Power bounded composition operators on spaces of real analytic functions

José Bonet

Instituto Universitario de Matemática Pura y Aplicada IUMPA

Universidad Politécnica de Valencia

Hypercyclic Operators and Linear Chaos, Valencia June 2009

Joint work with P. Domański, Poznań (Poland)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

X is a Hausdorff locally convex space (lcs).

 $\mathcal{L}(X)$ is the space of all continuous linear operators on X.

Power bounded operators

An operator $T \in \mathcal{L}(X)$ is said to be *power bounded* if $\{T^m\}_{m=1}^{\infty}$ is an equicontinuous subset of $\mathcal{L}(X)$.

If X is a Fréchet space, an operator T is power bounded if and only if the orbits $\{T^m(x)\}_{m=1}^{\infty}$ of all the elements $x \in X$ under T are bounded. This is a consequence of the uniform boundedness principle.

< ∃⇒

Mean ergodic operators

An operator $T \in \mathcal{L}(X)$ is said to be *mean ergodic* if the limits

$$Px := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} T^m x, \quad x \in X,$$
(1)

exist in X.

A power bounded operator T is mean ergodic precisely when

$$X = \operatorname{Ker}(I - T) \oplus \overline{\operatorname{Im}(I - T)}, \qquad (2)$$

- < ∃ >

where I is the identity operator, Im(I - T) denotes the range of (I - T) and the bar denotes the "closure in X".

Trivial observation

$$\lambda \in \mathbb{C}, \ |\lambda| \le 1.$$
$$\lambda_{[n]} := \frac{1}{n} (\lambda + \lambda^2 + \dots + \lambda^n)$$
$$\lambda = 1 \Rightarrow \lambda_{[n]} = 1, n = 1, 2, 3, \dots$$
$$\lambda \neq 1 \Rightarrow |\lambda_{[n]}| \le \frac{2}{n|1 - \lambda|} \to 0$$
as $n \to \infty$.

< 注 > < 注 >

æ

von Neumann, 1931

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be unitary. Then there is a projection *P* on *H* such that $T_{[n]} := \frac{1}{n} \sum_{m=1}^{n} T^m$ converges to *P* in the strong operator topology.

Lorch, 1939

Let X be a reflexive Banach space. If $T \in \mathcal{L}(X)$ is a power bounded operator, then there is a projection P on X such that $T_{[n]}$ converges to P in the strong operator topology; i.e. T is mean ergodic.

Hille, 1945

There exist mean ergodic operators T on $L_1([0,1])$ which are not power bounded.

★ Ξ → < Ξ →</p>

Problem attributed to Sucheston, 1976

Let X be a Banach space such that every power bounded operator $T \in \mathcal{L}(X)$ is mean ergodic. Does it follow that X is reflexive?

- YES if X is a Banach lattice (Emelyanov, 1997).
- YES if X is a Banach space with basis (Fonf, Lin, Wojtaszczyk, J. Funct. Anal. 2001). This was a major breakthrough.

Yosida's mean ergodic Theorem

- Barrelled locally convex spaces
- $\mathcal{L}_s(X)$, $\mathcal{L}_b(X)$

Yosida, 1960

Let X be a barrelled lcs. The operator $T \in \mathcal{L}(X)$ is mean ergodic if and only if it $\lim_{n\to\infty} \frac{1}{n}T^n = 0$, in $\mathcal{L}_s(X)$ and

$$\{T_{[n]}x\}_{n=1}^{\infty}$$
 is relatively sequentially $\sigma(X, X')$ -compact, $\forall x \in X$. (3)

Setting $P := \tau_s$ -lim_{$n\to\infty$} $T_{[n]}$, the operator P is a projection which commutes with T and satisfies $\operatorname{Im}(P) = \operatorname{Ker}(I - T)$ and $\operatorname{Ker}(P) = \overline{\operatorname{Im}(I - T)}$.

E > < E >

If $\{T_{[n]}\}_{n=1}^{\infty}$ happens to be convergent in $\mathcal{L}_b(X)$, then T is called **uniformly mean ergodic**.

