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Abstract

We investigate several properties of operator-weighted composition maps Wψ,ϕ : f 7→
ψ(f ◦ ϕ) on unweighted H(D, X) and weighted H∞

v (D, X) spaces of vector valued holo-
morphic functions on the unit disc D. Here ϕ is an analytic self-map of D and ψ is an
analytic operator-valued function on D. We characterize when the operator is continuous,
maps a neighbourhood into a bounded set or maps bounded sets into relatively compact
sets. In this way we extend results due to Laitila and Tylli for the case of Banach valued
functions. This more general setting permits us to compare the results in the unweighted
and weighted case. New examples are provided, especially when the spaces X and Y are
Köthe echelon spaces. They show the differences between the present setting and the case
of functions taking values in Banach spaces.

1 Introduction and preliminaries

The purpose of this paper is to investigate qualitative properties of operator-weighted com-
position operators on spaces of vector valued analytic functions. To describe the content of
the paper we need some notation. If X is a Hausdorff locally convex space, H(D, X) denotes
the space of all analytic functions f : D → X. If X = C we simply write H(D). This space
is endowed with the topology of uniform convergence on the compact subsets of D; which
makes H(D) a (nuclear) Fréchet space. Our notation for locally convex spaces is standard
and we refer the reader to [14, 15, 21]. For a locally convex space X, cs(X) is the set of all
continuous seminorms on X and B(X) the set of all bounded absolutely convex subsets of X.
Given locally convex spaces X and Y , we write L(X,Y ) (or Lb(X, Y ) if we want to be more
specific) the space of all continuous linear maps from X into Y endowed with the topology
of uniform convergence on the bounded subsets of X. If X and Y are Banach spaces, the
topology on Lb(X, Y ) is the operator norm. A linear operator T : X → Y is called bounded
if it maps a neighbourhood of X into a bounded set in Y . Clearly every bounded operator
T is continuous. An operator T : X → Y is called Montel if it maps bounded sets in X into
relatively compact subsets of Y , and it is called compact (cf. [15]) if it maps a neighbourhood
of X into a relatively compact subset of Y . If X and Y are Banach spaces, an operator
T : X → Y is Montel if and only if it is compact.
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We describe the object of our study. Let X and Y be complete, barrelled locally convex
spaces. For an analytic self-map ϕ of D and an analytic map ψ : D → Lb(X,Y ) we consider
the operator

Wψ,ϕ : H(D, X) → H(D, Y ), f 7→ ψ(f ◦ ϕ).

This notation will be kept through the whole article. In Section 2 we show that it is well
defined and continuous and we characterize when it is bounded, Montel or compact. Since
H(D) is not a Banach space, it is natural to investigate the unweighted operator Wψ,ϕ :
H(D, X) → H(D, Y ) for analytic functions with values in spaces X and Y more general than
Banach spaces. Our main result in Section 2 is Theorem 9. It requires a lemma on compact
sets, Lemma 8, that uses tensor product techniques and a result due to Ruess [23]. Concrete
examples in case ψ is constant and in case X and Y are Köthe echelon spaces are given in
Sections 2 and 4.

In Section 3 we turn our attention to the setting of weighted spaces of vector valued
holomorphic functions, extending the work of Laitila and Tylli [16]. A weight v : D →]0,∞[
is a strictly positive, continuous, radial (v(z) = v(|z|) for every z ∈ D) function, that is
non-increasing with respect to |z|. Here are the most important examples of weights:

• The standard weights are v(z) = (1− |z|)α, α > 0.

• v(r) = exp(− 1
(1−r)α ), α > 0.

• v(r) = (1− log(1− r))−α, α > 0.

For a weight v and a locally convex space X, we define

H∞
v (D, X) := {f ∈ H(D, X); sup

z∈D
v(z)q(f(z)) < ∞ for all q ∈ cs(X)}.

It is a Banach space in case X is Banach, and it is denoted by H∞
v (D) if X is the set of complex

numbers. The isomorphic classification of the spaces H∞
v (D) was recently obtained by Lusky

[19]. Obviously, in case that v ≡ 1 the space H∞
v (D, X) coincides with the space H∞(D, X)

of bounded analytic functions f : D → X. When X and Y are Banach spaces, Laitila and
Tylli characterized properties such as boundedness, compactness and weak compactness of
Wψ,ϕ : H∞

v (D, X) → H∞
w (D, Y ) in terms of the weights v and w as well as the inducing

maps. Related results for similar operators between weighted spaces of analytic functions
with values in a Banach space defined by systems of weights were obtained by Manhas [20].
In Section 3 we present characterizations of continuous, bounded or Montel operators Wψ,ϕ

in case X and Y are complete, barrelled spaces. Our main result is Theorem 15. Examples in
Section 4 and Theorems 17 and 23 emphasize the different behaviour between the weighted
and the unweighted cases and between the Banach valued and Fréchet valued functions. Our
results are also a far reaching extension of some theorems in [6] and [8]. New techniques, and
a systematic use of the Cesàro means of the Taylor polynomials, are needed in the present
more general setting.

The operators investigated in this paper contain several classes of concrete linear operators.
For example, in case that X = Y = C and ψ is an analytic map D → C we obtain the
weighted composition operator f 7→ ψ · (f ◦ ϕ) which combines the classical composition
operator Cϕ : f 7→ f ◦ϕ with the pointwise multiplication operator Mψ : f 7→ ψ · f . For more
information about composition operators, we refer the reader to the excellent monographs
of Cowen and MacCluer [12] and Shapiro [24]. Many authors have studied composition
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operators, weighted composition operators and multiplication operators on various spaces
of analytic functions. We refer, for instance, to the following articles and to the references
therein [4], [5], [6], [7], [8], [9], [10], [11], [17], [18] and [25].

2 Operator-weighted composition operators acting between
H(D, X) and H(D, Y )

The following auxiliary result is necessary in the case of holomorphic functions with values in
barrelled locally convex spaces. It is trivial for Banach valued functions, because the duality
bilinear function (x, x′) → 〈x, x′〉 is continuous on X ×X ′

b in this case.

Lemma 1 Let X be a complete barrelled locally convex space. Let h1 : D→ X and h2 : D→
X ′

b be holomorphic mappings. Then

h : D −→ C,
z 7−→ h(z) = 〈h1(z), h2(z)〉

belongs to H(D).

Proof. First, for z 6= z0 ∈ D,

h(z)− h(z0)
z − z0

=
〈h1(z), h2(z)〉 − 〈h1(z0), h2(z0)〉

z − z0

= 〈h1(z)− h1(z0)
z − z0

, h2(z)〉+ 〈h1(z0),
h2(z)− h2(z0)

z − z0
〉.

Since limz→z0

h2(z)−h2(z0)
z−z0

= h′2(z0) in X ′
b, we get

lim
z→z0

〈h1(z0),
h2(z)− h2(z0)

z − z0
〉 = 〈h1(z0), h′2(z0)〉.

Now, to complete the proof, we have to show that the first summand tends to 〈h′1(z0), h2(z0)〉.
To see this, fix a sequence (zk)k∈N ⊂ D such that zk → z0, zk 6= z0. Put xk := h1(zk)−h1(z0)

zk−z0

for every k ∈ N and x0 = h′1(z0). Since h1 : D→ X is holomorphic, we know that xk → x0 in
X. We may assume that there is 0 < r0 < 1 with |zk − z0| ≤ r0. Then {h2(zk)} ∪ {h2(z0)} ⊂
h2(B(z0, r0)) =: K ⊂ X ′

b is compact and x′k := h2(zk) → h2(z0) =: x′0 in X ′
b. Given ε > 0, we

apply the equicontinuity of K to find k0 ∈ N such that for every k ≥ k0,

|〈x0, x
′
k − x′0〉| <

ε

2
and sup

u∈K
|u(xk − x0)| < ε

2
.

