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Abstract. We investigate the surjectivity of the Borel map in the quasianalytic setting for
classes of ultradifferentiable functions defined in terms of the growth of the Fourier-Laplace
transform. We deal with both the Roumieu E{ω} and the Beurling E(ω) classes for a weight
function ω. In particular, we show that a classical result of Carleman for the quasianalytic
classes E{Mp} also holds for the classes defined using weights. We also characterize when the
space of quasianalytic germs at the origin coincides with the space of real analytic germs at the
origin.

1. Introduction. Classes of ultradifferentiable functions on Rn are usually defined by imposing
conditions on the derivatives of the functions. See e.g. Komatsu [8] for the definition of the
classes E{Mp}(Rn) and E(Mp)(Rn) of Roumieu and Beurling type respectively associated with
a sequence of positive numbers (Mp)p. Continuing the classical work of Borel, many authors
have investigated conditions on the sequence (Mp)p and on a sequence (aα)α∈Nn

0
to ensure the

existence of a function f in the class associated with (Mp)p such that f (α)(0) = aα for each
α ∈ Nn

0 . See Meise and Taylor [9] and Petzsche [11] and the references therein. A class of
ultradifferentiable functions is called quasianalytic if the Borel map B(f) := (f (α)(0))α∈Nn

0
is

injective. A classical theorem of Carleman shows the non-surjectivity of the Borel map in the
quasianalytic non real analytic case. A simplified, comprehensive proof of Carleman’s result is
presented by Thilliez [14] Theorem 3.

In this paper we investigate the Borel map for quasianalytic classes E{ω} and E(ω) for a weight
function ω defined in terms of the growth of the Fourier-Laplace transform, like in the work
of Beurling and Björck. We work in the context of ultradifferentiable functions as defined by
Braun, Meise and Taylor [4]. A precise comparison of the two ways to define ultradifferentiable
classes was given by Bonet, Meise and Melikhov in [3]. Borel’s theorem for non quasianalytic
classes of Beurling type E(ω) was investigated by Meise and Taylor [9] and for non quasianalytic
classes of Roumieu type by Bonet, Meise and Taylor in [1]. This research was continued in
[2], where the investigation of the range of the Borel map, when it is not surjective, required
quasianalytic classes. In our main result Theorem 14 we characterize those weights ω such that
the Borel map is surjective on germs of quasianalytic functions of Roumieu type E{ω},0(n) onto
the natural sequence space Λ{ω}(n). This is a version of Carleman’s theorem in the context of
classes defined using weights, that permits us to conclude in Corollary 16 that the Borel map
is never surjective on the space E{ω}(Ω). This result shows that the statement of Chung and
Kim [5] Theorem 3.2 is not correct. As a main step in the proof of Theorem 14, we characterize
the quasianalytic weight functions ω such that the space of real analytic germs O0(n) is strictly
contained in the space of quasianalytic germs E{ω},0(n) at the origin. Our proofs are completely
different from those of Thilliez [14]. We use the Fourier-Laplace transform to work on weighted
spaces of entire functions and apply functional analytic methods together with a theorem of
Hörmander (Theorem 12 about the existence of entire functions with prescribed growth). The
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corresponding results for germs of quasianalytic functions of Beurling type are presented in
Proposition 18 and Theorem 19.

We refer the reader to Meise, Vogt [10] for undefined terminology on functional analysis, to
Hörmander [6] for complex analysis and to Braun, Meise and Taylor [4] and Komatsu [8] for
ultradifferentiable functions.

2. Definition. A function ω : [0,∞[→ [0,∞[ is called a weight function if it is continuous,
increasing, and satisfies ω(0) = 0 and the following conditions

(α) There exists K ≥ 1 such that ω(2t) ≤ Kω(t) + K, t ≥ 0.
(β) ω(t) = O(t) as t tends to infinity
(γ) log(t) = o(ω(t)) as t tends to infinity
(δ) ϕ : t 7→ ω(et) is convex on [0,∞[.

If the weight function ω satisfies

(Q)
∫ ∞

1

ω(t)
t2

dt = ∞

then it will be called a quasianalytic weight function. Otherwise it is called non-quasianalytic.
The function ω̃ : Cn → [0,∞[, ω̃(z) := ω(|z|) will also be denoted by ω.

The Young conjugate of ϕ = ϕω, defined in (δ), is given by

ϕ∗(x) := sup{xy − ϕ(y) : y > 0}, x ≥ 0.

3. Example. The following functions are easily seen to be quasianalytic weight functions:
(1) σ(t) := t
(2) ω(t) := t(log(e + t))−α, 0 < α < 1
(3) ω(t) := t(log(e + log(e + t)))−β, β > 0.

