Parameter dependence of solutions of differential equations on spaces of distributions

José Bonet

Universidad Politécnica de Valencia

II Iberian Mathematical Meeting, Badajoz, 2008

Joint work with P. Domański, Poznań (Poland)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Linear partial differential operator (P.D.O.) with constant coefficients

 $P(D): \mathscr{D}'(\Omega) o \mathscr{D}'(\Omega)$

 $f_{\lambda} \in \mathscr{D}'(\Omega)$ depends on $\lambda \in U$ holomorphically, smoothly, real analytically, continuously,...

Does there exist $u_{\lambda} \in \mathscr{D}'(\Omega)$ depending on $\lambda \in U$ in the same way such that

$$P(D)u_{\lambda} = f_{\lambda}, \quad \forall \lambda \in U?$$

Notation

•
$$P(z) := \sum_{|\alpha| \le m} a_{\alpha} z^{\alpha}, a_{\alpha} \in \mathbb{C}$$

• $P_m(z) := \sum_{|\alpha| = m} a_{\alpha} z^{\alpha}$

$$P(D) := \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$$

where
$$\partial_j := \frac{\partial}{\partial x_j}$$
, $D_j := \frac{1}{i} \frac{\partial}{\partial x_j}$, $D^{\alpha} := D_1^{\alpha_1} ... D_N^{\alpha_N}$

• $\mathcal{E}(\Omega)$, $\mathcal{D}'(\Omega)$, $C(\Omega)$, $\mathcal{A}(\Omega)$

문 🕨 문

Malgrange, Ehrenpreis, Hörmander (\leq 1962)

Theorem 1. P(D) is surjective on $\mathcal{E}(\Omega)$ if and only if Ω is *P*-convex:

 $\forall K \subset \Omega \ \exists L \subset \Omega \ \forall \varphi \in \mathcal{D}(\Omega) \ \operatorname{supp} P(D)\varphi \subset K \Rightarrow \operatorname{supp} \varphi \subset L$

• Every convex open set is *P*-convex.

• If *P* is elliptic, every open set is *P*-convex.

Malgrange, Ehrenpreis, Hörmander (\leq 1962)

Theorem 2. P(D) is surjective on $\mathcal{D}'(\Omega)$ if and only if Ω is P convex and P-convex for singular supports:

 $\forall K \subset \Omega \ \exists L \subset \Omega \ \forall \mu \in \mathcal{E}'(\Omega) \ \text{ sing supp} P(D) \mu \subset K \Rightarrow \text{ sing supp} \mu \subset L$

The singular support is the complement in Ω of the largest open set on which μ is $\mathcal{C}^\infty.$

- Trèves, 1962: smooth and holomorphic dependence
- F.E. Browder, 1962: real analytic dependence
- F. Mantlik, 1990-92: parameter dependence of fundamental solutions
- Grothendieck, late 1950's, Vogt, 1985: case of P(D) on $\mathcal{E}(\Omega)$
- **Domanski, Bonet**: early results for continuous and real analytic dependence in 1996.

 $G \subset \mathbb{R}^N$, open. $G \to \mathcal{D}'(\Omega), \ \lambda \to f_\lambda \text{ is } \mathcal{C}^\infty \text{ if for each } \varphi \in \mathcal{D}(\Omega) \text{ the map on } G$ $\lambda \to \langle f_\lambda, \varphi \rangle \text{ is } \mathcal{C}^\infty$

$$G \subset \mathbb{R}^N$$
, open.
 $G \to \mathcal{D}'(\Omega), \ \lambda \to f_\lambda \text{ is } \mathcal{C}^\infty \text{ if for each } \varphi \in \mathcal{D}(\Omega) \text{ the map on } G$
 $\lambda \to \langle f_\lambda, \varphi \rangle \text{ is } \mathcal{C}^\infty$

 $G \subset \mathbb{C}$, open. $G \to \mathcal{D}'(\Omega), \ \lambda \to f_{\lambda}$ is **holomorphic** if for each $\varphi \in \mathcal{D}(\Omega)$ the map on G $\lambda \to \langle f_{\lambda}, \varphi \rangle$ is holomorphic.

э

 $G \subset \mathbb{R}^N$, $f : G \to E$ is **real analytic** if $u \circ f : G \to \mathbb{C}$ is real analytic for each $u \in E'$.

• This concept does **not** coincide with the fact that *f* is locally given by a vector valued Taylor series convergent in *E*.

