T be a continuous and linear operator on a locally convex space E. Let F be a locally convex space which is continuously and densely contained in E. If the restriction T|F of T defines a continuous and linear operator on F which is hypercyclic (resp. chaotic), then T is also hypercyclic (resp. chaotic).

- This type of reduction argument had already been used by Peris and I to show that certain hypercyclic operators exist on certain LB-spaces.
- The proof depends on the existence of a dense subspace which is a Fréchet space for a stronger topology, hence the conclusion follows from Baire theorem and a comparison principle.
- This kind of reduction to the Fréchet case <u>fails</u> if one considers spaces of test functions such as \mathcal{D} , which is a strict inductive limit of Fréchet spaces, due to Grothendieck factorization theorem.

SUMTOPO2005, Denison

THE SPACE OF TEST FUNCTIONS

We want to show that $\mathcal{D}(\Omega)$ admits a hypercyclic operator T.

THE SPACE OF TEST FUNCTIONS

We want to show that $\mathcal{D}(\Omega)$ admits a hypercyclic operator T.

To do this we will use the fact that

$$\mathcal{D}(\Omega) \cong \bigoplus_{i \in \mathbb{N}} s$$

(Valdivia / Vogt 1982)

where

$$s:=\{x=(x_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}:\|x\|_t:=\sum_{n=1}^\infty|x_n|n^t<\infty\text{ for every }t\in\mathbb{N}\}$$

is the Fréchet space of all rapidly decreasing sequences.

Theorem 5. There are hypercyclic operators T on $X := \bigoplus_{i \in \mathbb{N}} \ell^1$. More precisely, there exist $x \in X$ whose T-orbit is sequentially dense in X.

Theorem 5. There are hypercyclic operators T on $X := \bigoplus_{i \in \mathbb{N}} \ell^1$. More precisely, there exist $x \in X$ whose T-orbit is sequentially dense in X.

Sketch of proof:

We represent the elements $x \in X$ as $x = (x_{i,n})_{i,n \in \mathbb{N}}$, where $(x_{i,n})_{n \in \mathbb{N}} \in \ell^1$ for each $i \in \mathbb{N}$. We then construct a "snake" backward shift operator T on X:

$$Te_{1,1} = 0.$$

$$Te_{i,j} = \lambda e_{\sigma(i,j)}$$
 if $(i,j) \neq (1,1)$.

where $\lambda \in \mathbb{C}$, $|\lambda| > 1$ is fixed, and $\sigma : \mathbb{N} \times \mathbb{N} \setminus \{(1,1)\} \to \mathbb{N} \times \mathbb{N}$ is certain bijection.

SUMTOPO2005, Denison

```
(1,17) (1,18)
(1,4) (1,5)
\vdots
\vdots
(1,3) (1,6) (1,9)
(1,1) (1,2) (1,7) (1,8) (1,27)
```


(1,17) (1,18) (1,4) (1,5) \vdots (1,3) (1,6) (1,9) (1,1) (1,2) (1,7) (1,8) (1,27)

(2,1) (2,2) (2,3) •

Row 1

Row 2
$$(2,1)$$
 $(2,2)$ $(2,3)$ • • •

Row 3
$$(3,1)(3,2)$$
 • • •

Row 1 (1,17) (1,18) (1,4) (1,5) \vdots \vdots (1,3) (1,6) (1,9) (1,1) (1,2) (1,7) (1,8) (1,27)

(1,17) (1,18)(1,4) (1,5)Row 1 (1,3)(1,6)(1,9)(1,1) (1,2) (1,7) (1,8) (1,27)Row 2 (2,1) (2,2) (2,3)Row 3 (3,1) **(**3,2) • Row 4 (4,1)

Row 1 (1,17) (1,18) (1,4) (1,5) \vdots (1,3) (1,6) (1,9) (1,1) (1,2) (1,7) (1,8) (1,27)Row 2 (2,1) (2,2) (2,3)

Row 3
$$(3,1)(3,2)$$
 $(4,1)$ $(4,1)$ $(4,1)$ $(4,1)$

(1,17) (1,18)Row 1 (1,1) (1,2) (1,7) (1,8) (1,27)Row 2 (2,1) (2,2) (2,3)Row 3-(3,1) (3,2) Row 4 (4,1) Row 5-

(1,17) (1,18)Row 1 (1,1) (1,2) (1,7) (1,8) (1,27)Row 2 (2,1) (2,2) (2,3) Row 3-(3,1) (3,2) Row 4 **(4,1)** Row 5— Row 6 — → •