4. Definition. For an open set Ω in Rn and for a weight function ω we define:
(a) E{ω}(Ω) := {f ∈ C∞(Ω): For each K ⊂ Ω compact there exists m ∈ N:

‖f‖K,m := sup
x∈K

sup
α∈Nn

0

|f (α)(x)| exp(− 1
m

ϕ∗(m|α|)) < ∞}

and we endow it with the usual projective topology over K of the inductive topology over m.
The elements of E{ω}(Ω) will be called {ω}-ultradifferentiable functions of Roumieu type on Ω.
(b) E(ω)(Ω) := {f ∈ C∞(Ω): For each K ⊂ Ω compact and each m ∈ N:

pK,m(f) := sup
x∈K

sup
α∈Nn

0

|f (α)(x)| exp(−mϕ∗(
|α|
m

)) < ∞}

and we endow it with its natural Fréchet space topology. The elements of E(ω)(Ω) are called
(ω)-ultradifferentiable functions of Beurling type on Ω.

A weight ω is quasianalytic if and only if a function f in any of the classes E{ω}(Ω) or E(ω)(Ω)
is identically 0 as soon as the sequence of all the derivatives at a point in ω vanishes.

Remark. Note that for σ(t) = t we get for each open set Ω in Rn that E{σ}(Ω) is just the space of
all real-analytic functions on Ω which usually is denoted by A(Ω). Moreover, E(σ)(Ω) = H(Cn)
for each open set Ω, via the restriction of the entire functions to Ω.

5. Definition. For a weight function ω we define:
(a) The spaces of germs of the ω-ultradifferentiable functions at 0 ∈ Rn by

E{ω},0(n) := indk→ E{ω}(Bn(0,
1
k
)) and E(ω),0(n) := indk→ E(ω)(B

n(0,
1
k
)),
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where B(a, r) := {x ∈ Rn : |x− a| < r}.
(b) The sequence spaces

Λ{ω}(n) := {(aα)α∈Nn
0
∈ CNn

0 : There exists m ∈ N : ‖a‖m := sup
α∈N0

|aα| exp(− 1
m

ϕ∗(m|α|)) < ∞}

and

Λ(ω)(n) := {(aα)α∈Nn
0
∈ CNn

0 : For each m ∈ N : pm(a) := sup
α∈N0

|aα| exp(−mϕ∗(
|α|
m

)) < ∞}.

Obviously Λ{ω}(n) is an (LB)-space, while Λ(ω)(n) is a Fréchet space for each n ∈ N.
(c) For ω(t) := t, we write O0(n) instead of E{ω},0(n).

6. Remark. For each weight function ω and ϕ := ϕω the following assertions hold:
(a) For each m ∈ N there exist k ∈ N, k > m, and C > 0 such that for each j ∈ N:

exp(−mϕ∗( j
m)) ≤ Ce−j exp(−kϕ∗( j

k )).
(b) For each p ∈ N there exist q ∈ N, q > p, and C > 0 such that for each j ∈ N:

exp(1
pϕ∗(pj)) ≤ Ce−j exp(1

qϕ∗(qj)).
To prove this, note first that from condition 2 (α) we get the existence of A ∈ N such that
ω(t) ≤ Aω(t/e) for all large t > 0. This implies ϕ(x) ≤ Aϕ(x − 1) for all large x > 0 and
consequently

(1) ϕ∗(y) ≥ y + Aϕ∗(y/A) for all large y > 0.

To prove (a), fix m ∈ N and let k := Am. From (1) we get for large j ∈ N
mϕ∗(

j

m
) ≥ j + kϕ∗(

j

k
),

which implies (a).
To prove (b) let p ∈ N be given and let q := Ap. Then we get from (1) that for large j we have

1
q
ϕ∗(qj) ≥ j +

1
p
ϕ∗(pj),

which implies (b).

7. Lemma. For each weight function ω and each n ∈ N the following holds:
(a) Λ(ω)(n) is a nuclear Fréchet space and its dual can be identified with

Λ′(ω)(n) = {y ∈ CNn
0 : There exists k ∈ N : ‖y‖k :=

∑

α∈Nn
0

|yα| exp(kϕ∗(
|α|
k

)) < ∞}

under the bilinear form 〈y, x〉 :=
∑

a∈Nn
0

xαyα.
(b) Λ{ω}(n) is a (DFN)-space and as in (a) its dual is given by

Λ′{ω}(n) = {y ∈ CNn
0 : For each k ∈ N : pk(y) :=

∑

α∈Nn
0

|yα| exp(
1
k
ϕ∗(k|α|)) < ∞}.

