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Rearrangement of series.

Surprising phenomenon in mathematical analysis: Infinite sums of
numbers do NOT satisfy the commutative property.

José Bonet Rearrangement of series. The theorem of Levy-Steiniz.



Series
∑

ak .
Sequence of real number a1, a2, ..., ak , ..., called terms of the series.
We want to associate to them a sum.

Idea of Cauchy.

Partial Sums
s1 := a1, s2 := a1 + a2,..., sk := a1 + a2 + ...+ ak .

The series converges if the limit ĺım sk = s exists and this limit is
called the sum of the series s =

∑∞
k=1 ak .∑

xk = 1 + x + x2 + ... converges if and only if |x | < 1.
Its sum is

∑∞
k=0 x

k = 1
1−x .

José Bonet Rearrangement of series. The theorem of Levy-Steiniz.



Aspects to study about series.

(1) Convergence.
∑∞

k=1
1
k2 = π2/6 (Euler).

(2) Asymptotic behaviour.
The harmonic series

∑
1
k diverges (Euler). Its partial sums sk

behave asymptotically like log k . This means

ĺım
k→∞

sk
log k

= 1.

Euler proved also that the series
∑

1
p , the sum extended to the

prime numbers p diverges.

(3) An aspect that is exclusive to series is rearrangement.
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Rearrangement of series

A rearrangement of the series
∑

ak is the series
∑

aπ(k), where

π : N→ N

is a bijection.

A series
∑

ak is unconditionally convergent if the series
∑

aπ(k)
converges for each bijection π.

If the series
∑

ak converges, the set of sums is

S(
∑

ak) := {x ∈ R | x =
∞∑
k=1

aπ(k) for some π}

It is the set of sums of all the rearrangements of the series.
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The Theorem of Riemann

Theorem (Riemann, 1857)

Let
∑

ak be a series of real numbers.∑
ak is unconditionally convergent if and only if

∑
|ak | is

convergent, that is the series is absolutely convergent.

If
∑

ak converges, but not unconditionally, then

S(
∑

ak) = R.
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Riemann (1826-1866). Riemann integral,
Riemann’s surfaces, the Cauchy Riemann
equation, the theorem of Riemann
Lebesgue, the theorem of Riemann’s
function in complex analysis, Riemann’s
zeta function,...
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The center of Mathematics between 1800 y 1933 was Göttingen
(Germany).

Gauss, Dirichlet, Riemann, Hilbert y Klein were there.
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The Theorem of Riemann

Idea of the proof:
If
∑

ak converges absolutely, Cauchy’s criterion ensures that every
rearrangement converges to the same sum.

Suppose that
∑

ak converges but not absolutely. Let pk y qk be the
positive and negative terms of the series respectively. Possible cases:∑

pk converges,
∑

qk converges, then
∑
|ak | converges.∑

pk =∞,
∑

qk converges, then
∑

ak =∞.∑
pk converges,

∑
qk = −∞, then

∑
ak = −∞.

Thus
∑

pk =∞ y
∑

qk = −∞.

Fix α ∈ R, select the first n(1) with p1 + ...+ pn(1) > α; then the first
n(2) with p1 + ...+ pn(1) + q1 + ...+ qn(2) < α.
Since ĺım ak = 0, the rest of the proof is ε-δ.
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The alternate harmonic series.

The alternate harmonic series

1− 1
2 + 1

3 −
1
4 + ... =

∑∞
k=1(−1)k+1 1

k = log 2.

Leibniz’s criterion shows that this series is convergent. It is not
absolutely convergent.

The result was known to Mercator (S. XVII).

There are many different proofs, for example by a theorem of Abel on
power series using the development of log(1 + x).
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The alternate harmonic series.

An elementary proof: Put In :=
∫ π/4
0

tgn xdx . We have:

(1) (In)n is decreasing.

(2) In = 1
n−1 − In−2. Integrating by parts.

(3) 1
2(n+1) ≤ In ≤ 1

2(n−1) .

(4) Using induction in (2) and I1 = 1
2 log 2, we get

1

4(n + 1)
≤ |I2n+1| = |

n∑
k=1

(−1)k+1

2k
− 1

2
log 2| ≤ 1

4n
.

Multiplying by 2 we obtain the result.
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The alternate harmonic series.

The rearrangement of Laurent.

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
... =

= (1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1

10
)− 1

12
... =

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
... =

=
1

2
(1− 1

2
+

1

3
− 1

4
+ ...) =

1

2
log 2.
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The alternate harmonic series.

A rearrangement of the alternate harmonic series is called simple if the
positive and negative terms separately are in the same order as in the
original series. For example, Laurent’s rearrangement is simple.