SUMTOPO2005, Denison

To construct a hypercyclic vector x, let $\{v_k=(a_{i,j}^k)_{(i,j)\in\mathbb{N}^2}:k\geq 1\}$ be a sequentially dense subset of $\oplus_{i\in\mathbb{N}}\ell^1$ such that

$$\sup_{(i,j)\in\mathbb{N}^2}|a_{i,j}^k|\leq k, \quad \text{and} \quad \ a_{i,j}^k=0 \quad \text{if} \quad i+j>k+2.$$

To construct a hypercyclic vector x, let $\{v_k=(a_{i,j}^k)_{(i,j)\in\mathbb{N}^2}:k\geq 1\}$ be a sequentially dense subset of $\oplus_{i\in\mathbb{N}}\ell^1$ such that

$$\sup_{(i,j)\in\mathbb{N}^2}|a_{i,j}^k|\leq k, \quad \text{and} \quad \ a_{i,j}^k=0 \quad \text{if} \quad i+j>k+2.$$

There are suitable strictly increasing sequences of positive integers $(\ell(k))_k$, $(m(k))_k$ and $(n(k))_k$, and (unique) scalars x_j , $m(k) \le j \le n(k)$, such that

$$T^{\ell(k)}(\sum_{j=m(k)}^{n(k)} \frac{x_j}{\lambda^{\ell(k)}} e_{1,j}) = v_k, \ k \ge 1, \qquad |x_j| \le k, \quad k \ge 1.$$

We then define

$$x := \sum_{k=1}^{\infty} \sum_{j=m(k)}^{n(k)} \frac{x_j}{\lambda^{\ell(k)}} e_{1,j}$$

which satisfies that $\{T^{\ell(k)}x:k\in\mathbb{N}\}$ is sequentially dense in X.

Is this operator T valid for $\mathcal{D}(\Omega) = \bigoplus_{i \in \mathbb{N}} s$?

Is this operator T valid for $\mathcal{D}(\Omega) = \bigoplus_{i \in \mathbb{N}} s$?

Let us recall that

$$s := \{x = (x_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} : ||x||_t := \sum_{n=1}^{\infty} |x_n| n^t < \infty \text{ for every } t \in \mathbb{N}\}$$

$$J:=\{j\in\mathbb{N}\ :\ Te_{2,j}=\lambda e_{1,p(j)}\ \text{for some}\ p(j)\in\mathbb{N}\}.$$

$$J:=\{j\in\mathbb{N}\ :\ Te_{2,j}=\lambda e_{1,p(j)}\ \text{for some}\ p(j)\in\mathbb{N}\}.$$

It turns out that

$$\lim_{j \in J} \frac{p(j)}{j^t} = \infty$$

for each $t \in \mathbb{N}$.

$$J:=\{j\in\mathbb{N}\ :\ Te_{2,j}=\lambda e_{1,p(j)}\ \text{for some}\ p(j)\in\mathbb{N}\}.$$

It turns out that

$$\lim_{j \in J} \frac{p(j)}{j^t} = \infty$$

for each $t \in \mathbb{N}$.

Therefore the operator T is not well-defined on $\mathcal{D}(\Omega)$.

$$J:=\{j\in\mathbb{N}\ :\ Te_{2,j}=\lambda e_{1,p(j)}\ \text{for some}\ p(j)\in\mathbb{N}\}.$$

It turns out that

$$\lim_{j \in J} \frac{p(j)}{j^t} = \infty$$

for each $t \in \mathbb{N}$.

Therefore the operator T is not well-defined on $\mathcal{D}(\Omega)$.

We modify the "snake-shift" operator:

Under this modification, the new snake-shift operator ${\cal T}$, is so that the set of indices

$$J:=\{j\in\mathbb{N}\ :\ Te_{2,j}=\lambda e_{1,p(j)}\ \text{for some}\ p(j)\in\mathbb{N}\}$$

Under this modification, the new snake-shift operator ${\cal T}$, is so that the set of indices

$$J := \{ j \in \mathbb{N} : Te_{2,j} = \lambda e_{1,p(j)} \text{ for some } p(j) \in \mathbb{N} \}$$

satisfies

$$p(j) = o(j^2).$$

This yields that T is a (continuous) well-defined operator. We then conclude:

Under this modification, the new snake-shift operator ${\cal T}$, is so that the set of indices

$$J := \{ j \in \mathbb{N} : Te_{2,j} = \lambda e_{1,p(j)} \text{ for some } p(j) \in \mathbb{N} \}$$

satisfies

$$p(j) = o(j^2).$$

This yields that T is a (continuous) well-defined operator. We then conclude:

Theorem 6. There are hypercyclic operators T on $X := \mathcal{D}(\Omega)$ and vectors $x \in X$ whose orbit with respect to T is sequentially dense in X.