Toeplitz operators on the space of analytic functions with logarithmic growth

José Bonet

Universidad Politécnica d Valencia

Congreso de la Real Sociedad Matemática Española, Oviedo 2009

On joint work with Jari Taskinen (Helsinki, Finland)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• We study Toeplitz operators T_{φ} in the space H_V^{∞} of analytic functions on the unit disc which grow logarithmically at the boundary.

• Though the space H_V^{∞} is quite far from the Bergman Hilbert space A^2 , our results will be surprisingly similar to that basic case.

The space H[∞]_V and the related space L[∞]_V were introduced and studied by Taskinen in 2003-04 as substitutes of the usual sup-normed spaces H[∞] and L[∞], to avoid the well-known discontinuity problem of the Bergman projection P with respect to the sup-norm.

• These spaces are **topological algebras** and they have the properties that H_V^{∞} is a **closed subspace** of L_V^{∞} and that P is a **continuous projection** from L_V^{∞} onto H_V^{∞} . They are the smallest extension of H^{∞} and L^{∞} defined by weights with this property.

Basic notations and definitions

All function spaces are defined on the open unit disc $\mathbb D$ of the complex plane $\mathbb C.$ We denote:

- dA as the normalized two-dimensional Lebesgue measure on \mathbb{D} .
- $L^p := L^p(dA)$, the space of *p*-integrable functions on the disc \mathbb{D} with respect to the measure dA.
- Here $1 \le p \le \infty$.
- A^p stands for the Bergman space, which is the closed subspace of L^p consisting of analytic functions.

The Bergman projection P is the integral operator

$$Pf(z) := \int_{\mathbb{D}} \frac{f(\zeta)}{(1-z\overline{\zeta})^2} dA(\zeta), \qquad , \quad z \in \mathbb{D},$$
 (1)

defined at least for all $f \in L^1(dA)$.

Toeplitz-operators

Given a function (symbol) $\varphi \in L^1_{loc}(dA)$ we denote by M_{φ} the pointwise multiplication with φ , and by T_{φ} we **denote**

$$T_{\varphi}f(z) := PM_{\varphi}f(z) := \int_{\mathbb{D}} \frac{\varphi(\zeta)f(\zeta)}{(1 - z\overline{\zeta})^2} dA(\zeta).$$
⁽²⁾

The Berezin transform

$$\tilde{\varphi}(z) = \int_{\mathbb{D}} \frac{\varphi(\zeta)(1-|z|^2)^2}{|1-z\bar{\zeta}|^4} dA(\zeta), \tag{3}$$

defined for a function $\varphi \in L^1$.

$$w(z) := 1 + |\log(1 - z)|$$

- This function is mainly used to define the radial weight w(|z|).
- Sometimes it is however necessary to define the logarithm as an analytic function on \mathbb{D} : then the argument of 1-z is understood to belong to the interval $]-\pi,\pi[$ for all $z\in\mathbb{D}$, and the definition becomes unambiguous.

The spaces H_V^{∞} (and L_V^{∞})

This space consists of analytic (resp. measurable) functions $f : \mathbb{D} \to \mathbb{C}$ such that for some $n \in \mathbb{N}$ and constant $C_n > 0$

$$|f(z)| \leq C_n w(|z|)^n$$

(5)

(4)

for (almost) all $z \in \mathbb{D}$.

- The space H[∞]_V is an (LB)-space, i.e., countable inductive limits of Banach spaces. In fact, it is a complete (LB)-space.
- A convenient way to describe the topology of H_V^{∞} is obtained with a projective description of the inductive limit topology. This can be done as a consequence of the work of Bierstedt, Meise and Summers. More precisely, it allows us to define the topology by means of the following family of weighted sup-seminorms:

$$\|f\|_{\nu} := \sup_{z \in \mathbb{D}} |f(z)| \nu(z) \quad , \quad \nu \in V,$$
(6)

where V consists of all continuous, positive, radial functions $v : \mathbb{D} \to \mathbb{R}$ such that for all $n \in \mathbb{N}$,

$$v(z) \le C_n w(z)^{-n} \tag{7}$$

• We still denote

$$B_n := \{ f \in H_V^{\infty} \mid \sup_{z \in \mathbb{D}} |f(z)| \le w(|z|)^n \};$$

$$(8)$$

in the same way, using essential supremum, we define the subsets B_n^L of L_V^{∞} .