Take $\mathbb{R} \to \mathcal{D}(\mathbb{R})$,

$$f_{\lambda}(x):=rac{1}{1+\lambda^2 x^2},\;x\in\mathbb{R},$$

is real analytic but not strongly real analytic in the sense explained above.

The coincidence of the two concepts of real analytic vector valued maps $f: G \to E, G \subset \mathbb{R}^N$, was investigated by **Kriegl** and **Michor** in 1991. Their research was continued by **Domanski**, **Bonet** in 1996.

Theorem (Bonet, Domański, 1996)

Let *E* be a Fréchet space. Every real analytic map $f : G \to E$ is strongly real analytic if and only if the Fréchet space *E* satisfies condition (*DN*) od Vogt.

A nuclear Fréchet space satisfies condition (DN) if and only if it is isomorphic to a closed subspace of the Schwartz space S of rapidly decreasing functions on the real line.

Existence of continuous linear right inverse

• Suppose that there exists a solution operator for P(D). This means that there is a continuous, linear operator

$$R:\mathcal{D}'(\Omega)
ightarrow \mathcal{D}'(\Omega)$$

such that P(D)Ru = u for each $u \in \mathcal{D}'(\Omega)$.

- If we try to solve the parameter dependence problem $P(D): \mathscr{D}'(\Omega) \to \mathscr{D}'(\Omega)$ with $f_{\lambda} \in \mathscr{D}'(\Omega)$ depends on $\lambda \in U$, it is enough to take $u_{\lambda} := Rf_{\lambda}$.
- Schwartz asked as a problem to characterize the linear P.D.O. with constant coefficients which admit a solution operator.

Existence of continuous linear right inverse

- Hyperbolic operators : **YES**.
- Elliptic operators: NO, Grothendieck, late 1950's.
- Parabolic operators: **NO**, Cohhon, 1970.
- Hypoelliptic operators: NO, Vogt, 1983.
- **Complete solution**: Meise, Taylor, Vogt, 1990. Characterizations in terms of the existence of shifted fundamental solutions with big lacunas in the support, or, for convex domains, in terms of a Phragmén Lindelöf condition for plurisubharmonic functions on the zero variety of the polynomial P(z) in \mathbb{C}^N .
- The Zeilon operator P(D) for $P(z) = z_1^3 + z_2^3 + z_3^3$ admits a solution operator on $\mathcal{D}'(\mathbb{R}^3)$ which is not hyperbolic.

・ 「 ト ・ ヨ ト ・ ヨ ト

Assume that P(D) is surjective on $\mathcal{D}'(\Omega)$.

(1) (Bonet, Domański, 1996)

 Ω arbitrary, $K \subset \mathbb{R}^d$ compact.

$$\mathsf{P}(D): \mathsf{C}(\mathsf{K},\mathcal{D}'(\Omega))
ightarrow \mathsf{C}(\mathsf{K},\mathcal{D}'(\Omega))$$

is surjective.

It is always possible to solve with continuous dependence. In fact, for all X Banach,

$$P(D): \mathcal{D}'(\Omega, X) \to \mathcal{D}'(\Omega, X)$$

is surjective.

(2) (Bonet, Domański, 2006,08)

If $\boldsymbol{\Omega}$ is convex then the following operators are surjective:

- (a) $P(D): H(U, \mathscr{D}'(\Omega)) \longrightarrow H(U, \mathscr{D}'(\Omega))$ for every Stein manifold U.
- (b) $P(D): C^{\infty}(U, \mathscr{D}'(\Omega)) \longrightarrow C^{\infty}(U, \mathscr{D}'(\Omega))$ for every smooth manifold U.
- (c) $P(D) : \mathscr{D}'(\Omega, E) \longrightarrow \mathscr{D}'(\Omega, E)$ for every FN space $E \in (\Omega)$ (for instance, $E \simeq H(U), C^{\infty}(U), \mathscr{S}, \Lambda_r(\alpha)$).
- (d) $P(D) : \mathscr{D}'(\Omega, E') \longrightarrow \mathscr{D}'(\Omega, E')$ for every FN space $E \in (DN)$ (for instance, $E' \simeq \mathscr{S}', H(\{0\}), \Lambda'_{\infty}(\alpha), \mathscr{D}'(U)$).

