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NOTATION AND STATEMENT OF THE PROBLEM

A subset Q of CN is called locally closed if for each z ∈ Q there is a
closed neighbourhood U of z in CN such that Q ∩ U is closed.

• Every open subset and every closed subset of CN is locally closed.

• Every convex open set in RN is locally closed too.

For a convex set Q ⊂ CN the symbols intrQ denote the relative interior
and ∂rQ the relative boundary of Q with respect to the affine hull of Q.

For example, if 0 ∈ Q, the affine hull of Q is the the real linear span of Q.

We write ω := Q ∩ ∂rQ.
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Proposition 1. The following assertions are equivalent for a convex subset
Q of CN :

Q is locally closed.

m

Q admits a countable fundamental sequence (Qn)n∈N of compact subsets

m

Q is the union of the relative interior intrQ of Q and a subset ω of
∂rQ which is open in ∂rQ
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A locally closed convex set Q is called (C-)strictly convex at the relative
boundary of ω if the intersection of Q with each supporting (complex)
hyperplane to the closure Q of Q is compact.

• If the interior of Q is empty,

Q is strictly convex at the relative boundary of ω ⇔ Q is compact

• If the interior of Q is not empty,

Q is (C-)strictly convex at
the relative boundary of ω

⇔

each line segment (of which the C-linear
affine hull belongs to some supporting
hyperplane of Q) of ω = Q ∩ ∂rQ is
relatively compact in ω

Proposition 2. A locally closed convex set Q is strictly convex at the relative
boundary of ω if and only if Q has a neighbourhood basis of convex domains.

For example Q is strictly convex at the relative boundary of ω if Q is open
or compact.
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Let Q ⊂ CN be a convex locally closed set such that

Q = {x ∈ CN | x1 ≥ f(x2, ..., x2N), (x2, ..., x2N) ∈ R2N−1}

for a convex function f : R2N−1 −→ R.

• If the function f is strictly convex ⇒
{

Q is strictly convex at the
relative boundary of ω

• If Q is closed and there is a un-
bounded interval in R2N−1 on
which f is affine

⇒
{

Q is not strictly convex
at the relative boundary of ω
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We denote by H(Q) the vector space of all functions which are holomorphic
on some open neighbourhood of the locally closed convex set Q.

Let (Qn)n∈N be an increasing fundamental sequence of compact convex
sets in Q. Since the algebraic equality H(Q) = ∩n∈NH(Qn) holds, we endow
H(Q) with the projective topology of

H(Q) := projnH(Qn)

This topology does not depend of the choice of the fundamental system
(Qn)n∈N. The space H(Q) is a (PLN)-space.

• If Q is an open convex subset of RN , then

H(Q) = A(Q)

where A(Q) denotes the space of all real analytic functions on Q.
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1966, Martineau investigated the spaces H(Q) of analytic functions on
a locally closed convex set Q in CN and convolution operators on these
spaces in 1967.

1990’s, Napalkov, Udakov, Korobeinik and Maltsev,

2000, Melikhov and Momm.

The Laplace transform

F : H(Q)′b −→ V H(CN) := ind
n→

proj
←k

H(vn,k, CN)

is a linear topological isomorphism.

The Laplace transform: F(ϕ)(z) := ϕ(exp〈·, z〉), z ∈ CN ,
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V H(CN) := ind
n→

proj
←k

H(vn,k, CN) V H(CN) is a weighted inductive
limit of Fréchet spaces

The steps H(v, CN) are defined, for a positive weight v on CN , as

H(v, CN) := {f ∈ H(CN)| sup
z∈CN

v(z)|f(z)| < ∞} (Banach space)

and vn,k(z) := exp(−Hn(z)− |z|/k), n, k ∈ N, z ∈ CN .

For each set D ⊂ CN we denote by HD the support function of D:

HD(z) := sup
w∈D

Re〈z, w〉, z ∈ CN with 〈z, w〉 :=
N∑

j=1

zjwj.

For each n ∈ N let Hn := HQn be the support function of the convex

compact set Qn.
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Bierstedt, Meise, and Summers (1982)

System V of all those weights v : CN →]0,∞[ which are continuous and
have the property that

for each n there are αn > 0 and k = k(n) such that v ≤ αnvn,k on CN .

