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We study Toeplitz operators Tϕ in the space H∞
V of analytic

functions on the unit disc which grow logarithmically at the
boundary.

Though the space H∞
V is quite far from the Bergman Hilbert space

A2, our results will be surprisingly similar to that basic case.
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The space H∞
V and the related space L∞V were introduced and

studied by Taskinen in 2003-04 as substitutes of the usual
sup–normed spaces H∞ and L∞, to avoid the well–known
discontinuity problem of the Bergman projection P with respect
to the sup–norm.

These spaces are topological algebras and they have the properties
that H∞

V is a closed subspace of L∞V and that P is a continuous
projection from L∞V onto H∞

V . They are the smallest extension of
H∞ and L∞ defined by weights with this property.
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Basic notations and definitions

All function spaces are defined on the open unit disc D of the complex
plane C. We denote:

dA as the normalized two–dimensional Lebesgue measure on D.

Lp := Lp(dA), the space of p–integrable functions on the disc D
with respect to the measure dA.

Here 1 ≤ p ≤ ∞.

Ap stands for the Bergman space, which is the closed subspace of Lp

consisting of analytic functions.

The Bergman projection P is the integral operator

Pf (z) :=

∫
D

f (ζ)

(1− z ζ̄)2
dA(ζ), , z ∈ D, (1)

defined at least for all f ∈ L1(dA).
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Toeplitz–operators

Given a function (symbol) ϕ ∈ L1
loc(dA) we denote by Mϕ the pointwise

multiplication with ϕ, and by Tϕ we denote

Tϕf (z) := PMϕf (z) :=

∫
D

ϕ(ζ)f (ζ)

(1− z ζ̄)2
dA(ζ). (2)

The Berezin transform

ϕ̃(z) =

∫
D

ϕ(ζ)(1− |z |2)2

|1− z ζ̄|4
dA(ζ), (3)

defined for a function ϕ ∈ L1.
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Weight function

w(z) := 1 + | log(1− z)| (4)

This function is mainly used to define the radial weight w(|z |).
Sometimes it is however necessary to define the logarithm as an
analytic function on D: then the argument of 1− z is understood to
belong to the interval ]− π, π[ for all z ∈ D, and the definition
becomes unambiguous.

The spaces H∞
V (and L∞V )

This space consists of analytic (resp. measurable) functions f : D → C
such that for some n ∈ N and constant Cn > 0

|f (z)| ≤ Cnw(|z |)n (5)

for (almost) all z ∈ D.
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The space H∞
V is an (LB)–space, i.e., countable inductive limits of

Banach spaces. In fact, it is a complete (LB)-space.

A convenient way to describe the topology of H∞
V is obtained

with a projective description of the inductive limit topology. This
can be done as a consequence of the work of Bierstedt, Meise and
Summers. More precisely, it allows us to define the topology by
means of the following family of weighted sup-seminorms:

‖f ‖v := sup
z∈D

|f (z)|v(z) , v ∈ V , (6)

where V consists of all continuous, positive, radial functions
v : D → R such that for all n ∈ N,

v(z) ≤ Cnw(z)−n (7)
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We still denote

Bn := {f ∈ H∞
V | sup

z∈D
|f (z)| ≤ w(|z |)n}; (8)

in the same way, using essential supremum, we define the subsets BL
n

of L∞V .

The sets Bn are bounded and even precompact in H∞
V . Every

bounded subset of H∞
V is contained in a multiple of some Bn. The

same holds for the sets BL
n in L∞V , except that bounded sets need

not be precompact in this case.
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Proposition (Taskinen)

(1) If v ∈ V , then the pointwise product wkv also belongs to V , for
every k.

(2) The mapping P is a continuous projection from L∞V onto H∞
V .

(3) In addition, P(BL
n ) ⊂ CnBn+1 for all n.
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A linear operator from a complete locally convex space into itself is called
compact (respectively, bounded), if it maps a neighbourhood of zero into
a precompact (resp. bounded) set.

Remark

(1) A linear operator T between two (LB)–spaces is continuous, if and
only if it maps bounded sets into bounded sets. In our case this
means that Tϕ : H∞

V → H∞
V is continuous if and only if for every

n ∈ N one can find Cn > 0 and m ∈ N such that Tϕ(Bn) ⊂ CnBm.