The sets B_n are bounded and even precompact in H[∞]_V. Every bounded subset of H[∞]_V is contained in a multiple of some B_n. The same holds for the sets B^L_n in L[∞]_V, except that bounded sets need not be precompact in this case.

Proposition (Taskinen)

- (1) If $v \in V$, then the pointwise product $w^k v$ also belongs to V, for every k.
- (2) The mapping P is a continuous projection from L_V^{∞} onto H_V^{∞} .
- (3) In addition, $P(B_n^L) \subset C_n B_{n+1}$ for all n.

A linear operator from a complete locally convex space into itself is called compact (respectively, bounded), if it maps a neighbourhood of zero into a precompact (resp. bounded) set.

Remark

- (1) A linear operator T between two (LB)-spaces is continuous, if and only if it maps bounded sets into bounded sets. In our case this means that $T_{\varphi}: H_V^{\infty} \to H_V^{\infty}$ is continuous if and only if for every $n \in \mathbb{N}$ one can find $C_n > 0$ and $m \in \mathbb{N}$ such that $T_{\varphi}(B_n) \subset C_n B_m$.
- (2) One can also show that $T_{\varphi} : H_V^{\infty} \to H_V^{\infty}$ is compact, if and only if there exists $m \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ one can find a constant C_n with $T_{\varphi}(B_n) \subset C_n B_m$.

Theorem

Assume $\varphi \ge 0$. The Toeplitz operator T_{φ} is continuous $H_V^{\infty} \to H_V^{\infty}$ if and only if there exist $k \in \mathbb{N}$ and C > 0 such that the Berezin transform $\tilde{\varphi}$ satisfies

$$ilde{arphi}(z) \leq Cw(|z|)^k = C \Big(1 + |\log(1 - |z|)|\Big)^k \ , \qquad z \in \mathbb{D}.$$

Proof of Necessity. We assume T_{φ} is continuous and find $k \in \mathbb{N}$ such that T_{φ} maps B_1 into CB_k (see the remark after (8) and last Remark, (1)). Considering for a moment the number $z \in \mathbb{D}$ as a parameter, we define the analytic function

$$\mathcal{K}_z(\zeta) := rac{1}{(1-\zeta ar{z})^2} , \ \zeta \in \mathbb{D}.$$
 (10)

Trivially the estimate

$$\|(1-|z|^2)^2 K_z\|_{\infty} \le 4 \tag{11}$$

holds for every z. Hence $T_{\varphi}((1-|z|^2)^2K_z) \in 4CB_k$ for every z.

We have

$$|T_{\varphi}((1-|z|^2)^2 K_z)(\omega)| \le 4Cw(|\omega|)^k \tag{12}$$

for all $\omega \in \mathbb{D}$. But taking $\omega = z$, this means that

$$\begin{split} \tilde{\varphi}(z)| &= \left| \int_{\mathbb{D}} \frac{\varphi(\zeta)(1-|z|^2)^2}{|1-z\overline{\zeta}|^4} dA(\zeta) \right| \\ &= \left| \int_{\mathbb{D}} \frac{\varphi(\zeta)}{(1-z\overline{\zeta})^2} \frac{(1-|z|^2)^2}{(1-\zeta\overline{z})^2} dA(\zeta) \right| \\ &= \left| T_{\varphi} \left((1-|z|^2)^2 K_z \right)(z) \right| \\ &\leq Cw(|z|)^k. \end{split}$$
(13)

This is the condition (9).

