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What do we want to study?

AIM

Investigate properties of diagonal operators defined on Köthe
echelon spaces in case the diagonal depends holomorphically on a
parameter z ∈ D.

Köthe matrix

A = (an(i))i,n∈N a matrix of non-negative numbers is a Köthe matrix if
for each i ∈ N and n ∈ N

0 < an(i) ≤ an+1(i)

Köthe echelon spaces

For 1 ≤ p <∞,

λp(A) = {x ∈ CN : qn(x) :=
( ∞∑

i=1

(an(i)|xi |)p
)1/p

<∞ for all n ∈ N}.
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Examples

Clearly

λp(A) =
⋂
n∈N

`p(an).

H(D) ' λ1(A) with an(i) = (n/(n + 1))i .

H(C) ' λ1(A) with an(i) = ni .

S ' C∞([0, 1]) ' D([0, 1]) ' λ1(A) with an(i) = in.

Köthe echelon spaces are Fréchet spaces, i.e., metrizable complete locally
convex spaces.

José Bonet Diagonal operators between sequence spaces



Diagonal operators

λp ≡ λp(A).

fi : D→ C holomorphic, i ∈ N, (fi )i∈N bounded for the co-topology.

Diagonal operators in Köthe echelon spaces

We consider the following operator-valued function

ψ : D → Lb(λp, λp)
z  ψ(z)(x) = (fi (z)xi )i∈N
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Notation

X ,Y Fréchet spaces.

Lb(X ,Y ) linear continuous operators between X and Y endowed with
the topology of uniform convergence on bounded subsets of X . If X and
Y are Banach spaces, this is the topology of the operator norm.

H(D,X ) space of vector-valued analytic functions.

ψ : D→ Lb(X ,Y ) an analytic operator-valued function
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Proposition

Let fi : D→ C, i ∈ N, be holomorphic functions such that (fi )i∈N is
bounded for the co-topology. Then

(a) ψ ∈ H(D, Lb(λp, λp)).

(b) If (fi )i∈N tends to 0 in the co-topology, then ψ(z) is Montel for all
z ∈ D, i.e. each ψ(z) maps bounded sets into relatively compact
sets.

In case X and Y are Banach spaces, Montel operators are exactly
compact operators.
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Proof

For (a) we use

Theorem (Grosse-Erdmann)

E complete lcs, ψ : Ω→ E locally bounded, and Ω domain in C. If
H ⊂ E ′ is σ(E ′,E )-dense in E ′ and u ◦ ψ holomorphic for u ∈ H, then
ψ ∈ H(Ω,E ).

And we check

ψ : D→ Lb(λp, λp) is locally bounded

G = span{u ⊗ y : u ∈ λ′p, y ∈ λp} is weak∗-dense in Lb(λp, λp)′

Finally, (u ⊗ y) ◦ ψ(z) =
∑

i uiyi fi (z) holomorphic in H(D).
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Operator weighted composition operators

X ,Y Fréchet spaces.

ϕ : D→ D, ψ : D→ Lb(X ,Y ) analytic.

The operator-weighted composition operator

Wψ,ϕ : H(D,X ) −→ H(D,Y )

f  Wψ,ϕf : D −→ Y
z  ψ(z)[(f ◦ ϕ)(z)]

Continuity

The operator Wψ,ϕ : H(D,X ) −→ H(D,Y ) is well-defined and
continuous.
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An auxiliary operator

The auxiliary operator Tψ

Let ψ : D→ Lb(X ,Y ) be analytic. We consider the operator

Tψ : X → H(D,Y ),

x  Tψ(x) : D → Y ,
z  Tψ(x)(z) = ψ(z)[x ]

Tψ is well defined and linear

Tψ inherits the properties of Wψ,ϕ
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The operators in the case of Köthe echelon spaces

ψ : D→ Lb(λp, λp), ψ(z)(x) = (fi (z)xi )i∈N,

Wψ,ϕ : H(D, λp) −→ H(D, λp), ϕ(z) = id(z) = z ,

g(z) = (gi (z))i →Wψ,idg(z) = (fi (z)gi (z))i .

Tψ : λp → H(D, λp),

Tψ((xi )i )(z) = ψ(z)((xi )i ) = (fi (z)xi )i .
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Montel operators

Theorem

Let X and Y be Fréchet spaces. Let ϕ : D→ D and ψ : D→ Lb(X ,Y ),
ψ 6= 0, be analytic mappings. Then the following assertions are
equivalent:

1 The operator

Wψ,ϕ : H(D,X ) −→ H(D,Y )

is Montel

2 Tψ : X → H(D,Y ) is Montel

3 ψ(z) : X −→ Y is Montel for each z ∈ D.

José Bonet Diagonal operators between sequence spaces



Proof

Idea of the proof

(3)⇒ (2) : Let ψ(z) : X → Y be Montel for all z ∈ D.
Is Tψ : X → H(D,Y ) Montel?

The function ψ is holomorphic with values in Lb(X ,Y ), and then
ψ(z) =

∑∞
m=0 Amzm,Am ∈ Lb(X ,Y ).

A0 = ψ(0) is Montel and Am are Montel, for m ≥ 1 by Cauchy
Integral Formula.

For ψn(z) =
∑n

m=0 Amzm, the operator Tψn is Montel.