Hence

|〈xk, x
′
k〉 − 〈x0, x

′
0〉| = |〈xk − x0 + x0, x

′
k〉 − 〈x0, x

′
0〉|

≤ |〈xk − x0, x
′
k〉|+ |〈x0, x

′
k − x′0〉|

≤ sup
u∈K

|u(xk − x0)|+ |〈x0, x
′
k − x′0〉| < ε

for every k ≥ k0. The proof is complete. 2
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Proposition 2 Let X and Y be complete barrelled locally convex spaces. Let ϕ : D→ D and
ψ : D→ Lb(X, Y ) be analytic mappings. Then the operator

Wψ,ϕ : H(D, X) −→ H(D, Y )
f 7−→ (Wψ,ϕf)(z) = ψ(z)[f(ϕ(z))]

is well-defined.

Proof. We have to show that Wψ,ϕf ∈ H(D, Y ) for every f ∈ H(D, X). Since Y is complete,
by a classical result of Grothendieck [14, Section 16.7], it is enough to prove that y′ ◦Wψ,ϕf ∈
H(D) for every y′ ∈ Y ′. Fix y′ ∈ Y ′ and consider Ty′ : Lb(X, Y ) → X ′

b, A → y′ ◦A. Then Ty′

is linear and continuous. Since ψ ∈ H(D, Lb(X, Y )) we have Ty′ ◦ ψ ∈ H(D, X ′
b). Moreover

f ◦ ϕ ∈ H(D, X) if f ∈ H(D, X). We apply Lemma 1 to obtain that the map from D to C
given by

z 7−→ y′(ψ(z)[(f ◦ ϕ)(z)]) = 〈(y′ ◦ ψ)(z), (f ◦ ϕ)(z)〉
is holomorphic. 2

The following auxiliary linear operator plays an important role in our characterizations.
It was introduced in the case of Banach valued functions by Laitila and Tylli in Section 3 of
[16].

Definition 3 Let ψ : D→ Lb(X, Y ) be analytic. We consider the operator

Tψ : X −→ H(D, Y ),
x 7−→ Tψ(x) : D→ Y, Tψ(x)(z) = ψ(z)[x]

For x ∈ X the operator Rx : Lb(X, Y ) −→ Y, A 7→ Ax is linear and continuous and satisfies
Tψ(x) = Rx ◦ ψ. Thus, Tψ is holomorphic as a composition of a linear continuous operator
with a holomorphic map. Moreover, Tψ is linear by the definition of Rx.

Remark 4 (i) The auxiliary operator Tψ inherits the ideal properties of Wψ,ϕ. Indeed,
the operator A : X → H(D, X), (Ax)(z) = fx(z) = x is linear and continuous and
Tψ = Wψ,ϕ ◦A, from where the conclusion follows.

(ii) All the operators ψ(z) : X → Y, z ∈ D inherit the properties of Tψ. To see this,
consider the evaluation operator δz : H(D, Y ) → Y , f → f(z). Since δz is continuous
and δz(Tψ(x)) = Tψ(x)(z) = ψ(z)[x] for every x ∈ X and every z ∈ D, the conclusion
follows.

Proposition 5 Let X and Y be complete barrelled locally convex spaces. Let ϕ : D→ D and
ψ : D → Lb(X, Y ) be analytic mappings. Then the operator Wψ,ϕ : H(D, X) → H(D, Y ) is
continuous.

Proof. Fix a compact subset K of D as well as a seminorm q ∈ cs(Y ). Since ψ : D→ Lb(X, Y )
is holomorphic and X is barrelled, the set ψ(K) is relatively compact in Lb(X, Y ), hence
equicontinuous. Find a seminorm p ∈ cs(X) such that

q(ψ(z)[x]) ≤ p(x) for every z ∈ K and every x ∈ X.
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Finally,
sup
z∈K

q(ψ(z)[f(ϕ(z))]) ≤ sup
z∈K

p(f(ϕ(z))) ≤ sup
ξ∈ϕ(K)

p(f(ξ)).

This shows that the operator is continuous. 2

Theorem 6 Let X and Y be complete barrelled locally convex spaces. Let ϕ : D→ D and ψ :
D→ Lb(X, Y ), ψ 6= 0, be analytic mappings. Then the operator Wψ,ϕ : H(D, X) → H(D, Y )
is bounded if and only if the following conditions hold:

(a) Tψ : X → H(D, Y ) is bounded,

(b) There is 0 < r0 < 1 such that |ϕ(z)| ≤ r0 for every z ∈ D.

Proof. First we assume that conditions (a) and (b) hold. From (a) it follows that there is a
seminorm p ∈ cs(X) such that for every compact set K ⊂ D and for every q ∈ cs(Y ) we can
find λ > 0 such that

sup
z∈K

q(Tψ(x)(z)) = sup
z∈K

q(ψ(z)[x]) ≤ λp(x) for every x ∈ X.

Select K0 := {z ∈ C; |z| ≤ r0} with r0 as in condition (b) and define

P (f) := sup
ξ∈K0

p(f(ξ)) ∈ cs(H(D, X)).

For every compact set K ⊂ D and q ∈ cs(Y ) we put

QK,q(Wψ,ϕf) := sup
z∈K

q(ψ(z)[f(ϕ(z))])

and obtain, from (b),

QK,q(Wψ,ϕf) ≤ λ sup
z∈K

p(f(ϕ(z))) ≤ λ sup
ξ∈K0

p(f(ξ)).

This shows that Wψ,ϕ : H(D, X) → H(D, Y ) is bounded.
It remains to show the converse. Obviously Tψ is bounded by Remark 4. Since Wψ,ϕ :

H(D, X) → H(D, Y ) is bounded, we find 0 < r0 < 1 and p ∈ cs(X) such that for every
0 < r < 1 and every q ∈ cs(Y ) there is λ > 0 such that for every f ∈ H(D, X) we have

sup
|z|≤r

q(ψ(z)[f(ϕ(z))]) ≤ λ sup
|ξ|≤r0

p(f(ξ)).

Applying this inequality for the maps fk : D→ X given by fk(z) = zkx, k ∈ N0, which clearly
belong to the space H(D, X) for each x ∈ X, we obtain

sup
|z|≤r

|ϕ(z)|kq(ψ(z)[x]) = sup
|z|≤r

q(ψ(z)[ϕ(z)kx]) ≤ λ sup
|z|≤r0

p(zkx) = λrk
0p(x) (2.1)

for every q ∈ cs(Y ), k ∈ N0 and x ∈ X. In particular, for k = 0 and 0 < r < 1 arbitrary, we
get

sup
|z|≤r

q(ψ(z)[x]) ≤ λp(x)
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for every q ∈ cs(Y ), which implies ψ(z)[x] = 0 for every z ∈ D if p(x) = 0. Now, since ψ 6= 0
by assumption, there are z0 ∈ D, x0 ∈ X such that ψ(z0)[x0] 6= 0. In particular, p(x0) > 0.
Find q0 ∈ cs(Y ) with q0(ψ(z0)[x0]) > 0.