Theorem

Assume $\varphi \ge 0$. The operator $T_{\varphi} : H_V^{\infty} \to H_V^{\infty}$ is compact, if and only there exist $k \in \mathbb{N}$ such that for every $q \in \mathbb{N}$ there exists $C_q > 0$ with

$$\int_{\mathbb{D}} \frac{\varphi(\zeta)(1-|z|^2)^2}{|1-z\zeta|^4} w(\zeta \bar{z})^q dA(\zeta) \le C_q w(|z|)^k, \quad z \in \mathbb{D}$$
 (14)

In the case of the reflexive Bergman spaces A^p it is clear that a Toeplitz operator is bounded, if its symbol φ is bounded on \mathbb{D} . This follows from the boundedness of the Bergman projection $P : L^p(dA) \to A^p$ for 1 .

In case of H_V^{∞} there is an analogous, quite straightforward sufficient condition based on a pointwise estimate of φ . Many unbounded symbols satisfy this condition. Moreover, there is an similar condition for the compactness of T_{φ} .

Proposition

If there exists a $k \in \mathbb{N}$ such that

$$|\varphi(z)| \le Cw(|z|)^k$$
 for all $z \in \mathbb{D}$, (15)

then $T_{\varphi}: H_V^{\infty} \to H_V^{\infty}$ is continuous.

Proof. If $v \in V$, then the weight $\omega := w^k v$ still belongs to V. Moreover

$$\|f\varphi\|_{\nu} \le C \|f\|_{\omega} \tag{16}$$

for all $f \in H_V^{\infty}$, i.e., the multiplication operator M_{φ} is continuous $H_V^{\infty} \to L_V^{\infty}$. The Bergman projection is continuous $L_V^{\infty} \to H_V^{\infty}$, hence, $T_{\varphi} = PM_{\varphi}$ is continuous on H_V^{∞} .

Proposition

Assume that for all $q \in \mathbb{N}$ there exist $C_q \in \mathbb{N}$ such that

 $|\varphi(z)| \le C_q w(|z|)^{-q}$ for all $z \in \mathbb{D}$. (17)

Then $T_{\varphi}: H_V^{\infty} \to H_V^{\infty}$ is compact.

It is not difficult to see that there are positive symbols which do not satisfy (15) but nevertheless determine continuous and even compact Toeplitz operators on H_V^{∞} .

Proposition

For any non negative $\varphi \in L^1(\mathbb{D})$ such that the support of φ is a compact subset of \mathbb{D} , the operator $T_{\varphi} : H_V^{\infty} \to H_V^{\infty}$ is compact.

Proof. Let 0 < r < 1 be such that $\operatorname{supp}(\varphi)$ is contained in the closed disc D(0, r). There exists a constant C > 0 such that $|1 - z\overline{\zeta}| = |1 - \zeta\overline{z}| \ge C$ for all $\zeta \in D(0, r)$ and $z \in \mathbb{D}$. Hence, for every q we have $w(\zeta\overline{z})^q \le C_q$ for such ζ and z, and we can estimate

$$\int_{\mathbb{D}} \frac{\varphi(\zeta)(1-|z|^{2})^{2}}{|1-z\bar{\zeta}|^{4}} w(\zeta\bar{z})^{q} dA(\zeta) = \int_{D(0,r)} \frac{\varphi(\zeta)(1-|z|^{2})^{2}}{|1-z\bar{\zeta}|^{4}} w(\zeta\bar{z})^{q} dA(\zeta)$$

$$\leq C_{q} \int_{D(0,r)} \varphi(\zeta) dA(\zeta)(1-|z|^{2})^{2} \leq C_{q}^{\prime}.$$
(18)

The result follows from our Theorem above.

This lecture is based in our joint article

J. Bonet, J. Taskinen, Toeplitz operators on the space of analytic functions with logarithmic growth, *J. Math. Anal. Appl.* (2009), doi:10.1016/j.jmaa.2008.12.009