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Boolean algebras of projections/spectral measures in Banach spaces were
intensively studied by W. Bade, N. Dunford and others. This is an extension
of the notion of the resolution of the identity of a normal operator in Hilbert
space which consists entirely of selfadjoint projections.

We consider the problem of describing the connection between

the operator/measure theoretic
properties of any Bade comple-
“~ | te Boolean algebra of projections
in X (necessarily equicontinuous)
which possesses a cyclic vector

geometric/analytic properties
of a general Fréchet space X

This problem is reduced to a consideration of the multiplication operators
(by characteristic functions) on some Fréchet function or sequence spaces over
a o-finite measure space.




We first recall the Kothe echelon spaces.

Let I' denote either N or N X N or any infinite subset of these.

e An increasing sequence A = (an)nen Of strictly positive functions
ap : ' — (0, 00)
is called a Kothe matrix on I', here increasing means

0 < ap(t) < apg1(), iel', neN.




e To each p € [1,00) we associate the linear space

M(A) == {z € C": ¢V () == (Y an(@)|z;?) /" <00 forall neN

el

e For p =0, we set

Mo(A) :={x € C" : apx € co(I') for all n € N}

equipped with the sup-seminorms q( )( ).

The spaces A\,(A), for p € {0}U[1, 00) are called K6the echelon spaces
(of order p); they are all Fréchet sequence spaces relative to the increasing
sequence of seminorms

(p) < q(p) <




e For each p € [1,00) define the vector space 2 = ﬂ 04

q>p
It is a Fréchet sequence space for the seminorms
o0 1/5]{: 1
Qr,p(T) = (Z |xn|ﬁk> , forx € /PT, where (3} := p+E for k€ N.
n=1

The space P was investigated by J.C. Diaz , Metafune and Moscatelli.

e It is not Montel and has no infinite dimensional Banach subspaces. In

particular, it is non-normable and not isomorphic to any Kothe echelon space
Ag(A), for g € {0} U[1,00).

e The space ¢P* contains an infinite dimensional, complemented, nuclear
Fréchet subspace with a basis.




The canonical spectral measure

e Let \ be one of the sequence spaces defined above.
e 2 denotes the o-algebra of all the subsets of N.

o For £ € 2 and z € A, we set P(E)x := x y,, which is also an element of
A.

In fact P(F) : A — X\ is continuous, and we write P(F) € L()\).

The set function

P(E) :z— zx,, reN Ec2h

is called the canonical spectral measure in \.




The set {P(E) | E € 2} is called a Boolean algebra of projections on
L(X).

e For a locally convex space X,

Ls(X) and Ly (X) denote the space of all the continuous linear operators from
X into X endowed with the topology of uniform convergence on the finite
subsets of X and on the bounded subsets of X respectively.

e If X is a Banach space,

Ls(X) is the space of all operators from X into X endowed with the
strong operator topology SOT, and

Ly (X) is the space of all operators endowed with the operator norm.




Elementary properties of the spectral measure P
(1) P(N) =1, the identity on A, and P(0)) = 0.

(2) P is multiplicative, i.e. P(ENF)= P(E)P(F).

In particular each P(F) is a continuous projection on .

(3) P: 2 — Lg()\) is o-additive

If (E) is a sequence of disjoint subsets of N, then

Uk 1Ek ZP
k=1

and the series converges in Lg(\).




It is clear now how to define a spectral measure
P:Y— LX)

for a locally convex space X.

e The theory of spectral measures and Boolean algebras of projections in

Banach spaces was initiated by Bade and N. Dunford. It is well understood.

e If X is a Hilbert space, the resolution of the identity of a normal operator
yields a spectral measure.

e The case of non-normable locally convex spaces X has been investigated
by Walsh, Okada and Ricker among others.




e There was a lack of concrete, non-trivial examples in the Fréchet-(DF)
setting. This was one of the main motivations for our work.

e \We investigate several questions about the spectral measure

P:Y— LX)

for
A=X(A) or A= 2

and connect the properties of the spectral measure with the structure
of the sequence space.




QUESTION 1

What can be said about the range P(2") .= {P(E) | E € 2"} as a
subset of Ls(\) ?