Next, we apply (2.1) to get, for each 0 < r < 1,

0 < q0(ψ(z0)[x0]) sup
|z|≤r

|ϕ(z)|k ≤ λrk
0p(x0),

for every k ∈ N0. Hence

sup
|z|≤r

|ϕ(z)|k ≤ λrk
0p(x0)

q0(ψ(z0)[x0])
,

for every k ∈ N0. Taking the k-th roots and letting r go to 1 we obtain |ϕ(z)| ≤ r0 for every
z ∈ D, and (b) follows. 2

In our next results, we use the following notation (cf. [15]): H(D)′co is the dual of
H(D) endowed with the topology of uniform convergence on the convex compact sets, and
Le(H(D)′co, Y ) is the space of all linear and continuous operators endowed with the topology
of uniform convergence on the equicontinuous subsets of H(D)′. We have Le(H(D)′co, Y ) =
H(D)εY if Y is complete.

Lemma 7 Let Y be a complete locally convex space. A bounded subset H ⊂ Le(H(D)′co, Y )
is precompact if and only if H(U◦) is precompact in Y for every U ∈ U0(H(D)).

Proof. By [23, Theorem 1.5], a subset H ⊂ Le(H(D)′co, Y ) is precompact if and only if (a)
H(U◦) is precompact in Y for every U ∈ U0(H(D)) and (b) H ′(y′) := {y′ ◦ h; h ∈ H} is
precompact in H(D) for every y′ ∈ Y ′. Since H(D, Y ) ∼= Le(H(D)′co, Y ) by [14, Section 16.7],
every bounded subset H of Le(H(D)′co, Y ) satisfies (b) by Montel’s theorem. 2

Lemma 8 Let Y be a complete locally convex space and let C be a bounded subset of H(D, Y ).
The set C is precompact if and only if for every compact subset K of D the set C(K) :=
{f(z); z ∈ K, f ∈ C} is precompact in Y .

Proof. To present the proof we must briefly recall the isomorphism H(D, Y ) ∼= Le(H(D)′co, Y )
([14, Section 16.7]). If T ∈ Le(H(D)′co, Y ), the corresponding element in H(D, Y ) is defined
by fT (z) := T (δz), where δz ∈ H(D)′ is the evaluation at the point z ∈ D. Conversely if
g ∈ H(D, Y ), the operator Tg ∈ Le(H(D)′co, Y ) is the unique continuous extension of the
linear map defined as Tg(δz) := g(z). We use this identification in the rest of the proof.

First assume that C is a precompact subset of H(D, Y ). Fix a compact subset K of D.
We prove that C(K) is precompact in Y . Set

U := {f ∈ H(D); sup
z∈K

|f(z)| ≤ 1} = {δz; z ∈ K}◦,

the polar of {δz; z ∈ K} ⊂ H(D)′ taken in H(D). Hence U◦ = {δz; z ∈ K}◦◦ = Γ{δz; z ∈ K}.
Since C is precompact in H(D, Y ), we apply Lemma 7 to conclude that C(U◦) is precompact
in Y . But

C({δz; z ∈ K}) = {f(δz) = f(z); f ∈ C, z ∈ K} ⊂ C(U◦).

and C(K) is precompact, too.
To prove the converse we apply Lemma 7. Fix U ∈ U0(H(D)) and select ε > 0 and a
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compact subset K of D such that εU◦ ⊂ Γ{δz; z ∈ K}, the closure taken in the topology
σ(H(D)′,H(D)). We have to show that C(U◦) is precompact in Y . By assumption, the set
D := Γ{f(z); z ∈ K, f ∈ C} is precompact in Y . Next, εC(U◦) = C(εU◦) = ∪h∈Ch(εU◦).
Moreover h(εU◦) ⊂ h(Γ{δz; z ∈ K}) and h : H(D)′co → Y continuous. Thus

h(Γ{δz; z ∈ K}) ⊂ h(Γ({δz; z ∈ K}) ⊂ Γh({δz; z ∈ K}) ⊂ D

since h ∈ C. Therefore, ⋃

h∈C

h(εU◦) ⊂ D

and C(U◦) is precompact in Y . 2

Theorem 9 Let X and Y be complete barrelled locally convex spaces. Let ϕ : D → D and
ψ : D→ Lb(X, Y ) be analytic maps. The following assertions are equivalent:

(a) Wψ,ϕ : H(D, X) → H(D, Y ) is Montel,

(b) Tψ : X → H(D, Y ) is Montel,

(c) ψ(z) : X −→ Y is Montel for all z ∈ D.

Proof. Remark 4 implies that (c) follows from (a).
To prove that (c) implies (b), assume that ψ(z) : X → Y is a Montel operator for every

z ∈ D. In order to prove that Tψ is a Montel operator, we approximate it by a sequence of
Montel operators in Lb(X,H(D, Y )). The function ψ is holomorphic with values in Lb(X, Y ),
and then

ψ(z) =
∞∑

m=0

Amzm,

where Am ∈ Lb(X, Y ) and the series converges in Lb(X,Y ) uniformly on the compact sets
of D. First, we check that the coefficients Am are Montel operators from X to Y . Indeed,
A0 = ψ(0) which is a Montel operator. The rest of the coefficients are Montel operators by
the Cauchy integral formula for derivatives.

Now, we consider the Taylor polynomials of ψ, ψn(z) =
∑n

m=0 Amzm, n = 0, 1, 2, . . ., and
the corresponding auxiliary operators Tψn . We will see that Tψn is a Montel operator for each
n, and that Tψn tends to Tψ in Lb(X, H(D, Y )) when n tends to infinity. Let B be a bounded
set in X, then Am(B) is relatively compact in Y for each m = 0, 1, . . . , n. The closure of the
absolutely convex hull of the union of these sets is compact in Y , that is, the set

K := Γ
( n⋃

m=0

Am(B)
)

is compact in Y . Consequently, if 0 < R0 < 1, we obtain

{ n∑

m=0

Am(x)zm : |z| ≤ R0, x ∈ B
}
⊂ n ·K,
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which proves that Tψn is a Montel operator. To conclude the proof, we see that Tψn tends to
Tψ in Lb(X,H(D, Y )). If B is a bounded set in X, 0 < R < 1 and q is a continuous seminorm
in Y , we have

sup
x∈B

sup
|z|≤R

q
(
(Tψ − Tψn)(x)[z]

)
= sup

x∈B
sup
|z|≤R

q
( ∞∑

m=n+1

Am(x)zm
)
,

that tends to 0 when n tends to infinity, since ψ(z) =
∑∞

m=0 Amzm in Lb(X, Y ) uniformly on
compact sets.

It remains to show that (b) implies (a). Take a bounded set B in H(D, X). Since B is
bounded for every compact set K in D and every continuous seminorm p in X, we have

sup
z∈K

sup
f∈B

p(f(z)) < ∞.

In particular, as ϕ(K) is a compact set in D, we also have

sup
z∈K

sup
f∈B

p(f(ϕ(z))) < ∞

for every continuous seminorm p in X. Therefore, the set

BK := {f(ϕ(z)) : z ∈ K, f ∈ B}
is bounded in X, for every compact set K in D. By hypothesis, Tψ(BK) is precompact in
H(D, Y ). By Lemma 8, for every compact set L in D, the set

{ψ(ξ)[f(ϕ(z))] : ξ ∈ L, z ∈ K, f ∈ B}
is a precompact set in Y . Therefore, the set {ψ(z)[f(ϕ(z))] : z ∈ K, f ∈ B} is precompact
in Y , for each compact set K in D. Since Wψ,ϕ(f)[z] = ψ(z)[f(ϕ(z))] for f ∈ B and z ∈ K,
by Lemma 8 again, we conclude that Wψ,ϕ(B) is precompact in H(D, Y ). Then, (b) implies
(a).