The projective hull of the weighted inductive limit is defined by

HV (CN) := {f ∈ H(CN) | ||f ||v := sup
z∈CN

v(z)|f(z)| < ∞ for all v ∈ V },

endowed with the Hausdorff locally convex topology defined by the system of
seminorms

{||.||v | v ∈ V }

The projective hull is a complete locally convex space and

V H(CN) ⊂ HV (CN) with continuous inclusion.
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PROBLEM

Characterize in terms of the locally closed convex set Q
when the inclusion

V H(CN) ⊂ HV (CN)

is a topological isomorphism into and when it is surjective.
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Spaces of holomorphic functions

Theorem 3. Let Q ⊂ CN be a convex locally closed set. If Q is strictly
convex at the relative boundary of ω, then

V H(CN) = HV (CN) (algebraically and topologically)

Maltsev (1994): Permit us to construct, if Q ⊂ C is locally closed and not
strictly convex at the relative boundary of ω, an entire function P (z) of order
at most one and zero type such that the linear differential operator P (D)
associated with P (z) is not surjective on H(Q). A reduction argument for
N > 1 yields

Proposition 4. Suppose that Q ⊂ CN is convex, locally closed and has a
neighbourhood basis of domains of holomorphy.

If each nonzero differential operator
P (D) : H(Q) −→ H(Q)

is surjective

 ⇒ Q is strictly convex at
the relative boundary of ω
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Theorem 5. Let Q ⊂ CN be a convex locally closed set. Suppose that Q has a
neighbourhood basis of domains of holomorphy. If V H(CN) is a topological
subspace of HV (CN), then Q is strictly convex at the relative boundary of
ω.

Proof. Suppose that V H(CN) is a topological subspace of HV (CN).
With a division argument one shows that, for each nonzero entire function of
order at most one and zero type P , the multiplication operator MP = P (D)t :
V H(CN) → V H(CN) is an injective topological homomorphism. Since the
space H(Q) is reflexive, an application of Hahn-Banach theorem gives that

P (D) : H(Q) −→ H(Q)

is surjective for each such P . By Proposition 4, Q is strictly convex at the
relative boundary of ω.

Corollary 6. Let Q be a convex subset of RN which is locally closed.

V H(CN) is a topological subspace of
its projective hull HV (CN)

⇔ Q is compact.
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If a convex and locally closed set Q ⊂ CN is C-strictly convex at the
relative boundary of ω then Q has a neighbourhood basis of domains of
holomorphy.

In fact, by Martineau 1966, if Q is C-strictly convex at the relative
boundary of ω, then Q has a neighbourhood basis of linearly convex open
sets, hence a basis of domains of holomorphy.

An open convex set in CN is linearly convex if its complement is a union
of complex hyperplanes.

If Q is a convex and locally closed subset of RN , then also Q has a
neighbourhood basis of domains of holomorphy by a lemma of Cartan.
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Spaces of continuous functions

The weighted (LF)-space of continuous functions V C(CN) and its projec-
tive hull CV (CN) associated with the sequence V = (vn,k)n,k∈N of Section 2
are defined by replacing entire functions by continuous ones.

Theorem 7. (Bierstedt, Meise, Summers, 1982) For every locally closed
convex set Q ⊂ CN the weighted (LF)-space V C(CN) is a topological sub-
space of its projective hull CV (CN).

Theorem 8. Let Q ⊂ CN is convex and locally closed. The following are
equivalent:

(i) The algebraic equality V C(CN) = CV (CN) holds.

(i)’ V C(CN) = CV (CN) (algebraically and topologically)

(ii) Q is strictly convex at the relative boundary of ω.
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A necessary and sufficient condition for the algebraic equality V H(C) =
HV (C) in the case of a bounded convex locally closed set Q in C was obtained
in 2003.

Theorem 9. Let Q be a bounded convex locally closed subset of CN .

(i) Assume that the following conditions (∗) holds:

There is a supporting hyperplane Π to Q such that Π∩Q 6= ∅ and there
exists a z0 ∈ (Π ∩Q) \Q which is a smooth point of ∂Q,

then V H(CN) 6= HV (CN).

(ii) V H(C) 6= HV (C) if and only if the condition (∗) holds.

The algebraic identity V H(CN) = HV (CN) also holds in case Q is a
convex open subset of RN as it was proved in 2004. This is the case of the
Fourier Laplace transform of the space of analytic functionals.
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