Proof. (a) In the notation of Meise and Vogt [10], §27, we have Λ(ω)(n) = λ∞(A), where the
Köthe matrix A = (aα,k)α∈Nn

0 ,k∈N is given by aα,k := exp(−kϕ∗( |α|k )). From 6.(a) we know that
for each m ∈ N there exist k ∈ N and C > 0 such that

∑

α∈Nn
0

aα,m

aα,k
≤ C

∑

α∈Nn
0

e−|α| = C
∞∑

α1=0

. . .
∞∑

αn=0

e−α1 . . . e−αn = C
( ∞∑

j=0

e−j
)n

< ∞.

By [10], Proposition 28.16, this implies that λ∞(A) is a nuclear Fréchet space. From this and
[10], Proposition 27.13, it follows that Λ′(ω)(n) has the given form and that the strong topology
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of Λ′(ω)(n) is given by the corresponding inductive limit topology.
(b) If we define the Köthe matrix B := (bα,k)α∈Nn

0 ,k∈N by bα,k := exp( 1
kϕ∗(k|α|)) then it follows

from 6.(b) as in part (a) that λ1(B) is a nuclear Fréchet space and hence reflexive. From [10],
Proposition 27.13, it follows that λ1(B)′ = Λ{ω}(n). Since λ1(B) is reflexive, this proves (b). ¤

Next we introduce several weighted spaces of entire functions, where we denote the space of
all entire functions on Cn by H(Cn).

8. Definition. Let ω be a weight function and Ω ⊂ Rn a convex open set.
(a) For a compact subset K of Ω its support functional hK is defined as hK(x) := supy∈K〈x, y〉.
(b) A{ω}(Ω) := {f ∈ H(Cn): There exists K ⊂ Ω compact such that

‖f‖K,m := sup
z∈Cn

|f(z)| exp(−hK(Im z)− 1
m

ω(z)) < ∞ for each m ∈ N}.

(c) A{ω}(n) := {f ∈ H(Cn) : ‖f‖{0},m < ∞ for each m ∈ N}.
(d) A{ω},0(n) := {f ∈ H(Cn): For each m ∈ N:

‖f‖m := sup
z∈Cn

|f(z)| exp(− 1
m

(| Im z|+ ω(z))) < ∞}.

(e) A(ω)(Ω) := {f ∈ H(Cn): There exist K ⊂ Ω compact and m ∈ N:

qK,m(f) := sup
z∈Cn

|f(z)| exp(−hK(Im z)−mω(z)) < ∞}.

(f) A(ω)(n) := {f ∈ H(Cn): There exists m ∈ N : q{0},m(f) < ∞}.
(g) A(ω),0(n) := {f ∈ H(Cn): For each m ∈ N there exists k ∈ N:

ρm,k(f) := sup
z∈C

|f(z)| exp(− 1
m
| Im z| − kω(z)) < ∞}.

If we endow the spaces in Definition 8 with their natural topology, then the following can be
checked by standard arguments: A{ω}(Ω) is an (LF)-space, A{ω}(n) and A{ω},0(n) are Fréchet
spaces, A(ω)(Ω) and A(ω)(n) are (LB)-spaces, and A(ω),0(n) is a projective limit of (LB)-spaces.

Notation. If we use the index ∗ in a statement, this means that the statement is valid if at all
places ∗ is replaced by either (ω) or by {ω}. Using this notation we recall the following result
from Heinrich and Meise [7], Theorem 3.6 and 3.7, where the Roumieu case was proved already
in Rösner [12], Theorem 2.19.

9. Theorem. For each weight function ω and each convex open set Ω in Rn the Fourier-Laplace
transform

F : E ′∗(Ω) → A∗(Ω), F(µ) : z 7→ 〈µx, exp(−i〈x, z〉)〉, z ∈ Cn

is a linear topological isomorphism.

10. Corollary. For each quasianalytic weight function ω and each n ∈ N the Fourier-Laplace
transform

F : E ′∗,0(n) → A∗,0(n), F(µ) : z 7→ 〈µx, exp(−i〈x, z〉)〉, z ∈ Cn,

is a linear topological isomorphism.