(2) One can also show that Tϕ : H∞
V → H∞

V is compact, if and only if
there exists m ∈ N such that for every n ∈ N one can find a
constant Cn with Tϕ(Bn) ⊂ CnBm.
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Theorem

Assume ϕ ≥ 0. The Toeplitz operator Tϕ is continuous H∞
V → H∞

V if
and only if there exist k ∈ N and C > 0 such that the Berezin transform
ϕ̃ satisfies

ϕ̃(z) ≤ Cw(|z |)k = C
(
1 + | log(1− |z |)|

)k

, z ∈ D. (9)
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Proof of Necessity. We assume Tϕ is continuous and find k ∈ N such
that Tϕ maps B1 into CBk (see the remark after (8) and last Remark,
(1)). Considering for a moment the number z ∈ D as a parameter, we
define the analytic function

Kz(ζ) :=
1

(1− ζ z̄)2
, ζ ∈ D. (10)

Trivially the estimate

‖(1− |z |2)2Kz‖∞ ≤ 4 (11)

holds for every z . Hence Tϕ((1− |z |2)2Kz) ∈ 4CBk for every z .
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We have

|Tϕ((1− |z |2)2Kz)(ω)| ≤ 4Cw(|ω|)k (12)

for all ω ∈ D. But taking ω = z , this means that

|ϕ̃(z)| =
∣∣∣ ∫

D

ϕ(ζ)(1− |z |2)2

|1− z ζ̄|4
dA(ζ)

∣∣∣
=

∣∣∣ ∫
D

ϕ(ζ)

(1− z ζ̄)2
(1− |z |2)2

(1− ζ z̄)2
dA(ζ)

∣∣∣
= |Tϕ

(
(1− |z |2)2Kz

)
(z)|

≤ Cw(|z |)k . (13)

This is the condition (9).
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Theorem

Assume ϕ ≥ 0. The operator Tϕ : H∞
V → H∞

V is compact, if and only
there exist k ∈ N such that for every q ∈ N there exists Cq > 0 with∫

D

ϕ(ζ)(1− |z |2)2

|1− zζ|4
w(ζ z̄)qdA(ζ) ≤ Cqw(|z |)k , z ∈ D (14)
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In the case of the reflexive Bergman spaces Ap it is clear that a Toeplitz
operator is bounded, if its symbol ϕ is bounded on D. This follows from
the boundedness of the Bergman projection P : Lp(dA) → Ap for
1 < p < ∞.

In case of H∞
V there is an analogous, quite straightforward sufficient

condition based on a pointwise estimate of ϕ. Many unbounded symbols
satisfy this condition. Moreover, there is an similar condition for the
compactness of Tϕ.
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Proposition

If there exists a k ∈ N such that

|ϕ(z)| ≤ Cw(|z |)k for all z ∈ D, (15)

then Tϕ : H∞
V → H∞

V is continuous.

Proof. If v ∈ V , then the weight ω := wkv still belongs to V . Moreover

‖f ϕ‖v ≤ C‖f ‖ω (16)

for all f ∈ H∞
V , i.e., the multiplication operator Mϕ is continuous

H∞
V → L∞V .

The Bergman projection is continuous L∞V → H∞
V , hence, Tϕ = PMϕ is

continuous on H∞
V .
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Proposition

Assume that for all q ∈ N there exist Cq ∈ N such that

|ϕ(z)| ≤ Cqw(|z |)−q for all z ∈ D. (17)

Then Tϕ : H∞
V → H∞

V is compact.

It is not difficult to see that there are positive symbols which do not
satisfy (15) but nevertheless determine continuous and even compact
Toeplitz operators on H∞

V .
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Proposition

For any non negative ϕ ∈ L1(D) such that the support of ϕ is a compact
subset of D, the operator Tϕ : H∞

V → H∞
V is compact.

Proof. Let 0 < r < 1 be such that supp(ϕ) is contained in the closed
disc D(0, r). There exists a constant C > 0 such that
|1− z ζ̄| = |1− ζ z̄ | ≥ C for all ζ ∈ D(0, r) and z ∈ D. Hence, for every q
we have w(ζ z̄)q ≤ Cq for such ζ and z , and we can estimate∫

D

ϕ(ζ)(1− |z |2)2

|1− z ζ̄|4
w(ζ z̄)qdA(ζ) =

∫
D(0,r)

ϕ(ζ)(1− |z |2)2

|1− z ζ̄|4
w(ζ z̄)qdA(ζ)

≤ Cq

∫
D(0,r)

ϕ(ζ)dA(ζ)(1− |z |2)2 ≤ C ′
q. (18)

The result follows from our Theorem above.
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