Finally, Tψn tends to Tψ in Lb(X ,H(D,Y )).

(2)⇒ (1) requires results on tensor products due to Ruess.
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The weighted spaces case

Weights

Let v be a strictly positive continuous weight on the open unit disk D in
the complex plane which is radial (that is, v(z) = v(|z |) for every
z ∈ D), strictly decreasing with respect to |z | and limr→1 v(r) = 0.

Examples

The standard weights are v(z) = (1− |z |)α, α > 0.

v(r) = exp(− 1
(1−r)α ), α > 0.

v(r) = (1− log(1− r))−α, α > 0.
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The weighted spaces case

Weighted spaces of holomorphic functions

H∞v (D,X ) := {f ∈ H(D,X ) : sup
z∈D

v(z)p(f (z)) <∞ ∀p ∈ cs(X )}

H0
v (D,X ) := {f ∈ H∞v (D,X ) : lim

|z|→1
v(z)p(f (z)) = 0 ∀p ∈ cs(X )}

endowed with the natural topology.

If we do not assume that limr→1 v(r) = 0, then H∞v (D,X ) = H∞(D,X ).
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The weighted spaces case

Theorem

Let X ,Y be Fréchet spaces. Let ϕ : D→ D and ψ : D→ Lb(X ,Y ) be

analytic maps.

Wψ,ϕ : H∞v (D,X ) −→ H∞w (D,Y ) is continuous if, and only if, the set{
w(z)

ṽ(ϕ(z))
ψ(z); z ∈ D

}
is equicontinuous in Lb(X ,Y ).

Laitila and Tylli, 2009, have studied these operators for Banach spaces X
and Y . Multiplication and composition operators are particular cases.
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Theorem

Let X ,Y be Fréchet spaces. Let ϕ : D→ D and ψ : D→ Lb(X ,Y ) be
analytic maps. Then the following assertions are equivalent:

1 The weighted composition operator Wψ,ϕ : H∞v (D,X )→ H∞w (D,Y )
is Montel

2 (a) Tψ : X → H∞w (D,Y ) is Montel.

(b) For every B ∈ B(X ), q ∈ cs(Y ) and ε > 0 there is r0 ∈ (0, 1) such
that if |ϕ(z)| > r0 and x ∈ B, then we have the following inequality

w(z)

ṽ(ϕ(z))
q(ψ(z)[x ]) ≤ ε.
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Examples.

Constant case

If the analytic operator-valued function ψ : D→ Lb(X ,Y ) is constant,
that is, ψ(z) = L 6= 0 for all z , then

The operator Wψ,ϕ : H∞v (D,X )→ H∞w (D,Y ) is continuous if and
only if Cϕ : H∞v (D)→ H∞w (D) is continuous,

The operator Wψ,ϕ : H∞v (D,X )→ H∞w (D,Y ) is Montel if and only
if L is Montel and Cϕ : H∞v (D)→ H∞w (D) is compact.

Bonet, Domański, Lindström, Taskinen (1996), Contreras,
Hernández-D́ıaz (2000), Bonet, Friz (2003)
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The following always holds:

Wψ,ϕ Montel ⇒ Tψ Montel ⇒ ψ(z) Montel for all z

Question

Is it true in the weighted case that

ψ(z) Montel for all z ⇒ Tψ Montel ?

Laitila-Tylli: NO

The diagonal operator for λp = `1

ψ : D→ L(`1, `1), ψ(z)(x) = (z i xi )i∈N,

satisfies that ψ(z) is compact for all z , but Tψ : `1 −→ H∞(D, `1) is not
even weakly compact (here v ≡ 1).
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Theorem

Let X ,Y be Fréchet spaces.

Let ϕ : D→ D and ψ : D→ Lb(X ,Y ) be analytic maps.

If ψ ∈ H0
w (D, Lb(X ,Y )) and ψ(z) is Montel for all z , then

Tψ : X −→ H∞w (D,Y )

is a Montel operator.
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Weighted case. Diagonal operators on Köthe echelon
spaces

Proposition (Back to the diagonal operator)

Assume that ‖fi‖w := sup
z∈D

w(z)|fi (z)| ≤ 1 for all i ∈ N. For the operator

ψ : D→ Lb(λp, λp), ψ(z)(x) = (fi (z)xi )i∈N, we have

Tψ : λp −→ H∞w (D, λp), Tψ((xi )i ) := (fi (z)xi )i ,
is well-defined and continuous.

Lemma

For every weight there is a sequence (fi )i∈N which tends to 0 for the
co-topology, and such that 1 ≥ ‖fi‖w > ε for some ε > 0 and all i ∈ N.
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A Fréchet space X is called Montel if every bounded subset of X is
relatively compact; i.e. if the identity map Id on X is a Montel operator.

The space H(Ω), Ω an open subset of C, endowed with the compact
open topology, is Montel

Theorem

Let w be a weight. If the sequence (fi )i∈N tends to 0 for the co-topology
and there is ε > 0 such that ε < ‖fi‖w ≤ 1 for all i ∈ N, then

(a) ψ(z) : λp → λp is Montel for all z .

(b) If λp is Montel, then Tψ is a Montel operator.

(c) If λp is not Montel, then Tψ is not a Montel operator.
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