Proof. Since ω is quasianalytic, the inductive topology of E∗,0(n) is Hausdorff. Hence E{ω},0(n)
is an (LB)-space, while E(ω),0(n) is an (LF)-space.
To prove the assertion in the case E ′{ω},0(n), note first that by Theorem 9 for each k ∈ N the
Fourier-Laplace transform

Fk : E ′{ω}(B(0,
1
k
)) → A{ω}(B(0,

1
k
))



ON THE THEOREM OF BOREL FOR QUASIANALYTIC CLASSES 5

is a linear topological isomorphism. Hence the induced map

F : proj←k E ′{ω}(B(0,
1
k
)) → proj←k A{ω}(B(0,

1
k
))

is a linear topological isomorphism, too. Obviously, a fundamental system for the continu-
ous semi-norms on proj←k A{ω}(B(0, 1

k )) is given by (‖ · ‖B(0,ε),m)ε>0,m∈N. Since the system
(‖ · ‖m)m∈N is cofinal in this system, we get that proj←k A{ω}(B(0, 1

k )) = A{ω},0(n).
On the other hand it is easy to check that the inductive spectrum (Em, jm,p)m∈N of Banach
spaces, where

Em := {f ∈ C∞(B(0, 1/m)) : σm(f) := sup
x∈B(0,1/m)

|f (α)(x)| exp(− 1
m

ϕ∗(m|α|)) < ∞}

and where jm,p : Em → Ep denotes the restriction map, is equivalent to the inductive spectrum
(E{ω}, (B(0, 1

k )))k∈N. Hence E{ω},0(n) is a (DFS)-space and

E ′{ω},0(n) = proj←m E′
m = proj←k E ′{ω}(B(0,

1
k
)),

which proves the assertion in the case E ′{ω},0(n).

For the case E ′(ω),0(n) the proof can be given similarly, again using Theorem 9 in the steps. ¤

11. Proposition. For each weight function ω and each n ∈ N the map

T : Λ′∗(n) → A∗(n), T (y) :=
∑

α∈Nn
0

(−i)|α|yαzα, z ∈ Cn,

is a linear topological isomorphism.

Proof. To show that T is well-defined on Λ′(ω)(n), note that by Lemma 7 (a) we have

Λ′(ω)(n) = {y ∈ CNn
0 : There exists k ∈ N : ‖y‖k :=

∑

α∈Nn
0

|yα| exp(kϕ∗(
|α|
k

)) < ∞}.

Now fix y ∈ Λ′(ω)(n) and choose m ∈ N such that ‖y‖m < ∞. Then we get

q{0},m(T (y)) = sup
z∈Cn

|
∑

α∈Nn
0

(−i)|α|yαzα| exp(−mω(z))

≤
∑

α∈Nn
0

|yα| exp( sup
z∈CN

(|α| log |z| −mω(z)))

≤
∑

α∈Nn
0

|yα| exp(m(sup
ξ≥0

(
|α|
m

ξ − ϕ(ξ))))

≤
∑

α∈Nn
0

|yα| exp(mϕ∗(
|α|
m

)) = ‖y‖m.

Hence T (y) is in A(ω)(n). Moreover, this estimate shows that the map T is continuous. Since
T is obviously injective, it remains to show that T is surjective. To prove this, let f ∈ A(ω)(n)
be given. Then there exists m ∈ N such that q{0},m(f) < ∞. Next we consider the Taylor
expansion of f ,

f(z) =
∑

α∈Nn
0

fαzα,
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where

fα :=
( 1

2π

)n
∫

. . .

∫

|ζj |=r

f(ζ)
ζα1+1
1 . . . ζαn+1

n

dζ1 · · · dζn

for any number r > 0. Since ω satisfies condition 2 (α), we can choose p ∈ N and c > 0 such
that ω(

√
nt) ≤ pω(t) + c. Using this we can estimate fα for r > 1 as follows:

|fα| ≤ 1
r|α|

exp(mω(reit, . . . , reit))q{0},m(f)

≤ q{0},m(f) exp(−|α| log r + mω(
√

nr))

≤ q{0},m(f)emc exp(−|α| log r + mpω(r)).

Since this estimate holds for each r > 1, we can take the infimum over r > 1 and get

|fα| ≤ emcq{0},m(f) exp(−mpϕ∗(
|α|
mp

)).

Hence (fα)α∈Nn
0

is in Λ′(ω)(n) and consequently y := ((−i)−|α|fα)α∈Nn
0

is also in Λ′(ω)(n). Since
T (y) = f , we proved that T is surjective. Moreover, the estimates above prove also the continuity
of T−1.
Using Lemma 7 (b) and also a slight variation of the arguments above it follows that the assertion
of the Proposition also holds for ∗ = {ω}. ¤

In the sequel we will use the following Proposition that follows from Hörmander [6], Theo-
rem 4.4.2.

12. Proposition. For each n ∈ N there exist C1, C2 > 0 such that for each plurisubharmonic
function u : Cn → R and each a ∈ Cn there exists f ∈ H(Cn) that satisfies

f(a) = exp( inf
|w−a|≤1

u(w)− n log(1 + |a|2)) and

|f(z)| ≤ C1 exp( sup
|w−z|≤1

u(w) + C2 log(1 + |z|2)), z ∈ Cn.