Let Y be a locally convex space and m : > — Y be a vector measure. The
Orlicz-Pettis theorem implies

( o-additivity of each C-valued set function
o-additivity of m < < (m,y") : E— (m(E),y),
| for EeXandy €Y’
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(a) (Kluvanek, Knowles, 1976) If Y is quasicomplete, then the range
m(X) :={m(F): F € X}

is a relatively weakly compact subset of Y.

Since the spectral measure P : 2 +— L ()\) has countably many atoms, a
result of Hoffmann—Jgrgensen, 1971, implies that

(b) The range P(2") is compact in Lg()\).
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Proposition 1.

(i) Let p € [1,2). Then every \,(A)-valued vector measure has relatively
compact range.

(1) Let p € [2,00). Then

Ap(A) is a Montel space < { if every )\p(A) — valued vector measure }
p

has relatively compact range.

(11i) Let p € [1,00). Then £PT has the property that

{ every P -valued vector measure } o pel2)

has relatively compact range
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QUESTION 2

Whenis P: 2V Ly()\) o-additive?

A spectral measure P : ¥ — Ly (X) is called boundedly c-additive
if P:X% — Ly(X) is o-additive.

e If X is a Banach space, then boundedly o-additive spectral measures are
trivial.

This is due to the fact that R = 0 whenever a projection R € L(X) satisfies
|R| < 1.

e On the other hand, if a Fréchet space X is Montel, then every spectral
measure P : > — Ly (X) is boundedly o-additive.

13



Proposition 2.

(i) For every p € [1,00), the canonical spectral measure
P 2N — L (ePT)

fails to be boundedly o-additive.

(ii) For some (all) p € {0} U [1,00) and any Kothe matriz A on T, the
canonical spectral measure P : 2Y — L (\,(A)) is boundedly o-additive if
and only if \,(A) is a Montel space (and if and only if A\1(A) is reflexive).
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QUESTION 3

When does P : 2% — L ()\) have finite variation?

Let Y be a IcHs with topology determined by a family of continuous
seminorms 4.

Let Y/q~1({0}) be the quotient normed space determined by ¢ € .4 and
Y, denote its Banach space completion.

The norm in Y, is denoted by || - ||, and the canonical quotient map of Y
onto Y/q~'({0}) is denoted by p,.

Given any Y-valued vector measure defined on a measurable space (2, ),
the continuity of p, ensures that m, := p, o m is a vector measure on X with

values in Y/q 1({0}) — Y, for each g € /1"
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e The variation measure |m,| : ¥ — |0, 00] of the Banach-space-valued
measure m, is defined in the usual way.

e The variation |m,| is called finite if |m,|(£2) < oo.

e We say that m has finite variation if m, has finite variation for every

qge N.
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Proposition 3. Let X be a nuclear Fréchet space. Every L¢(X)-valued mea-
sure is boundedly o-additive and has finite variation in both Ls(X) and

Ly(X).

Proposition 4. Let A be a Kothe matriz.

(i) Let p € {0} U (1, 00).

( The canonical spectral measure )

< P 2N — L\, (A)) > < A (A) is nuclear.

has finite variation )

\

(it) The spectral measure P : 2Y — L (A (A)) always has finite variation.

(iii) The canonical spectral measure P : 2% — L (¢PT) fails to have finite
variation for every p € [1,00).
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Proposition 5. Let A be a Kiothe matrix with A\1(A) Montel.

( The canonical spectral measure
4 P: 2N — Ly(\(4))

| has finite variation

\

0

< M (A) is nuclear.

This result depends on the characterization of bounded subsets of A\;(A)

due to Bierstedt, Meise and Summers.

18



QUESTION 4

What are the P-integrable functions for P : 2" — Ly, ()\)?

e Associated with any L4 (X)-valued spectral measure () (defined on some
measurable space (£2,Y)) is the space

ZHQ) of all Q-integrable functions f: Q — C

and the space

Z>°(Q) of Q-essentially bounded functions.
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e |n the setting of Banach spaces X,

L1 Q) = L>(Q) as vector spaces,

that is,

the only (J-integrable functions are the ()-essentially bounded ones.