2

Proposition 10 Let X,Y be complete barrelled locally convex spaces. Let ϕ : D → D and
ψ : D→ Lb(X, Y ) be analytic maps. Then the following assertions are equivalent:

1. The operator Wψ,ϕ : H(D, X) → H(D, Y ) is compact,

2. The following conditions hold:

(a) Tψ : X → H(D, Y ) is compact,
(b) There is 0 < r0 < 1 such that |ϕ(z)| ≤ r0 for every z ∈ D.

Proof. First, we suppose that Wψ,ϕ is compact. Since Tψ inherits the properties of Wψ,ϕ by
Remark 4 (i), we have that Tψ is compact. Moreover, the condition (b) follows from Theorem
6, since the operator Wψ,ϕ is bounded.

To prove that (2) implies (1), we select r0 as in condition 2.(b) and set K0 = {ρ : |ρ| ≤ r0}.
From 2.(a) there exists a continuous seminorm p on X such that Tψ(Up) is precompact in
H(D, Y ) where Up := {x ∈ X : p(x) ≤ 1}. Then

{ψ(z)x : z ∈ K, p(x) ≤ 1} (2.2)
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is precompact in Y , for each compact set K in D, by Lemma 8. We consider

V := {g ∈ H(D, X) : sup
ρ∈K0

p(g(ρ)) ≤ 1} ∈ U0(H(D, X)).

We show that Wψ,ϕ(V ) is precompact in H(D, Y ). From Lemma 8 it suffices to check that
for all compact set K in D, the set

{Wψ,ϕ(g)(z) : z ∈ K, g ∈ V }
is precompact in Y .

Let K be a compact subset of D. If z ∈ K and g ∈ V , since ϕ(z) ∈ K0, we also have
p(g(ϕ(z))) ≤ 1. Then from (2.2) we have that

{Wψ,ϕ(g)(z) : z ∈ K, g ∈ V } = {ψ(z)(g(ϕ(z))) : z ∈ K, g ∈ V }
is precompact in Y . 2

Now, we treat the case when the operator-valued function ψ is constant and equal to a
fixed non-zero operator L : X → Y . The following result is an easy consequence of our results
above.

Corollary 11 Let X, Y barrelled locally convex spaces. If L : X → Y is a non-zero linear
and continuous operator and ψ : D → Lb(X,Y ) is the constant operator-valued holomorphic
function equal to L for all z ∈ D, we have:

(i) Wψ,ϕ : H(D, X) → H(D, Y ) is continuous,

(ii) Wψ,ϕ : H(D, X) → H(D, Y ) is bounded if and only if

(a) L is bounded, and
(b) There is r0 ∈ (0, 1) such that ϕ(D) ⊂ r0D.

(iii) Wψ,ϕ : H(D, X) → H(D, Y ) is Montel if and only if L is Montel,

(iv) Wψ,ϕ : H(D, X) → H(D, Y ) is compact if and only if

(a) L is compact, and
(b) There is r0 ∈ (0, 1) such that ϕ(D) ⊂ r0D.

3 Operator-weighted composition operators acting weighted
spaces H∞

v (D, X) and H∞
w (D, Y )

In this section we study the operator-weighted composition operators acting between weighted
spaces. In the formulation of our results we need the associated weights of [2]. For a weight
v on D the corresponding associated weight ṽ is defined by

ṽ(z) :=
1

sup{|f(z)|; f ∈ H∞
v (D), ‖f‖v ≤ 1} =

1
‖δz‖H∞

v (D)′
, z ∈ D,

where ||f ||v := supz∈D v(z)|f(z)| and δz denotes the point evaluation of z ∈ D. By [2] we
know that associated weights are continuous, ṽ ≥ v > 0 and that for each z ∈ D we can find
fz ∈ H∞

v (D), ||f ||v ≤ 1, such that |fz(z)| = 1
ṽ(z) . It is well known that H∞

ṽ (D) is isometrically
isomorphic to H∞

v (D). Applying the Hahn-Banach theorem we conclude
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Lemma 12 Let X be a complete barrelled locally convex space. For every p ∈ cs(X) and
every f ∈ H∞

v (D, X) we have

sup
ξ∈D

ṽ(ξ)p(f(ξ)) = sup
z∈D

v(z)p(f(z)).

Proposition 13 Let X and Y be complete barrelled locally convex spaces. Let ϕ : D → D
and ψ : D→ Lb(X,Y ) be analytic maps. The operator Wψ,ϕ : H∞

v (D, X) → H∞
w (D, Y ), f →

(Wψ,ϕf)(z) = ψ(z)[f(ϕ(z))] is continuous if and only if the set

{ w(z)
ṽ(ϕ(z))

ψ(z); z ∈ D
}

is equicontinuous on Lb(X,Y ).

Proof. First, assume that the set { w(z)
ṽ(ϕ(z))ψ(z); z ∈ D} is equicontinuous on Lb(X, Y ). For

each q ∈ cs(Y ) we can find p ∈ cs(X) such that

w(z)
ṽ(ϕ(z))

q(ψ(z)[x]) ≤ p(x) for every x ∈ X and every z ∈ D. (3.1)

Thus, for z ∈ D and f ∈ H∞
v (D, X), we get

w(z)q(ψ(z)[f(ϕ(z))]) = ṽ(ϕ(z))
w(z)

ṽ(ϕ(z))
q(ψ(z)[f(ϕ(z))])

≤
(3.1)

ṽ(ϕ(z))p(f(ϕ(z)) ≤ sup
ξ∈D

ṽ(ξ)p(f(ξ)).

and the operator Wψ,ϕ : H∞
v (D, X) → H∞

w (D, Y ) is continuous.
We prove the converse by contradiction: Assume that the set { w(z)

ṽ(ϕ(z))ψ(z); z ∈ D} is not
equicontinuous on Lb(X, Y ). Since X is barrelled, this means that we can find an element
x ∈ X such that the set { w(z)

ṽ(ϕ(z))ψ(z)[x]; z ∈ D} is not bounded in Y . Thus there exists

y′ ∈ Y ′ such that { w(z)
ṽ(ϕ(z))y

′(ψ(z)[x]); z ∈ D} is not bounded in C, and we can find a sequence
(zn)n ⊂ D such that

w(zn)
ṽ(ϕ(zn))

|y′(ψ(zn)[x])| ≥ n

for every n ∈ N. We select fn ∈ H(D) such that |fn| ≤ 1
v , fn(ϕ(zn)) = 1/ṽ(ϕ(zn)), and define

gn : D→ X by
gn(z) := fn(z)x

for every n ∈ N, with x chosen above. The sequence (gn)n is bounded in H∞
v (D, X) since for

every p ∈ cs(X) and every z ∈ D we have

v(z)p(gn(z)) = v(z)|fn(z)|p(x) ≤ p(x).

By assumption (Wψ,ϕgn)n is a bounded sequence in H∞
w (D, Y ) and

Wψ,ϕ(gn)(z) = ψ(z)[gn(ϕ(z))] = fn(ϕ(z))ψ(z)[x].
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With y′ ∈ Y ′ selected as above, we put q(s) := |y′(s)| ∈ cs(Y ). Then there exists a
constant M > 0 such that for every z ∈ D and every n ∈ N

w(z)q(Wψ,ϕgn(z)) ≤ M

which implies n ≤ w(zn)
ṽ(ϕ(zn)) |y′(ψ(zn)[x])| ≤ M for every n ∈ N. This is a contradiction. 2

Recall that a subset C of L(X,Y ) is called equibounded if there is a neighbourhood U in
X such that {T (x) | x ∈ U, T ∈ C} is bounded in Y .