Corollary

- Let X be a reflexive lcs in which every relatively σ(X, X')-compact set is relatively sequentially σ(X, X')-compact. Then every power bounded operator on X is mean ergodic.
- Let X be a Montel space in which every relatively σ(X, X')-compact set is relatively sequentially σ(X, X')-compact. Then every power bounded operator on X is uniformly mean ergodic.

The assumption on the weakly compact subsets of X is satisfied by Fréchet spaces, duals of Fréchet spaces and the space $\mathscr{A}(\Omega)$ of real analytic functions.

Main Results

- Let X be a complete barrelled lcs with a Schauder basis and in which every relatively $\sigma(X, X')$ -compact subset of X is relatively sequentially $\sigma(X, X')$ -compact. Then X is reflexive if and only if every power bounded operator on X is mean ergodic.
- Let X be a complete barrelled lcs with a Schauder basis and in which every relatively $\sigma(X, X')$ -compact subset of X is relatively sequentially $\sigma(X, X')$ -compact. Then X is Montel if and only if every power bounded operator on X is uniformly mean ergodic.
- Let X be a sequentially complete lcs which contains an isomorphic copy of the Banach space c_0 . Then there exists a power bounded operator on X which is not mean ergodic.

ヨト イヨト

Results about Schauder basis

- A complete, barrelled lcs with a basis is reflexive if and only if every basis is shrinking if and only if every basis is boundedly complete. *This extends a result of Zippin for Banach spaces and answers positively a problem of Kalton from 1970.*
- Every non-reflexive Fréchet space contains a non-reflexive, closed subspace with a basis.

This is an extension of a result of A. Pelczynski for Banach spaces.

Bonet, de Pagter and Ricker (2009) have proved that a Fréchet lattice X is reflexive if and only if every power bounded operator on X is mean ergodic.

This is an extension of the result of Emelyanov.

< ∃⇒

- Let $U \subseteq \mathbb{C}^d$ be a connected open domain.
- Let $\varphi: U \to U$ be a holomorphic mapping.
- The composition operator $C_{\varphi} : H(U) \to H(U)$ is defined by $C_{\varphi}(f) := f \circ \varphi$.
- H(U) endowed with the compact open topology is a Fréchet Montel space. Mean ergodic and uniformly mean ergodic operators on H(U) coincide.
- Universal functions for composition operators have been investigated by Bernal, Bonilla, Godefroy, Grosse-Erdmann, León, Luh, Montes, Mortini, Shapiro and others.

Theorem

Let $U \subseteq \mathbb{C}^d$ be a connected domain of holomorphy (or even a Stein manifold). The following assertions are equivalent:

- (a) $C_{\varphi}: H(U) \rightarrow H(U)$ is power bounded;
- (b) $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic;
- (c) $C_{\varphi}: H(U) \rightarrow H(U)$ is mean ergodic;
- (d) $\forall K \Subset U \exists L \Subset U$ such that $\varphi^n(K) \subseteq L$ for every $n \in \mathbb{N}$;
- (e) There is a fundamental family of (connected) compact sets (L_j) in U such that $\varphi(L_j) \subseteq L_j$ for every $j \in \mathbb{N}$.

The equivalence (a) \Leftrightarrow (b) \Leftrightarrow (c) is true for arbitrary open connected $U \subseteq \mathbb{C}^d$.

< 国 > (国 >)

Theorem

If for every compact set $K \subseteq U$ there is a compact set $L \subseteq U$ such that $\varphi^n(K) \subseteq L$ for every $n \in \mathbb{N}$, then there are a holomorphic submanifold M of U and a holomorphic surjective retraction $\rho: U \to M$ such that $\psi := \varphi|_M$ is an automorphism of M. Moreover,

$$G:=\overline{\{\varphi^n:n\in\mathbb{N}\}}^{H(M,M)}$$

is a compact abelian group of automorphisms on M such that every cluster point of (φ^n) in H(U, U) is of the form $\gamma \circ \rho$ where $\gamma \in G$ and

$$P(f)(z) := rac{1}{N} \sum_{n=1}^{N} C_{\varphi^n}(f)(z) = \int_{G} f(\gamma \circ \rho(z)) dH(\gamma),$$