In a simple rearrangement we denote by rn the number of positive terms
between the first n of the rearrangement.

Theorem of Pringsheim, 1883

A simple rearrangement
∑

aπ(k) of the alternate harmonic series
converges if and only if ĺımn→∞

rn
n =: α <∞.

In this case
∑∞

k=1 aπ(k) = log 2 + 1
2 log(α(1− α)−1).

For the Laurent’s rearrangement we have α = 1/3 y

log 2 +
1

2
log(

1

3

3

2
) =

1

2
log 2.
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Series of vectors.

What happens if we consider series of vectors?

Example in R2:
∑

((−1)k+1 1
k , 0).

The set of sums is R× {0}. It is not all the space R2, but it is an
affine subspace R2.

This phenomenon was observed by Levy for n = 2 in 1905 and by
Steinitz for n ≥ 3 in 1913.
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The Theorem Levy Steinitz. Notation.

E is a real locally convex Hausdorff space.

Examples: Rn, `p, 1 ≤ p ≤ ∞, Lp, 1 ≤ p ≤ ∞ (Banach spaces),
H(Ω), C∞(Ω) (Fréchet spaces: metrizable and complete), D, D′,
H(K ), A(Ω),...(more complicated spaces).∑

uk is a convergent series and S(
∑

uk) is its set of sums (of all
its convergent rearrangements).

Set of summing functionals

Γ(
∑

uk) := {x ′ ∈ E ′ |
∞∑
1

|〈x ′, uk〉| <∞} ⊂ E ′.

The annihilator of G ⊂ E ′ is G⊥ := {x ∈ E | 〈x , g〉 = 0 ∀g ∈ G}.
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The Theorem Levy Steinitz.

The Theorem Levy Steinitz. 1905, 1913.

If
∑

uk is a convergent series of vectors in Rn, then

S(
∑

uk) =
∞∑
1

uk + Γ(
∑

uk)⊥

is an affine subspace of Rn.

P. Rosenthal, in an article in the American Mathematical Monthly in
1987 explaining this theorem, remarked that it is a beautiful result, which
deserves to be better known, but that the difficulty of its proof is out of
proportion of the statement.

José Bonet Rearrangement of series. The theorem of Levy-Steiniz.



The Theorem Levy Steinitz.

The inclusion “⊂” in the statement is easy and holds in general:

Let x =
∑∞

1 uπ(k) ∈ S(
∑

uk).

We want to see that x −
∑∞

1 uk ∈ Γ(
∑

uk)⊥.

To do this, fix x ′ ∈ Γ(
∑

uk).

By Riemann’s theorem, we get

〈x ′, x −
∞∑
1

uk〉 =
∞∑
1

〈x ′, uπ(k)〉 −
∞∑
1

〈x ′, uk〉 = 0,

since the series
∑
〈x ′, uk〉 is absolutely convergent.
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The Theorem Levy Steinitz.

Idea of the proof of the other inclusion: Let E be a complete
metrizable space

(A)

S(
∑

uk) ⊂ Se(
∑

uk).

Expanded set of sums

Se(
∑

uk) := {x ∈ E | ∃π ∃(jm)m : x = ĺım
m→∞

jm∑
1

uπ(k)}.

(B)

Se(
∑

uk) =
∑∞

1 uk + ∩∞m=1Zm.

Zm = Zm(
∑

uk) := {
∑
k∈J

uk | J ⊂ {m,m + 1,m + 2, ...} finite}.
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The Theorem Levy Steinitz.

Idea of the proof of the other inclusion: Continued:

(C)

∞∑
1

uk + ∩∞m=1Zm ⊂
∞∑
1

uk + ∩∞m=1co(Zm).

co(C ) is the convex hull of C .

(D)

∞∑
1

uk + ∩∞m=1co(Zm) =
∞∑
1

uk + Γ(
∑

uk)⊥,

by the Hahn-Banach theorem.

The problem is to find conditions to ensure that the inclusions (A) y (C)
are equalities.
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The Theorem Levy Steinitz.

The equality in (A) follows in the finite dimensional case from the
following lemma.

Lemma of polygonal confinement of Steinitz

For every real Banach space E of finite dimension m there is a constant
0 < C (E ) ≤ m such that for every finite set of vectors x1, x2, ..., xn
satisfying

∑n
1 xk = 0 there s a bijection σ on {1, 2, ..., n} such that

||
r∑

j=1

xσ(j)|| ≤ C (E ) máx
j=1,...n

||xj ||

for all r = 1, 2, ...n.