Proposition 14 Let X and Y be complete barrelled locally convex spaces. Moreover, let
ϕ : D→ D and ψ : D→ Lb(X,Y ) be analytic maps. Then the operator Wψ,ϕ : H∞

v (D, X) →
H∞

w (D, Y ) is bounded if and only if the set

{ w(z)
ṽ(ϕ(z))

ψ(z); z ∈ D
}

is equibounded in Lb(X, Y ).

Proof. It is very similar to the proof of Proposition 13, once you have in mind that
{ w(z)

ṽ(ϕ(z))ψ(z); z ∈ D} is equibounded in Lb(X,Y ) if and only if there is p ∈ cs(X) such
that for every q ∈ cs(Y ) there is a constant λq > 0 with

q
( w(z)

ṽ(ϕ(z))
ψ(z)[x]

)
≤ λq p(x) (3.2)

for every x ∈ X and every z ∈ D. 2

Let X be a complete barrelled locally convex space. In the proof of Theorem 15 we denote,
for every k ∈ N0, qk denote the map

qk : H(D, X) −→ X

f 7−→ f (k)(0)
k!

(3.3)

which is continuous, by the Cauchy Integral Formula for derivatives.

Theorem 15 Let X and Y be complete barrelled locally convex spaces. Moreover, let ϕ :
D → D and ψ : D → Lb(X,Y ) be analytic maps such that the operator Wψ,ϕ : H∞

v (D, X) →
H∞

w (D, Y ) is continuous. The weighted composition operator Wψ,ϕ is Montel if, and only if,
the following conditions are satisfied:

(a) Tψ : X → H∞
w (D, Y ) is Montel.

(b) For every B ∈ B(X), q ∈ cs(Y ) and ε > 0 there is r0 ∈]0, 1[ such that if |ϕ(z)| >
r0 and x ∈ B, then we have the following inequality

w(z)
ṽ(ϕ(z))

q(ψ(z)[x]) ≤ ε.
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Proof. Let us first assume that conditions (a) and (b) are satisfied. We will approximate the
operator Wψ,ϕ by a sequence of Montel operators in Lb(H∞

v (D, X), H∞
w (D, Y )). To do this

we consider the Cesàro sums given by

Cm : H∞
v (D, X) −→ H∞

v (D, X)
f 7−→ 1

m+1

∑m
k=0 Pkf,

where Pkf(z) =
∑k

`=0
f (`)(0)

`! z` is the k-th Taylor polynomial of f . First we want to show that
Wψ,ϕCm is a Montel operator acting from H∞

v (D, X) to H∞
w (D, Y ). The definition gives

(Wψ,ϕCmf)(z) = ψ(z)
[
Cmf(ϕ(z))

]
= ψ(z)

[ 1
m + 1

m∑

k=0

( k∑

`=0

f (`)(0)
`!

ϕ(z)`
)]

=
1

m + 1

m∑

k=0

( k∑

`=0

ϕ(z)`ψ(z)
f (`)(0)

`!

)

=
1

m + 1

m∑

k=0

k∑

`=0

ϕ(z)`Tψq`(f)(z),

Since Tψ is a Montel operator and the q` are continuous we obtain that Wψ,ϕCm is a Montel
operator for every m ∈ N0, as desired. Now, we show that

Wψ,ϕ = lim
m→∞Wψ,ϕCm (3.4)

in Lb(H∞
v (D, X),H∞

w (D, Y )). To do this, we fix a bounded set C in H∞
v (D, X) as well as

q ∈ cs(Y ) and have to show

sup
f∈C

sup
z∈D

w(z)q [Wψ,ϕf(z)−Wψ,ϕCmf(z)] → 0 as m →∞. (3.5)

We set
B̃ := {ṽ(ϕ(z))f(ϕ(z)) ; f ∈ C, z ∈ D},
Bm :=

{
ṽ(ϕ(z)) · Cmf(ϕ(z)), f ∈ C, z ∈ D, }, m ∈ N,

and we take

B := B̃ ∪
∞⋃

m=0

Bm.

We claim that B is bounded in X. Indeed, if p ∈ cs(X), there is a constant Mp such that

sup
z∈D

ṽ(z)p(f(z)) ≤ Mp

for each f ∈ C. Moreover, for each m ∈ N, z ∈ D, and f ∈ C, we can apply [1, Lemma 1.1]
to get

sup
z∈D

ṽ(ϕ(z))p
(
Cmf(ϕ(z))

) ≤ sup
z∈D

ṽ(ϕ(z))p
(
f(ϕ(z))

) ≤ Mp

Hence p(ξ) ≤ Mp for each ξ ∈ B.
Fix ε > 0. Select r0 ∈]0, 1[ for B, q, ε

2 > 0 as in (b). To prove (3.5) we split the estimate
as follows

sup
z∈D

w(z) q (Wψ,ϕf(z)−Wψ,ϕCmf(z)) ≤ (s1) + (s2),
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where
(s1) = sup

|ϕ(z)|>r0

w(z) q
(
Wψ,ϕf(z)−Wψ,ϕCmf(z)

)

and
(s2) = sup

|ϕ(z)|≤r0

w(z) q
(
Wψ,ϕf(z)−Wψ,ϕCmf(z)

)
.

We analyze first (s1).

w(z) q
(
Wψ,ϕf(z)−Wψ,ϕCmf(z)

) ≤ w(z) q
(
Wψ,ϕf(z)) + w(z)q

(
Wψ,ϕCmf(z)

)

For |ϕ(z)| > r0, we have

w(z)q
(
Wψ,ϕf(z)

)
= w(z)q

(
ψ(z)

[
f(ϕ(z))

])

=
w(z)

ṽ(ϕ(z))
q
(
ψ(z)

[
ṽ(ϕ(z))f(ϕ(z))

]) ≤ ε

2

since ṽ(ϕ(z))f(ϕ(z)) ∈ B. Now, if |ϕ(z)| > r0,

w(z)q
(
Wψ,ϕCmf(z)

) ≤ w(z)
ṽ(ϕ(z))

q
(
ψ(z)

[
ṽ(ϕ(z)) · Cmf(ϕ(z))

]) ≤ ε

2
.

Therefore, (s1) ≤ ε for each m. Next, we study (s2). Observe first, that for f ∈ C we have
at least formally,

Wψ,ϕf(z)−Wψ,ϕCmf(z) =
1

m + 1

( m∑

k=0

( ∞∑

`=k+1

ϕ(z)`ψ(z)
[f (`)(0)

`!

]))
.

Then

(s2) ≤ sup
|ϕ(z)|≤r0

w(z)
1

m + 1

m∑

k=0

( ∞∑

`=k+1

|ϕ(z)|`q(Tψ

(f (`)(0)
`!

)
z
))

By assumption Tψ is Montel, hence it also is continuous. There is p ∈ cs(X) such that the
Cauchy Integral Formula for derivatives yields

w(z)q
(
Tψ

(f (`)(0)
`!

)
z
) ≤ p

(f (`)(0)
`!

) ≤ 1
r`

max
|ζ|=r

p(f(ζ)) ≤ 1
r`v(r)

sup
ζ∈D

v(ζ)p(f(ζ)).