For elliptic P(D) the converse to (d) holds (Vogt, 1983). Examples of spaces with (Ω): H(U), $C^{\infty}(U)$, \mathscr{S} , $\Lambda_r(\alpha)$.

|→ □ ▶ → 注 ▶ → 注 ■ ● ● ● ●

(3) (Domański, 200?)

Let Ω be convex and let U be a real analytic manifold.

admits a continuous linear right inverse, in one of the following cases:

- 1. P(D) is homogeneous,
- 2. P(D) is of order two.
- 3. PD) is hypoelliptic.

A functional analytic approach

$$\begin{aligned} H(U, \mathscr{D}'(\Omega)) &\leftrightarrow H(U) \hat{\otimes}_{\varepsilon} \mathscr{D}'(\Omega) = L(H(U)', \mathscr{D}'(\Omega)) \\ H(U, \mathscr{D}'(\Omega)) &\ni u \longleftrightarrow T \in L(H(U)', \mathscr{D}'(\Omega)) \\ T(\delta_{\lambda}) &:= u(\lambda), \quad P(D)(T) := P(D) \circ T \end{aligned}$$

The map

$$P(D) : L(H(U)', \mathscr{D}'(\Omega)) \longrightarrow L(H(U)', \mathscr{D}'(\Omega))$$

is surjective if and only if every T lifts.

Theorem

Let *E* be a Fréchet Schwartz space and $R : \mathscr{D}'(\Omega) \to \mathscr{D}'(\Omega)$ be surjective. $R \otimes \operatorname{id}_{F} : \mathscr{D}'(\Omega) \hat{\otimes}_{\varepsilon} E \longrightarrow \mathscr{D}'(\Omega) \hat{\otimes}_{\varepsilon} E \simeq \mathscr{D}'(\Omega, E)$ $R \otimes \operatorname{id}_{E'} : \mathscr{D}'(\Omega) \hat{\otimes}_{\varepsilon} E' \longrightarrow \mathscr{D}'(\Omega) \hat{\otimes}_{\varepsilon} E' \simeq \mathscr{D}'(\Omega, E')$ Then $\operatorname{Ext}^1(E, \ker R) = 0 \quad \Leftrightarrow \quad R \otimes \operatorname{id}_{E'}$ is surjective, $\operatorname{Ext}^{1}(E', \ker R) = 0 \implies R \otimes \operatorname{id}_{E}$ is surjective If additionally $E \in (\Omega)$ then $\operatorname{Ext}^1(E', \ker R) = 0 \quad \Leftrightarrow \quad R \otimes \operatorname{id}_E$ is surjective.

Theorem

If Ω convex then ker $P(D) \subseteq \mathscr{D}'(\Omega)$ has (PA) and (P Ω), i.e., it has dual interpolation estimate for small θ :

$$\forall N \exists M \forall K \exists n \forall m, \theta < \theta_0 \exists k, C \forall y \in X'_N$$
:

$$\|y\|_{M,m}^* \leq C\left(\|y\|_{K,k}^*{}^{(1-\theta)}\cdot\|y\|_{N,n}^*{}^{\theta}\right).$$

Invariants like this, and the theory of the splitting of short exact sequences of (PLS)-spaces (countable projective limits of (DFS)-spaces), permit to conclude when $\text{Ext}^1(E', \text{ker } P(D)) = 0$

Show that Ω × ℝ is P-convex for singular support if Ω is P-convex for singular support for arbitrary Ω. In other words, does the surjectivity of P(D) : D'(Ω) → D'(Ω) imply that P(D) is surjective on D'(Ω × ℝ)?

- Show that Ω × ℝ is P-convex for singular support if Ω is P-convex for singular support for arbitrary Ω. In other words, does the surjectivity of P(D) : D'(Ω) → D'(Ω) imply that P(D) is surjective on D'(Ω × ℝ)?
- Obes the surjectivity of P(D) : A(U, D'(Ω)) → A(U, D'(Ω)) imply that P(D) has a continuous linear right inverse on D'(Ω)?

- J. Bonet, P. Domański, Real analytic curves in Fréchet spaces and their duals, Monatsh. Math. 126 (1998), 13–36.
- ② J. Bonet, P. Domański, Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230 (2006), 329–381.
- J. Bonet, P. Domanski, The splitting of short exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations, Advances in Math. 217 (2008) 561-585.
- P. Domański, Real analytic parameter dependence of solutions of differential equations, Preprint, 2008.