13. Proposition. Let ω be a quasianalytic weight function. Then for each n ∈ N the space
O0(n) is strictly contained in E{ω},0(n) if and only if lim inft→∞

ω(t)
t = 0.

Proof. Since ω satisfies condition 2 (β), there exists A ≥ 1 such that ω(t) ≤ At+A for all t ≥ 0.
If lim inft→∞ ω(t)/t > 0 then there exists B ≥ 1 such that ω(t) ≥ Bt + B for all t ≥ 0. From
these two estimates it follows easily that for y ≥ 0 we have

(2) ϕ∗ω(y) ≤ Bϕ∗t (
y

B
)−B and ϕ∗t (y) ≤ Aϕ∗ω(

y

A
)−A.

Here ϕt(x) = ex denotes the convex function associated to the weight σ(t) = t. Now (2) implies
that E{ω}(Ω) = A(Ω) for each open set Ω ⊂ Rn. Hence we have E{ω},0(n) = O0(n) whenever
lim inft→∞ ω(t)/t > 0. Note that due to analytic continuation, O0(n) is equal to the space
H({0}) of all germs of holomorphic functions at the origin. Hence O0(n) is a (DFN)-space.

To prove that E{ω},0(n) = O0(n) implies lim inft→∞ ω(t)/t > 0, we argue by contradiction and
assume that E{ω},0(n) = O0(n) and lim inft→∞ ω(t)/t = 0. Then we choose a sequence (tj)j ∈ N
in ]2,∞[ which satisfies

(3) ω(tj) ≤ 1
j
tj and tj+1 > 2tj , j ∈ N.

Next note that from the second estimate in (2) we get that for each open set Ω in Rn we
have A(Ω) ⊂ E{ω}(Ω) with continuous inclusion map. This implies that O0(n) is continuously
embedded in E{ω},0(n). Since it is easy to derive from Corollary 10 that E{ω},0(n) is a (DFS)-
space, the open mapping theorem implies that O0(n) = E{ω},0(n) as locally convex spaces. In
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particular, they have the same topological dual space. By Corollary 10 this implies that for
σ : t 7→ t, the spaces A{ω},0(n) and A{σ},0(n) are equal as Fréchet spaces. Hence the identity
map id : A{σ},0(n) → A{ω},0(n) is continuous. Consequently, the following holds:
There exist p ∈ N, p ≥ 2, and C > 0 such that

(4) ‖f‖ω,1 ≤ C‖f‖σ,p−1, f ∈ A{σ},0(n).

Recall that here we use the notation

‖f‖ω,1 := sup
z∈Cn

|f(z)| exp(−| Im z| − ω(z))

and

‖f‖σ,p−1 := sup
z∈Cn

|f(z)| exp(− 1
p− 1

|z|).

Next we fix j ∈ N and we define ϕj : R→ R by

(5) ϕj(x) =
1
p
ex, x ∈ ]−∞, log(2tj)] and ϕj(x) =

2tj
p

(x− log(2tj)) +
2tj
p

, x > log(2tj).

Furthermore define uj : Cn \ {0} → R, uj(z) := ϕj(log |z|). Since ϕj is convex and continuous,
the continuous extension of uj to Cn (also denoted by uj) is plurisubharmonic on Cn. Now we
apply Proposition 12 to aj := (tj , 0, . . . , 0) and u = uj to get fj ∈ H(Cn) satisfying

fj(aj) = exp( inf
|w−aj |≤1

uj(w)− n log(1 + t2j ))

|fj(z)| ≤ C1 exp( sup
|w−z|≤1

uj(w) + C2 log(1 + |z|2)), z ∈ Cn.
(6)

Since uj(t) = t/p for 0 ≤ t ≤ 2tj it follows that for large j ∈ N we have

inf{uj(w) : |w − aj | ≤ 1} ≥ (tj − 1)/p.

Hence the first estimate in (6) implies the existence of j0 ∈ N such that for each j ≥ j0:

(7) fj(aj) ≥ exp
( tj

p
(1− 1

tj
− np

log(1 + t2j )
tj

)
)
≥ exp(tj/2p).

To estimate the second inequality in (6) further, note that by the definition of uj we have for
z ∈ Cn with |z| ≤ 2tj − 1

sup{uj(w) : |w − z| ≤ 1} ≤ |z|+ 1
p

= uj(z) +
1
p
.