The exact value of the constant C (E ) is unknown even for Hilbert spaces

of finite dimension m > 2. For m = 2, C (`22) =
√
5
2 .
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The Theorem Levy Steinitz.

The equality in (C) follows in the finite dimensional case from the
following lemma.

Round-off coefficients Lemma.

Let E be a real Banach space of finite dimension m.

Let x1, x2, ..., xn be a finite set of vectors such that ||xj || ≤ 1 for all
j = 1, ..., n.

For each x ∈ co(
∑

k∈I xk | I ⊂ {1, ..., n}) there is J ⊂ {1, 2, ..., n} such
that ||x −

∑
k∈J xk || ≤

m
2 .
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The work of Nash-Williams and White

Nash-Williams and White (1999-2001) obtained the following results
applying graph theory: Let π be a bijection on N. They defined the width
w(π) of π in a combinatorial way with values in N ∪ {0,∞}.

w(π) =∞ if and only if there is a series
∑

ak of real numbers such
that

∑
aπ(k) converges to a different sum.

w(π) = 0 if and only if
∑

aπ(k) converges to the sum
∑

ak when∑
aπ(k) converges.

w(π) ∈ N if and only if for a convergent series
∑

ak the series∑
aπ(k) has the same sum or diverges. In this case, if we fix π, they

determine the set of accumulation points of the sequences of partial
sums of series of the form

∑
aπ(k) with

∑∞
1 ak = 0.

They also extend their results for series in Rn, n ≥ 2.
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Series in infinite dimensional Banach spaces.

The study of series in infinite dimensional spaces was initiated by Orlicz
in 1929-1930.

Banach and his group used to meet in the Scottish Café in Lvov (now
Ukraine). The problems they formulated were recorded in the Scottish
Book, that was saved and published by Ulam.

Problem 106: Does a result analogous to the Levy Steinitz theorem hold
for Banach spaces of infinite dimension? The prize was a bottle of wine;
smaller by the way than the prize for the approximation problem of
Mazur, that was solved by Enflo. In that case the prize was a goose.

The negative answer was obtained by Marcinkiewicz with an example in
L2[0, 1].
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The Scottish Cafe, Lvov.
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The Scottish Cafe, Lvov. 2010.
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The example of Marcinkiewicz.

Consider the following functions in L2[0, 1]. Here χA is the characteristic
function of A.

xi,k := χ[ k

2i
, k+1

2i
], yi,k := −xi,k , 0 ≤ i <∞, 0 ≤ k < 2i .

Clearly ||xi,k ||2 = 2−i for each i , k . One has

(x0,0 + y0,0) + (x1,0 + y1,0) + (x1,1 + y1,1) + (x2,0 + y2,0) + ... = 0

x0,0 + (x1,0 + x1,1 + y0,0) + (x2,0 + x2,1 + y1,0) + (x2,2 + x2,3 + y1,1) + ... = 1

No rearrangement converges to the constant function 1/2, since all the
partial sums are functions with entire values.
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The example of Marcinkiewicz.

0 1

1

x00

1/20 1

1

x10
1

0 1/2 1

x11
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The example of Marcinkiewicz.

0 0 1

1

1

1

1

10 0

11
4

1
4

1
2

1
2

3
4

3
4

x20 x21

x22 x23
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Series in infinite dimensional Banach spaces.

Dvoretsky-Rogers Theorem. 1950.

A Banach space E is finite dimensional if and only if every
unconditionally convergent series in E is absolutely convergent.

This is a very important result in the theory of nuclear locally convex
spaces of Grothendieck and in the theory of absolutely summing
operators of Pietsch.

Example. In `2, we set uk := (0, ..,0, 1/k , 0, ...). The series
∑

uk is not
absolutely convergent since

∑∞
1 ||uk || =

∑∞
1

1
k =∞. But,

∞∑
1

uk = (1, 1/2, 1/3, ..., 1/k , ...)

unconditionally in `2.
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Series in infinite dimensional Banach spaces.

Theorem of Mc Arthur. 1954.

Every Banach space E of infinite dimension contains a series whose set of
sums reduces to a point, but is not unconditionally convergent.

Idea in `2. Denote by ei the canonical basis.

e1 − e1 + (1/2)e2 − (1/2)e2 + (1/2)e2 − (1/2)e2 + (1/4)e3 − ... = 0.

We have 2n terms of the form 2−n+1en with alternate signs.

If a rearrangement converges, its sum must be 0, as can be seen looking
at each coordinate. However, it is not unconditionally convergent, for if it
were, then (2, 2, 2, ...) ∈ `2.