Then, if r > r0, as |ϕ(z)| ≤ r0 in (s2) we obtain

(s2) ≤ sup
z∈D

v(z)p(f(z))
( 1

m + 1

m∑

k=0

( ∞∑

`=k+1

(r0

r

)` 1
v(r)

))

= sup
z∈D

v(z)p(f(z))
1

v(r)

[ ∞∑

`=0

(r0

r

)` − 1
m + 1

m∑

k=0

Sk

]
,

where Sk =
∑k

`=0

(
r0
r

)` is the k-th partial sum of the convergent geometric series
∑∞

`=0

(
r0
r

)`,
which shows that (s2) tends to 0 as m tends to infinity, and (3.4) is proved.
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Now, we suppose that Wψ,ϕ is Montel. Since Tψ inherits the properties of Wψ,ϕ, we obtain
that Tψ is Montel. To prove the condition (b) we argue by contradiction. If (b) does not
hold then there exist an absolutely convex bounded set B in X and q ∈ cs(Y ) such that for
all n ∈ N there exists zn ∈ D with |ϕ(zn)| > 1 − 1

n and there exists xn ∈ B such that the
following inequality holds

w(zn)
ṽ(ϕ(zn))

q(ψ(zn)[xn]) > 1. (3.6)

The set
M := {f ∈ H∞

v (D, X) : v(z)f(z) ∈ B for all z ∈ D}
is bounded in H∞

v (D, X). Since Wψ,ϕ is Montel, Wψ,ϕM is relatively compact in H∞
w (D, Y ).

For each n ∈ N, select functions fn ∈ H(D) verifying

||fn||∞ ≤ 1
v

and fn(ϕ(zn)) =
1

ṽ(ϕ(zn))

and we define
hn(z) = znfn(z)xn, z ∈ D.

Clearly hn ∈ H∞
v (D, X) and v(z)hn(z) ∈ B for all z ∈ D. Hence (hn)∞n=1 ⊆ M . Furthermore,

we claim that (hn)∞n=1 converges to 0 in H(D, X) for the open-compact topology as n tends
to infinity. In order to prove this, fix p ∈ cs(X) and r0 ∈]0, 1[. We have

sup
|z|≤r0

p(hn(z)) = sup
|z|≤r0

|z|np(fn(z)xn)

≤ rn
0

1
ṽ(r0)

sup
z∈D

ṽ(z)p(fn(z)xn)

≤ C rn
0

1
ṽ(r0)

for some constant C > 0. Therefore limn→∞ sup|z|≤r0
p(hn(z)) = 0.

Since Wψ,ϕ : H(D, X) −→ H(D, Y ) is continuous by Proposition 5, the sequence (Wψ,ϕhn)∞n=1

converges to 0 in H(D, Y ) for the open-compact topology. Moreover Wψ,ϕM is relatively
compact in H∞

w (D, Y ) and (Wψ,ϕhn)∞n=1 ⊆ Wψ,ϕM . Hence (Wψ,ϕhn)∞n=1 converges to 0 in
H∞

w (D, Y ). But, if we take q ∈ cs(Y ) and (zn)∞n=1 satisfying (3.6), there exists n0 such that,
for n ≥ n0,

w(zn)q((Wψ,ϕhn)(zn)) = w(zn)q (ψ(zn)[hn(ϕ(zn))])
= w(zn)q (ψ(zn)[ϕ(zn)nfn(ϕ(zn))xn])
= w(zn)q (ϕ(zn)nfn(ϕ(zn)) ψ(zn)[xn])

= w(zn)|ϕ(zn)|n 1
ṽ(ϕ(zn))

q (ψ(zn)[xn])

>
(
1− 1

n

)n
>

1
e
,

which contradicts the fact that (Wψ,ϕhn)∞n=1 converges to 0 in H∞
w (D, Y ). The proof is com-

plete. 2

The following consequences should be compared with some results presented in [8].
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Corollary 16 Let L : X → Y be a non-zero linear and continuous operator and ψ : D →
Lb(X, Y ) is the constant operator-valued holomorphic function equal to L for all z ∈ D. The
following holds:

(i) Wψ,ϕ : H∞
v (D, X) → H∞

w (D, Y ) is continuous if and only if the composition operator
Cϕ : H∞

v (D) → H∞
w (D) is continuous.

(ii) Wψ,ϕ : H∞
v (D, X) → H∞

w (D, Y ) is bounded if and only if

(a) L is bounded, and

(b) Cϕ : H∞
v (D) → H∞

w (D) is continuous.

(iii) Wψ,ϕ : H∞
v (D, X) → H∞

w (D, Y ) is Montel if and only if

(a) L is Montel, and

(b) Cϕ : H∞
v (D) → H∞

w (D) is compact.

As a concrete example, if v(z) = (1 − |z|)α, w(z) = (1 − |z|)β, ϕ(z) = z and φ(z) =
L ∈ L(X, Y ), L Montel, for each z ∈ D, then the operator W∞

ψ,ϕ : H∞
v (D, X) → Hw(D, Y ) is

Montel if 0 < α < β, but it is continuous not Montel if 0 < α = β.
Complete characterizations of the continuity and compactness of composition operators

Cϕ : H∞
v (D) → H∞

w (D) in terms of the weights v and w and the symbol ϕ were obtained [7],
[4] and [11].

The following result gives a sufficient condition to obtain a version of the equivalence
between (b) and (c) in Theorem 9 for the case of weighted spaces. Such a result should
be compared with [16, Theorem 4.4], that treats the case of Banach valued holomorphic
functions. In order to get the equivalence, it is necessary to put some restrictions on ψ; see
Theorem 23.

For a weight function v, we define the following space:

H0
v (D, X) = {f ∈ H∞

v (D, X) : lim
|z|→1−

v(z)p(f(z)) = 0 for all p ∈ cs(X)}.

In particular, if v ≡ 1 then H0
v (D, X) = {0}.

Theorem 17 Let X, Y be complete barrelled locally convex spaces. If ψ ∈ H0
w(D, Lb(X,Y )),

then the following assertions are equivalent:

(a) The operator Tψ : X → H∞
w (D, Y ) is Montel,

(b) ψ(z) : X → Y is Montel for all z ∈ D.

Proof. Condition (a) implies condition (b) as a consequence of Remark 4 (ii).
We prove then that (b) implies (a). Since ψ is holomorphic, we can write

ψ(z) =
∞∑

`=0

A`z
`, A` ∈ L(X, Y ).

By the Cauchy Integral Formula for the coefficients A`, it follows that A` is a Montel operator
from X to Y . See e.g. [22] for the integration of continuous functions with values in a complete
locally convex space. We denote by Cmψ the Cesàro sums of the Taylor polynomials associated
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to ψ. We check that the corresponding auxiliary operators TCmψ are Montel operators.
To do this, it suffices to show that if g : D → L(X,Y ) is an operator-valued monomial
g(z) = Az` where A : X → Y is a Montel operator, then the corresponding auxiliary operator
Tg : X → H∞

w (D, Y ) is Montel. Fix a bounded set B in X. By assumption, A(B) is relatively
compact in Y . The set

Tg(B) = {A(b)z` : b ∈ B}
is relatively compact in H∞

w (D, Y ). Indeed, the linear operator

S : Y −→ H∞
w (D, Y )

y 7−→ [z 7→ yz`]

is also continuous and satisfies Tg(B) = S(A(B)).
Since the space of Montel operators is closed in the space of all linear and continuous

operators ([15, 42.1 (3)]), the proof is complete if we show that TCmψ converges to Tψ in
L(X,H∞

w (D, Y )). Let B be a bounded set in X and q a continuous seminorm on Y . We want
to estimate

sup
b∈B

sup
z∈D

w(z)q
(
(Cmψ(z)− ψ(z))(b)

)
.