For z ∈ Cn with |z| ≥ 2tj + 1 we get by the mean-value theorem:

sup
|w−z|≤1

{uj(w) : |w − z| ≤ 1} ≤ sup
|w−z|≤1

{2tj
p

(log |w| − log(2tj)) +
2tj
p
}

= uj(z) + sup{2tj
p

(log |w| − log |z|) : |w − z| ≤ 1}

= uj(z) +
2tj
p

(log(|z|+ 1)− log |z|) ≤ uj(z) +
2tj
p|z| ≤ uj(z) +

1
p
.

Finally, for z ∈ Cn with 2tj − 1 ≤ |z| ≤ 2tj + 1 and |w − z| ≤ 1, we get

uj(w) ≤ uj(2tj + 1) = ϕj(log(2tj + 1)) =
2tj
p

(log(2tj + 1)− log(2tj)) +
2tj
p
≤

≤ 1
p

+
2tj
p

= ϕ(log(2tj − 1)) +
2
p

= uj(z) +
2
p
.
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Hence we get from (6):

(8) |fj(z)| ≤ C1 exp(uj(z) +
2
p

+ C2 log(1 + |z|2)), z ∈ Cn.

From this estimate and the definition of uj , it follows that fj is in fact a polynomial. Conse-
quently, fj ∈ Aσ,0(n). Since uj(t) ≤ 1

p t for all t ≥ 0 we get from (8) the existence of C3 > 0 such
that

|fj(z)| ≤ C1e
2/p exp(|z|(1

p
+ C2 log(1 + |z|2))) ≤ C3 exp(

1
p− 1

|z|), z ∈ Cn,

and hence
‖fj‖σ,p−1 ≤ C3.

Now we get from (4) and (7) that for j ≥ max(j0, 4p)

CC3 ≥ ‖fj‖1,ω ≥ fj(aj) exp(−ω(aj)) ≥ exp(tj(
1
2p
− ω(tj)

tj
)) ≥ exp(

tj
4p

).

Since tj tends to infinity as j tends to infinity, this inequality is a contradiction. Hence we
showed that O0(n) = E{ω},0(n) implies lim inft→∞

ω(t)
t > 0. ¤

14. Theorem. Let ω be a quasianalytic weight function. Then the Borel map

B : E{ω},0(n) → Λ{ω}(n), B(f) := (f (α)(0))α∈Nn
0

is surjective if and only if lim inft→∞
ω(t)

t > 0.

Proof. Since B is linear and continuous, its adjoint Bt : Λ′{ω}(n) → E ′{ω},0(n) is continuous, too.
Now note that by Corollary 10 the Fourier-Laplace transform F : E ′{ω},0(n) → A{ω},0(n) is a
linear topological isomorphism, and that by Proposition 11 the map T : Λ′{ω}(n) → A{ω}(n) is
a linear topological isomorphism. Hence the map F ◦ Bt : Λ′{ω}(n) → A{ω},0(n) also has this
property. To compute it, fix y = (yα)α∈Nn

0
in Λ′{ω}(n). Then we get

F ◦Bt(y) = 〈Bt(y)x, exp(−i〈x, y, 〉)〉 = 〈y, Bx(exp(−i〈x, z〉))〉 =
∑

α∈Nn
0

yα(−i)|α|zα = T (y).

This shows that F◦Bt = J◦T , where J denotes the obvious inclusion map A{ω}(n) ↪→ A{ω},0(n).

If we assume now that lim inft→∞ ω(t)/t > 0 then this and condition 2 (β) imply the existence
of A ∈ N such that

t ≤ Aω(t) + A and ω(t) ≤ At + A, t ≥ 0.

From these two estimates we get for each k ∈ N:

(9)
1
k
ω(z) ≤ 1

k
(| Im z|+ ω(z)) ≤ 1

k
(1 + A)|z|+ A

k
≤ 1 + A

k
Aω(z) +

A(1 + A) + A

k
.

It is easy to check that these estimates imply that

A{ω},0(n) = A{ω}(n)

as Fréchet spaces. Hence Bt = F−1 ◦J ◦T is a linear topological isomorphism. Since the spaces
Λ{ω}(n) and E{ω},0(n) are reflexive, it follows that B is an isomorphism and hence surjective,
whenever lim inft→∞ ω(t)/t > 0.