For an arbitrary Banach space, one uses basic sequences.
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Series in infinite dimensional Banach spaces.

Theorem of Kadets and Enflo. 1986-89.

Every Banach space E of infinite dimension contains a series whose set of
sums consists exactly of two different points.

Theorem of J.O. Wojtaszczyk. 2005.

Every Banach space E of infinite dimension contains a series whose set of
sums is an arbitrary finite set which is affinely independent.

The theorem of Levy Steinitz fails in a drastic way for infinite
dimensional Banach spaces.
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Series in infinite dimensional Banach spaces.

Theorem of Ostrovski. 1988.

There is a series in L2([0, 1]× [0, 1]) whose set of sums is not closed.

Problem.

Is there a series
∑

uk in a Banach space whose set of sums S(
∑

uk) is a
non-closed affine subspace?

Theorem.

Every separable Banach space contains a series whose set of sums is all
the space.
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Series in infinite dimensional spaces.

Problem.

Is it possible to extend the theorem of Levy Steinitz for some infinite
dimensional spaces?

YES.

A locally convex Hausdorff space E is called nuclear if every
unconditionally convergent series is absolutely convergent. For Fréchet of
(DF)-spaces this coincides with the original definition of Grothendieck. In
general this is not the case.

Examples. H(Ω), C∞(Ω), S , S ′, H(K ), D, D′, A(Ω).
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The theorem of Banaszczyk.

Theorem of Banaszczyk. 1990, 1993.

Let E be a Fréchet space. The following conditions are equivalent:

(1) E is nuclear.

(2) For each convergent series
∑

uk in E we have

S(
∑

uk) =
∞∑
1

uk + Γ(
∑

uk)⊥.

This is a very deep result. Both directions are difficult. extensions of the
lemmas of confinement and of rounding-off coefficients with
Hilbert-Schmidt operators, a characterization of nuclear Fréchet spaces
with volume numbers, topological groups, etc are needed.
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Series in non-metrizable spaces.

Bonet and Defant studied in 2000 the set of sums of series in
non-metrizable spaces and, in particular, in (DF)-spaces, like the space S ′

of Schwartz or the space H(K ) of germs of holomorphic functions on the
compact set K in the complex plane.

The notation E = indnEn means that E is the increasing union of the
Banach spaces En ⊂ En+1 with continuous inclusions, and E is endowed
with the finest locally convex topology such that all the inclusions
En ⊂ E are continuous.
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Series in non-metrizable spaces.

Theorem of Bonet and Defant. 2000.

Let
∑

uk be a convergent series in the nuclear (DF)-space E = indnEn

(then it converges in a Banach step En(0)). The following holds:

(a) S(
∑

uk) =
∑∞

1 uk + Γ⊥loc(
∑

uk), where

Γ⊥loc(
∑

uk) :=⋃
n≥n(0)

{x ∈ En | 〈x , x ′〉 = 0 ∀x ′ ∈ E ′n with

∞∑
1

|〈uk , x ′〉| <∞}

is a subspace of E .

(b) If E is not isomorphic to the direct sum ϕ of copies of R, then there
is a convergent series in E whose set of sums is a non-closed
subspace of E .
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Series in non-metrizable spaces.

Theorem of Bonet and Defant. 2000.

Let E = indnEn be a complete (DF)-space such that every convergent
sequence in E converges in one of the Banach spaces En. If we have

S(
∑

uk) =
∞∑
1

uk + Γ⊥loc(
∑

uk)

for every convergent series
∑

uk in E , then the space E is nuclear.
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Series in non-metrizable spaces.

The proof of the theorem requires new improvements in the lemmas
of confinement and round-off.

The techniques of proof for the positive part can be utilized for more
general spaces, including the space of distributions D′ or the space
of real analytic functions A(Ω), thus obtaining that the set of sums
of a convergent series is an affine subspaces that need not be closed.

The result about nuclear (DF)-spaces not isomorphic to ϕ requires
deep results due to Bonet, Meise, Taylor (1991) and Dubinski, Vogt
(1985) about the existence of quotients of nuclear Fréchet spaces
without the bounded approximation property and their duals.

José Bonet Rearrangement of series. The theorem of Levy-Steiniz.



Other open problems.

Does every non-nuclear Fréchet space contain a convergent series∑
uk such that its set of sums consists exactly of two points?

Improve the converse for non-metrizable spaces.

Find concrete spaces E and conditions on a convergent series
∑

uk
in E to ensure that the set of sums S(

∑
uk) has exactly the form of

the Theorem of Levy and Steinitz. Chasco and Chobayan have
results of this type for spaces Lp of p-integrable functions.
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