Since ψ ∈ H0
w(D, Lb(X,Y )), for each ε > 0 there exists R0 > 0 such that for all |z| ≥ R0 we

have
sup
b∈B

w(z)q
(
ψ(z)(b)

)
< ε/3.

For each b ∈ B, the function z 7→ ψ(z)(b) is in H(D, Y ). Therefore, for each b ∈ B and
m ∈ N, we can apply [1, Lemma 1.1] and Hahn-Banach theorem to conclude

w(z)q
(
Cmψ(z)(b)

) ≤ max
|ζ|=|z|

w(ζ)q
(
ψ(ζ)(b)

)
.

Thus, for |z| > R0, b ∈ B and m ∈ N,

w(z)q
(
ψ(z)(b)

)
< ε/3 and w(z)q

(
Cmψ(z)(b)

)
< ε/3.

Applying again that ψ ∈ H∞
w (D, L(X, Y )), the Cesàro sums of the Taylor polynomials Cmψ

of ψ converge to ψ in the topology of H(D, L(X, Y )). In particular, there exist m0 ∈ N such
that, for all m ≥ m0, we have

sup
|z|≤R0

sup
b∈B

w(z)q
(
ψ(z)(b)− Cmψ(z)(b)

)
< ε/3.

Therefore, for every ε > 0, B bounded in X and q continuous seminorm on Y , there is m0

(and R0 > 0), such that for m ≥ m0, we obtain

sup
b∈B

sup
z∈D

w(z)q
(
Tψ(b)(z)− TCmψ(b)(z)

)

= sup
b∈B

sup
z∈D

w(z)q
(
ψ(z)(b)− Cmψ(z)(b)

)

≤ sup
b∈B

{
sup
|z|≥R0

w(z)q
(
ψ(z)(b)

)
+ sup
|z|≥R0

w(z)q
(
Cmψ(z)(b)

)

+ sup
|z|≤R0

w(z)q
(
ψ(z)(b)− Cmψ(z)(b)

)}
< ε.

2
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4 Analytic dependence of diagonal operators in values of Köethe
spaces

In this section we restrict our attention to operator weighted composition operators between
spaces of holomorphic functions on the unit disc with values in a Köthe echelon space. The
image ψ(z) is a diagonal operator for each z ∈ D.

We refer the reader to [21] and [3] for a detailed study of Köthe echelon spaces. We recall
here a few definitions. A matrix A = (an(i))i,n∈N of non-negative numbers if called a Köthe
matrix if it satisfies the following conditions:

(1) For each i ∈ N there is n ∈ N with an(i) > 0.

(2) an(i) ≤ an+1(i) for all i, n ∈ N.

For 1 ≤ p < ∞ we define

λp(A) :=
{

x ∈ CN : qn(x) :=
( ∞∑

i=1

|xian(i)|p)1/p
< ∞ for all n ∈ N

}

and for p = ∞ and p = 0:

λ∞(A) :=
{

x ∈ CN : qn(x) := sup
i∈N

|xi|an(i) < ∞ for all n ∈ N
}

,

λ0(A) :=
{

x ∈ λ∞(A) : lim
i→∞

an(i)xi = 0 for all n ∈ N
}

.

The spaces λp(A), 1 ≤ p ≤ ∞ and p = 0 are Fréchet spaces with a fundamental sequence of
seminorms (qn)n∈N. From now on, we write by λp = λp(A) and we fix a weight function w on
D.

Proposition 18 Let (fi)i∈N be a sequence in H(D), bounded for the compact-open topology.
For 1 ≤ p ≤ ∞ or p = 0, the diagonal operator-valued function defined by

ψ : D −→ Lb(λp, λp)
z 7−→ ψ(z) (x) = (fi(z)xi)i∈N

is well-defined, continuous and holomorphic.

Proof. It is easy to see that ψ(z) is continuous for each z ∈ D, since (fi)i∈N is bounded in
the compact sets of D. Moreover, ψ : D → Lb(λp, λp) is locally bounded on D. Indeed, the
set ψ({z ∈ D : |z| ≤ R}) is bounded in Lb(λp, λp) for each R ∈]0, 1[. To check this, fix a
bounded set B ⊂ λp and n ∈ N, and estimate as follows, for 1 ≤ p < ∞,

sup
|z|≤R

sup
x∈B

qn

(
ψ(z)(x)

)
= sup
|z|≤R

sup
x∈B

( ∞∑

i=1

|an(i)fi(z)xi|p
)1/p ≤ CR sup

x∈B
qn(x) < ∞,

for some constant CR > 0 that depends on R and the bounded sequence (fi)i∈N. The cases
p = 0 or p = ∞ are easier.

To prove that ψ is holomorphic, by a result of Grosse-Erdmann [13, Theorem 1], we have
only to show that γ◦ψ : D→ C is holomorphic for each γ in a weak∗-dense set G ⊂ Lb(λp, λp)′.
First we consider the case p 6= ∞. Given u ∈ (λp)′, y ∈ λp and T ∈ Lb(λp, λp) we write

(u⊗ y)(T ) := 〈T (y), u〉 = u(T (y)),
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which is a continuous linear functional u⊗ y on Lb(λp, λp). Define

G := span
{
u⊗ y : u ∈ (λp)′, y ∈ λp

}
.

It is easy to see that G is a weak∗-dense subset of Lb(λp, λp)′. It remains to show that
(u⊗ y) ◦ ψ is holomorphic on D for each u ∈ (λp)′ and y ∈ λp. If u ∈ (λp)′ we can identify it
with a sequence (ui)i∈N such that for each y = (yi)i∈N ∈ λp, we have

∑∞
i=1 |uiyi| < ∞ by the

Köthe duality (see [21, Chapter 27]). Therefore

(
(u⊗ y) ◦ ψ

)
(z) = (u⊗ y)(ψ(z)) = u

(
(fi(z)yi

)
=

∞∑

i=1

uiyifi(z)

defines an analytic function on D.
If p = ∞, we repeat the proof with G := span

{
u⊗ y : u ∈ (λ0)′, y ∈ λ∞

}
. 2

The following essentially well-known lemma follows from the characterization of bounded
sets in a Köthe echelon space in [3].

Lemma 19 If (γi)i∈N is a sequence in c0, the linear and continuous diagonal operator

L : λp −→ λp

(xi)i∈N 7−→ (γixi)i∈N

is a Montel operator.

As a consequence, if ψ is the map of Proposition 18, then ψ(z) : λp → λp is a Montel
operator for each z ∈ D in case the sequence of holomorphic functions (fi)i∈N tends to 0 for
the compact-open topology.

An application of Theorem 5, Proposition 18, and Theorem 9 to the present situation
yields the following result.

Corollary 20 (i) If (fi)i∈N is a bounded sequence in H(D) for the compact-open topology,
then Wψ,ϕ : H(D, λp) → H(D, λp) is continuous.

(ii) If (fi)i∈N tends to 0 for the compact-open topology, then

a) ψ(z) : λp → λp is a Montel operator for every z ∈ D,

b) Wψ,ϕ : H(D, λp) → H(D, λp) is Montel,

c) Tψ : λp → H(D, λp) is Montel.