This is a result due to Dunford. For non-normable spaces X, this is surely
not the case in general.

e We investigate when is the containment Z>°(P) C Z*(P) strict.
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Instead of recalling the definition of (Q-integrable functions, we prefer to
present the following characterization, due to Okada and Ricker, 1999, which
is valid in the present setting.

Proposition 6. Let P : 2V — L, ()\) be the canonical spectral measure.

(i) A function f € CN belongs to L' (P) < AfCA
Moreover, / f dP s the multiplication operator
N

My :x—xf, forx e A
(i) A function f € CY belongs to L>°(P) & fel™.

Our problem is then to decide whether there are unbounded multipliers on
the sequence space ). We state first the result for /P,
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Proposition 7. The canonical spectral measure P : 2% — L (£PT) satisfies

LY P) =1,

Lemma 8. Let p € {0} U[1,00), A be a Kothe matriz and f € CN.

MAFCANA) & VYneN dm,>n: MEKOO.

= A,
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Proposition 9. Let p € {0} U[1,00) and A be a Kdéthe matrixz. Then

3 feCh\(>: o there exists an infinite set J C N such that
Ao (A)f C Ay (A) the sectional subspace \,(J, A) is Schwartz.

Corollary 10. Let p € {0} U [1,00) and A be a Kéthe matriz.

(i) For the canonical spectral measure P,

L>(P) C LY (P) is proper

~

there exists an infinite set J C N
such that the sectional subspace

Ap(J, A) is Schwartz.

(1i) If \p(A) satisfies the density condition and is non-normable, then the
inclusion L (P) C £Y(P) is proper.
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e A Fréchet space satisfies the density condition if the bounded sets of
its strong dual space are metrizable.

This condition in Fréchet and Kothe echelon spaces was thoroughly inves-
tigated by Bierstedt and Bonet.

Fréchet + density condition = distinguished
(its strong dual is barrelled)

Quasinormable

N\
/!

density condition

Montel Fréchet
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The following result summarizes work by Bierstedt, Meise, Bonet; it was
later complemented by Bastin and Vogt.

Proposition 11. Let A be a Kothe matriz on T.
(a) A\p(A) satisfies the density condition for some (all) p € {0} U[1, 00).
(b) M (A) is distinguished.

(c) Condition (D) holds for A, that is, there exists an increasing se-
quence (I'yy)men of subsets of T' such that:

> 0 (D1)

Vm dn(m) Vk>n(m): Z1€rllf af,;(:&gz)

and

VnVIlg CTwithToN(T\T),) #0(Vm e N),aIn* =n*(n,Ty) >n: (D2)

inf an(z? = 0.
i€y (1)
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Proposition 12. Suppose A is a Kéthe matriz on I' = N such that A\,(A) is
a Montel space for some p € {0} U[1,00). Then there exists an infinite set
J C N such that the sectional subspace A\,(J, A) is a Schwartz space.

Corollary 13. Let A be a Kothe matrix on I' = N and p € {0} U [1,00).
Suppose that \,(A) satisfies the density condition and is non-normable.
Then there exists an infinite set J C N such that the sectional subspace
Ap(J, A) is Schwartz.

It remains to treat the case of Kothe echelon spaces A,(A) without the
density condition. We prefer to restrict our attention to a class of examples.
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We recall a particular class of Kothe matrices A, the so called Kothe-
Grothendieck (briefly, KG) matrices. In this case,

I'=NxNanda,: NxN-— (0,00) for n €N

e a,(i,j) =1, forall j;n € Nandi>n. (KG-1)
e supan,(n,j) = oo, forall n € N. (KG-2)
JjeN

o a,(i,7) =aq(2,j5), foralli,j e Nand all p,g >i. (KG-3)

The original KG-matrix corresponds to

i for i < djeN
an(i,7) = {] ort=mandje for each n € N.

)1 fori>n and 57 € N,
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Some known facts are as follows; part (iii) is due to Albanese.

Proposition 14. Let A be any KG-matriz on I' = N x N.

(i) M(A) is not distinguished.

(ii) For each p € {0} U [1,00), the Fréchet space A\,(A) fails to satisfy the
density condition.