H being the Haar measure on G and

$$\text{im } P = \{f: f \text{ is constant on } \rho^{-1}(\{\gamma \circ \rho(z): \gamma \in G\}) \quad \forall \ z \in U\}.$$

< ∃→

- $\Omega \subseteq \mathbb{R}^d$ open connected set.
- The space of real analytic functions $\mathscr{A}(\Omega)$ is equipped with the unique locally convex topology such that for any $U \subseteq \mathbb{C}^d$ open, $\mathbb{R}^d \cap U = \Omega$, the restriction map $R : H(U) \longrightarrow \mathscr{A}(\Omega)$ is continuous and for any compact set $K \subseteq \Omega$ the restriction map $r : \mathscr{A}(\Omega) \longrightarrow H(K)$ is continuous. In fact,

$$\mathscr{A}(\Omega) = \operatorname{proj}_{N \in \mathbb{N}} \ H(K_N) = \operatorname{proj}_{N \in \mathbb{N}} \ \operatorname{ind}_{n \in \mathbb{N}} \ H^{\infty}(U_{N,n}).$$

- $\mathscr{A}(\Omega)$ is complete, separable, barrelled and Montel.
- **Domański, Vogt, 2000.** The space $\mathscr{A}(\Omega)$ has no Schauder basis.

물에 비용에 다

Theorem

Let $\varphi: \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected, be a real analytic map. Then the following assertions are equivalent:

- (a) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is power bounded;
- (b) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is uniformly mean ergodic;
- (c) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is mean ergodic;
- (d) $\forall K \Subset \Omega \exists L \Subset \Omega \forall U$ complex neighbourhood of $L \exists V$ complex neighbourhood of K:

 $\forall n \in \mathbb{N} \quad \varphi^n \text{ is defined on } V \text{ and } \varphi^n(V) \subseteq U;$

(e) For every complex neighbourhood U of Ω there is a complex (open!) neighbourhood V ⊆ U of Ω such that φ extends as a holomorphic function to V and φ(V) ⊆ V.

Corollary

Let $\varphi: \Omega \to \Omega$ be a real analytic map, $\Omega \subseteq \mathbb{R}^d$ open connected set.

If $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is power bounded, then for every complex neighbourhood U of Ω there is a complex neighbourhood $V \subseteq U$ of Ω and there is a fundamental system of compact sets (L_j) in V such that $\varphi(L_j) \subseteq L_j$.

In particular, $\varphi(V) \subseteq V$ and $C_{\varphi} : H(V) \to H(V)$ is power bounded and (uniformly) mean ergodic.

∃ ► < ∃ ►</p>

Corollary

Let $\Omega \subseteq \mathbb{R}^d$ be an open connected set and let $\varphi : \Omega \to \Omega$ be a real analytic map with a fixed point $u \in \Omega$.

If $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is power bounded, then either $|\det \varphi'(u)| < 1$ or φ is a biholomorphic automorphism of a (fundamental) family of hyperbolic complex neighbourhoods of Ω .

In the latter case, if $\varphi'(u)$ is the identity map then φ is the identity.

All criteria for power bounded composition operators $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ contain some condition on the behavior of φ outside Ω .

▲ 臣 ▶ → ▲ 臣 ▶ …

Remark. Even in the first case of the Corollary, orbits of φ need not converge to a fixed point (and there could exist many fixed points). Consider the map $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ defined by

•
$$\varphi_1(x, y, z) := (x \cos z - y \sin z) \cdot \left(0.5 + \frac{1}{2\sqrt{x^2 + y^2}}\right),$$

• $\varphi_2(x, y, z) := (x \sin z + y \cos z) \cdot \left(0.5 + \frac{1}{2\sqrt{x^2 + y^2}}\right),$

•
$$\varphi_3(x, y, z) := z$$
,

defined on a cylinder with basis in the x-y plane being an annulus $(z \in (-1, 1))$. The only fixed points are of the form (x, y, 0) where $x^2 + y^2 = 1$ but orbits starting from (x, y, z) tend to the circle $\{(x, y, z) : x^2 + y^2 = 1\}$.