We now treat the case of weighted spaces of holomorphic functions with values in a
Köthe echelon space. To do this, we fix a sequence (fi)i∈N in H∞

w (D) such that ‖fi‖w :=
supz∈Dw(z)|fi(z)| ≤ 1. Clearly, (fi)i∈N is bounded in H(D) for the compact open topology,
hence the operator ψ : D −→ Lb(λp, λp), z 7→ ψ(z) (x) = (fi(z)xi)i∈N is holomorphic by
Proposition 18.

Our purpose now is to study the associated operator

Tψ : λp −→ H∞
w (D, λp), Tψ(x)[z] = (fi(z)xi)i∈N.

We will show in Theorem 23 that Tψ need not to be Montel even if ψ(z) is Montel for each
z ∈ D, thus showing that the conclusion of Theorem 17 does not hold without the assumption
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ψ ∈ H0
w(D, Lb(X,Y )), and that the equivalence in Theorem 9 fails in the weighted case. An

example in the Banach valued case is given in [16, Example 4.1] for fi(z) = zi, i ∈ N, w(z) = 1
and λ1 = `1.

Lemma 21 If (fi)i∈N in H∞
w (D) satisfies ‖fi‖w ≤ 1, then the operator

Tψ : λp −→ H∞
w (D, λp), Tψ(x)[z] = (fi(z)xi)i∈N

is well defined and continuous.

Proof. For every n ∈ N, we have

sup
z∈D

w(z)qn

(
Tψ(x)[z]

)
= sup

z∈D
w(z)

( ∞∑

i=1

|an(i)fi(z)xi|p
)1/p ≤ qn(x),

which proves the assertion. 2

Lemma 22 There is a sequence (fi)i∈N in H∞
w (D) such that

a) there is ε > 0 satisfying ε < ‖fi‖w ≤ 1 for every i ∈ N,

b) (fi)i∈N tends to 0 for the compact-open topology.

Proof. Since H∞
w (D) is infinite dimensional in the present setting, we can find a sequence

(gi)i∈N in H∞
w (D) with ‖gi‖w ≤ 1 for every i ∈ N which cannot have a Cauchy subsequence.

Passing to a subsequence if necessary, we find ε0 > 0 with ‖gi−gj‖w ≥ ε0 for each i, j ∈ N. The
unit ball of Hw(D) is compact for compact-open topology, therefore there exists a subsequence
(hj)j∈N of (gi)i∈N, convergent to h0 in H(D). We put fj := 1

2(hj − h0), j ∈ N. Clearly each
fj belongs to the unit ball of H∞

w (D), ‖fj − fk‖w = 1
2‖hj − hk‖w ≥ ε0/2 and (fj)j∈N tends to

0 for the compact-open topology. 2

Theorem 23 Let (fi)i∈N ⊂ H∞
w (D) satisfy ‖fi‖w ≤ 1 for all i ∈ N. Then

a) If λp is Montel, then Tψ is a Montel operator.

(b) If (fi)i∈N tends to 0 for the compact-open topology, then ψ(z) : λp → λp is a Montel
operator for every z ∈ D.

c) Assume that there is ε > 0 satisfying ε < ‖fi‖w for every i ∈ N. If λp is not Montel,
then Tψ is not a Montel operator.

Proof. (a) If λp is Montel, Tψ is Montel, because it is continuous by Lemma 21 and the
bounded subsets of λp are relatively compact.

(b) follows from Corollary 20 (ii).
(c) If λp is not Montel, there is an infinite subset J of natural numbers and m ∈ N such

that for all n ∈ N there is cn > 0 satisfying an(j) ≤ cnam(j) for each j ∈ J (see [21, Chapter
27]). Define

B :=
{ ej

am(j)
: j ∈ J

}
,
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where (ej)j∈N is the canonical basis in λp. The set B is bounded in λp since, for every n ∈ N,

sup
j∈N

qn

( ej

am(j)

)
= sup

j∈N
an(j)
am(j)

≤ cn.

If the operator Tψ were Montel, the set
(
Tψ( ej

am(j))
)
j∈N would have a convergent subsequence

in H∞
w (D, λp). But, for i 6= j, we have

sup
z∈D

w(z)qm

(
Tψ

( ej

am(j)
)
(z)− Tψ

( ei

am(i)
)
(z)

)

= sup
z∈D

w(z)qm

(
ψ(z)

( ei

am(j)
)− ψ(z)

( ei

am(i)
))

= sup
z∈D

w(z)qm

( fj(z)
am(j)

· ej − fi(z)
am(i)

· ei

)

= sup
z∈D

w(z)
(|fi(z)|p + |fj(z)|p)1/p

≥ max
(

sup
z∈D

w(z)|fi(z)|, sup
z∈D

w(z)|fj(z)|
)
≥ ε.

2

Propositions 13 and 14 yield the following consequences in our present setting.

Corollary 24 Let w be a weight, ϕ(z) = z and ψ : D → Lb(λp, λp), z 7→ ψ(z) (x) =
(fi(z)xi)i∈N, with ‖fi‖w ≤ 1. Then

a) Wψ,id : H∞
v (D, λp) → H∞

v (D, λp) is continuous if and only if for each n ∈ N there is
m ∈ N with m ≥ n such that { an(i)

am(i)
fi : i ∈ N}

is in H∞(D).

b) Wψ,id : H∞
v (D, λp) → H∞

v (D, λp) is bounded if and only if there is m ∈ N such that, for
every n ∈ N, the set

{ an(i)
am(i)

fi : i ∈ N}

is in H∞(D).

We finish this section with an example in the setting of Köthe echelon spaces which shows
that a result like Theorem 9 is not true in general if we replace being a Montel operator by
being bounded.

Proposition 25 There exists a Köthe matrix A such that

ψ(z) : λ1(A) −→ λ1(A)
x 7−→ ψ(z)(x) = (zixi)i∈N

is bounded for each z ∈ D, but the corresponding auxiliary operator Tψ : λ1(A) → H(D, λ1(A))
is not bounded.
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Proof. Set R1 := 1 and Rn := 2n+1
n+1 for n ≥ 2 and define a Köthe matrix A by an(i) = (Rn)i,

for each n, i ∈ N. We show that the operator ψ(z)(x) = (zixi)i∈N is bounded for each z ∈ D.
Given z, select the smallest m ∈ N such that m−1

m ≤ |z| < m
m+1 . For every n ∈ N,

Rn|z| < 2|z| < 2m

m + 1
< Rm,

hence an(i)|z|i ≤ am(i) for this m and every n ∈ N. This implies that ψ(z) is bounded.
Now suppose that the operator Tψ : λ1 → H(D, λ1) is bounded. There is m ∈ N such that

the image Tψ(Um) of the neighborhood of 0

Um :=
{
x ∈ λ1 :

∞∑

i=1

am(i)|xi| ≤ 1
}

is bounded. Therefore, there is m ∈ N such that for every 0 < R < 1 and n ∈ N, there is
C > 0 such that, for each x ∈ Um,

sup
|z|≤R

∞∑

i=1

Ri
n|z|i|xi| ≤ C.

In particular, there is m such that for every 0 < R < 1 and n ∈ N, there is C > 0 satisfying,
for each i ∈ N,

sup
|z|≤R

Ri
n|z|i ≤ CRi

m.

Then, there is m ∈ N such that for each n ∈ N and 0 < R < 1, we have RnR ≤ Rm. Letting
n →∞, there is m ∈ N such that 2R ≤ 1 + m

m+1 for all 0 < R < 1, a contradiction. 2
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