(113) For each p € {0}U[1,00), the Fréchet space A,(A) has no complemented
subspace which s Montel.
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Proposition 15. Let p € {0}U][1,00) and A be any KG-matriz on ' = NxN.
Then, for the canonical spectral measure P in \,(A), we have L*(P) =
L>(P) = £°(I'). That s, the only multipliers for \,(A) are those in
(1.

Proof. If f € () = 2°(P)C L (P) = M(A)fCN(A).
Conversely, suppose that f € C! satisfies A\,(A)f C A, (A).

For each n € N there exists m,, > n and C,, > 0 such that

an|f] < Crhap, on T.

(KG-1)KG — 1
(n=1)

} S < mUD) oo s jen
al(/L?])

for some Cy > 0 and m; € N.
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Now select & > my and D > 0 such that

Ak

fI<D onT.

mi

For i <m; and j € N,

(KG-3) = |f(i,j)| <D a‘fj(z@”j) = D.

Accordingly, f € £°°(T). O
This proposition gives a large class of non-normable Fréchet spaces, namely

Ap(A) for p € {0} U[1,00) and A any KG-matrix, and a non-trivial spectral
measure, namely P, with the property that Z1(P) = £>(P)
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Spaces of measurable functions

One can consider also spectral measures defined on spaces of measurable
functions.

e We recall the separable Fréchet spaces

L,_:= () L7([0,1]), forpe (1,00),

1<r<p

equipped with the seminorms

1 1/8(m)
Gom(F) = 1l = ( / ()50 dt)

for every f € L,_ and any increasing sequence 1 < 3(m) T p as m — oc.
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e WWe have, with continuous inclusions, that
Lr(0,1]) <= L,—— L"(|0,1]), 1 <r<p.

Each of the spaces L,_, for p € (1,00), is reflexive and none of them is
Montel.

e For each p € (1,0), the set function given by

P(E): f fxy  f€Ly
for £ € B (the o-algebra of Borel subsets of [0, 1]), defines a spectral measure
P:B— LyL,.).

The spectral measure P has no atoms.
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Proposition 16.

(i) The spectral measure P : B — Ls(Ly,_) fails to have finite variation for
every p € (1,00).

(ii) For everyp € (1,00), the spectral measure P : B — Ls(Ly,_) is boundedly
o-additive in Ly(L,_).
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Proposition 17. Let p € (1, 00).

(i) A Borel measurable function ¢ : [0,1] — C belongs to £(P) if and only
if Dp(My) = Ly—, that is, oL, C L,_. In this case

/ %, dP = M,.
[0,1]

(ii) As a vector space

2 (P)= () 14(o,1))

1<g<o0

In particular, the inclusion £°°(P) C £Y(P) is proper.
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To show that .£°°(P) C £Y(P) is a proper inclusion, let {F(n)}>2, be
any pairwise disjoint sequence of sets in B satisfying

AMF(n)) =e ", forneN.

Then ¢ := > nx,,,, is surely not in L=([0,1]) = £>(P).

n=1
However, for any q € [1,00) we have

00
lolld =) nie™ < o,
n=1

then
¢ € L]0, 1]).

Accordingly, ¢ € Z1(P).
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It is also possible to consider the following more general frame.

(€2, %, i) is a o-finite measure space.
M is the set of non negative measurable functions.

p:. M —[0,00] is a function norm.

elfac . #",0<a< oo (u-ae. onQ)isa measurable function then

Ly(a) = {f € 4 : plaf) < o}

is a Banach function space.
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A Koéthe matriz A = (a,) on § is a sequence of functions a,, € .Z ™, for
n € N, which satisfy 0 < a,, < an11 < 0o (p-a.e. on €2). Then

L,(an+1) € Ly(a,) forallneN

and L,(A):= ﬂ L,(ay) (Kothe function space)
n=1

is a Fréchet space (and lattice for the p-a.e. order).

For £ € > we define the multiplication operator

Q(E):L,(A) — Ly(A)
o xof = Q(E) e L(L,(A))

The map Q : ¥ — Ly(L,(A)) is called the canonical spectral measure
in L,(A).
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