Composition operators on spaces of real analytic functions

Example: Even if φ :] -1, 1[\rightarrow] -1, 1[maps all bounded sets in] -1, 1[in one compact set it does not follow that C_{φ} : $\mathscr{A}(]$ -1, 1[) $\rightarrow \mathscr{A}(]$ -1, 1[) is power bounded.

$$arphi_{lpha}(z) := rac{2}{lpha \cdot \pi} \ln \left(rac{1 - iz}{1 + iz}
ight).$$

• φ_{α} maps the unit disc onto the vertical strip with Re $z \in \left(-\frac{1}{\alpha}, \frac{1}{\alpha}\right)$.

- $\varphi_{\alpha}(i) = \infty$, and φ_{α} maps the real line into the real line and the imaginary line into the imaginary line.
- If π·α/4 < 1, the zero point is an attractive fixed point on the imaginary line for φ_α⁻¹. This implies that φ_α⁻ⁿ(i) → 0 as n → ∞.
- Since on this sequence φ_{α}^{n+1} is not defined, there is no common neighbourhood of zero such that all φ_{α}^{n} are defined for all $n \in \mathbb{N}$ (α , $\alpha < 1$, $\frac{\pi \cdot \alpha}{4} < 1$). Thus $C_{\varphi} : \mathscr{A}(] 1, 1[) \to \mathscr{A}(] 1, 1[)$ is not power bounded.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Theorem

Let $a, b \in \mathbb{R}$ and let $\varphi :]a, b[\rightarrow]a, b[$ be real analytic. The following are equivalent:

- (a) $C_{\varphi}: \mathscr{A}(]a, b[) \longrightarrow \mathscr{A}(]a, b[)$ is power bounded;
- (b) there exists a complex neighbourhood U of]a, b[such that φ(U) ⊆ U, C \ U contains at least two points, and φ has a (real) fixed point u, or equivalently, there is a fundamental family of such neighbourhoods of]a, b[;
- (c) φ is one of the following forms:

$$\varphi = \mathsf{id};$$

$$2 \varphi^2 = \operatorname{id};$$

 As n→∞ the sequence φⁿ tends to a constant function ≡ u ∈]a, b[in 𝔄(]a, b[).

< 注 > < 注 >

Theorem continued

(d) If u is the fixed point of φ then the above cases in (c) correspond to:

1 $\varphi'(u) = 1;$

2
$$\varphi'(u) = -1;$$

3
$$|\varphi'(u)| < 1.$$

Moreover, C_{φ} is uniformly mean ergodic and the projection $P := \lim_{N \in \mathbb{N}} \frac{1}{N} \sum_{n=1}^{N} C_{\varphi^n}$ is of the following form:

$$\mathbf{O} \ P = \mathsf{id}$$

2
$$P(f) = \frac{f+f\circ\varphi}{2}$$
, im $P = \{f : f = f\circ\varphi\}$, ker $P = \{f : f = -f\circ\varphi\}$;

 P(f) = f(u), im P = the set of constant functions, ker P = {f : f(u) = 0}.

∃ → < ∃ →</p>

Remarks. The case d > 1.

- If Ω is an annulus in ℝ², then rotations φ (which have no fixed points) produce power bounded composition operators with arbitrary long cycles (for any k ∈ N we can choose a rotation φ such that C_{φ^k} = id but C_{φⁿ} ≠ id for every 0 < n < k).
- Taking rotations with respect to η · π where η is irrational, we get a non-cyclic C_φ not satisfying condition (c) 3. of the above Theorem.
- If we consider such an "irrational" rotation on the disc in \mathbb{R}^2 we get a non-cyclic C_{φ} which does not satisfy (d) even though φ has a fixed point.

医外球 医外口

- A. A. Albanese, J. Bonet, W. J. Ricker, Mean Ergodic Operators in Fréchet Spaces, Anal. Acad. Math. Sci. Fenn. Math., to appear in 2009.
- J. Bonet, P. Domański, Dynamics of composition operators on spaces of analytic functions, Preprint, 2009.

- ⊒ - ►