To show that B is not surjective for each quasianalytic weight function that satisfies
lim inft→∞ ω(t)/t = 0, we argue by contradiction, i.e., we assume that the latter condition
holds and that B is surjective. Then the considerations above show that J = F ◦Bt ◦ T−1 is a
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linear topological isomorphism. Hence A{ω}(n) and A{ω},0(n) are equal as Fréchet spaces.
Next we define for m ∈ N the Banach spaces

Em := {f ∈ H(Cn) : ‖f‖m := sup
z∈Cn

|f(z)| exp(− 1
m

(| Im z|+ ω(z))) < ∞}

and

E0
m = {f ∈ H(Cn) : lim

|z|→∞
f(z) exp(− 1

m
(| Im z|+ ω(z))) = 0} ⊂ Em.

Then A{ω},0(n) = proj←m E0
m and the projective spectrum is reduced, i.e., A{ω},0(n) is dense

in E0
m for each m ∈ N. To get this, we note first that for each m ∈ N the function ϕ(z) :=

1
m(| Im z|+ω(z)) satisfies the conditions (i)-(v) in Taylor [13], section 3. Since ω is quasianalytic,
ϕ also satisfies condition (3.4) in [13]. Hence [13], Theorem 6, implies that the polynomials are
dense in E0

m. Of course, this shows that A{ω},0(n) is dense in E0
m. From this fact and the

identity A{ω}(n) = A{ω},0(n), we get in particular the existence of m ∈ N and C > 0 such that

(10) sup
z∈Cn

|f(z)|e−ω(z) = ‖f‖{0},1 ≤ C‖f‖m = sup
z∈Cn

|f(z)| exp(− 1
m

(| Im z|+ ω(z)))

holds for all f ∈ A{ω},0(n) and even for all f ∈ E0
m. See Definition 8 (b) and 8 (c) for the

definition of ‖.‖{0},1.
To show that the estimate in (10) does not hold for all f ∈ E0

m, we choose K ∈ N such that
condition 2 (α) holds for K. This implies, for each a, b ≥ 0, that ω(a+b) ≤ Kω(a)+Kω(b)+K.
Since we assume that lim inft→∞ ω(t)/t = 0, we can find a sequence (tj)j∈N in [1,∞[ such that

(11) ω(tj) ≤ 1
j
tj and tj+1 > 2tj , j ∈ N.

Next we apply Proposition 12. with aj := (itj , 0, . . . , 0) and u : z 7→ 1
p(| Im z| + ω(z)), where

p := (K + 1)(m + 1) to get fj ∈ H(Cn) which satisfies

fj(aj) = exp
(

inf
|w−aj |≤1

uj(w)− n log(1 + |aj |2)
)
,

|fj(z)| ≤ C1 exp
(

sup
|w−z|≤1

uj(w) + C2 log(1 + |z|2)
)
.

(12)

Now note that

inf
|w−aj |≤1

(| Imw|+ ω(w)) ≥ | Im aj | − 1 +
1
K

ω(aj)− ω(1)− 1 = tj +
1
K

ω(tj)− (2 + ω(1))

and

sup
|w−z|≤1

| Im w|+ ω(w) ≤ | Im z|+ 1 + Kω(z) + Kω(1) + K.

From these estimates and (12) we now get the existence of j0 ∈ N such that for j ≥ j0 we have

fj(aj) ≥ exp(
1
p
tj − (2 + ω(1))− n log(1 + t2j )) ≥ exp(

tj
2p

) = exp(
tj

2(K + 1)(m + 1)
).

|fj(z)| ≤ C1e
(1+K+ω(1))/p exp(

1
p
| Im z|+ K

p
ω(z) + C2 log(1 + |z|2))

≤ C3 exp(
K + 1

p
(| Im z|+ ω(z))) = C3 exp(

1
m + 1

(| Im z|+ ω(z))),

(13)



10 J. BONET AND R. MEISE

where we used condition 2 (γ) to get the last estimate. The last estimate implies that fj is in
E0

m and that ‖fj‖m ≤ C3 for all j. From (13) and (10) we now get for j ≥ j0

CC3 ≥ C‖fj‖m ≥ ‖fj‖{0},1 ≥ |fj(aj)| exp(−ω(aj))

≥ exp
(
tj(

1
2(K + 1)(m + 1)

− ω(tj)
tj

)
)
.

However, this estimate does not hold for large j, since by (11), the sequence on the right hand
side above tends to infinity. Hence B is not surjective if the quasianalytic weight function
satisfies lim inft→∞ ω(t)/t = 0. ¤

Combining Proposition 13 and Theorem 14 we get the following.

15. Corollary. Let ω be a quasianalytic weight function. Then the Borel map

B : E{ω},0(n) → Λ{ω}(n), B(f) := (fα(a))α∈Nn
0
,

is surjective if and only if E{ω},0(n) = O0(n).

Remark. Corollary 15 shows that a classical result of Carleman for the quasianalytic classes
E{Mp} also holds if one defines the classes using weight functions ω. For the statement and a
modified proof of Carleman’s result we refer to Thillez [14], Theorem 3.

16. Corollary. Let ω be a quasianalytic weight function. Then for each open set Ω in Rn which
contains the origin, the Borel map

B : E{ω}(Ω) → Λ{ω}(n), B(f) := (f (α)(0))α∈Nn
0

is not surjective.

Proof. If ω satisfies lim inft→∞ ω(t)/t = 0, this follows immediately from Theorem 14, since
E{ω}(Ω) is a subspace of E{ω},0(n).
If lim inft→∞ ω(t)/t > 0 then we showed at the beginning of the proof of Proposition 13 that
E{ω}(Ω) = A(Ω) for each open set Ω in Rn. If 0 ∈ Ω then we choose r > 0 such that B(0, r) ⊂ Ω
and we define

g : B(0, r) → R, g(x) := exp
( −1

r2 − |x|2
)
.

We also define b ∈ Λ{ω}(n) by bα := g(α)(0), α ∈ Nn
0 , and we claim that b is not in the range of

B. To see this, assume that there is f ∈ E{ω}(Ω) = A(Ω) with B(f) = b. Then the uniqueness
theorem for real-analytic functions implies that f = g on the connected component of Ω which
contains B(0, r). Hence f is a real-analytic extension of g to a neighborhood of B(0, r). Since
no such extension exists, the map B : E{ω}(Ω) → Λ{ω}(n) is not surjective. ¤
17. Remark. Corollary 16 shows in particular that the Borel map

B : A(Rn) = E{p!}(Rn) → Λ{p!}(n) = Λ{t}(n)

is not surjective. This shows that the statement of Chung and Kim [5], Theorem 3.2, is not
correct.

18. Proposition. Let ω be a quasianalytic weight function. Then for each n ∈ N the space
H(Cn) is strictly contained in E(ω),0(n) if and only if lim inft→∞ ω(t)/t = 0.

Proof. If lim inft→∞ ω(t)/t > 0 then we showed in the proof of Proposition 13 that (2) holds.
This implies that for σ : t 7→ t we have E(ω),0(n) = E(σ),0(n). Since E(σ)(Ω) = H(Cn) for each
open set Ω, it follows that E(ω),0(n) = H(Cn).

To prove that E(ω),0(n) = H(Cn) implies lim inft→∞ ω(t)/t > 0, we argue by contradiction and
assume that lim inft→∞ ω(t)/t = 0. Then we choose a sequence (tj)j∈N in ]1,∞[ which satisfies
(3). Since H(Cn) is continuously embedded in E(ω)(Ω) and hence in E(ω),0(n), the open mapping
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theorem implies that the topologies of H(Cn) = E(σ),0(n) and E(ω),0(n) coincide. We apply
Corollary 10 to conclude that the spaces A(σ),0(n) = A(σ)(n) and A(ω),0(n) are equal as locally
convex spaces. Hence the identity map id : A(σ)(n) → A(ω),0(n) is continuous. This implies
that for each bounded set B in A(σ)(n), B is bounded in A(ω),0(n). In particular, for each m ∈ N
there exist k ∈ N and C > 0 such that for each f ∈ A(σ)(n) which satisfies |f(z)| ≤ exp(2|z|),
z ∈ Cn, also satisfies

(14) |f(z)| ≤ C exp(
1
m
| Im z|+ kω(z)), z ∈ Cn.

We fix m = 1 and choose k and C accordingly. Then we define ϕj : R→ R by

(15) ϕj(x) := ex, x ∈ ]−∞, log(2tj)] and ϕj(x) := 2tj(x− log(2tj)) + 2tj , x > log(2tj).

Furthermore we define uj : Cn \ {0} → R, uj(z) := ϕj(log |z|). Since ϕj is convex and
continuous, the continuous extension of uj to Cn (also denoted by uj) is plurisubharmonic on
Cn. Now we apply Proposition 12 to aj := (tj , 0, . . . , 0) and u = uj to get fj ∈ H(Cn) satisfying

fj(aj) = exp( inf
|w−aj |≤1

u(w)− n log(1 + t2j ))

|fj(z)| = C1 exp( sup
|w−z|≤1

u(w) + C3 log(1 + |z|2)), z ∈ Cn.
(16)

As in the proof of Proposition 13 it follows from these estimates that there exists j0 ∈ N that
for each j ≥ j0 we have

fj(aj) ≥ exp
(
tj(1− 1

tj
(1 + n log(1 + tj)))

)
≥ exp(tj/2),

|fj(z)| ≤ C1 exp(uj(z) + 2 + C2 log(1 + |z|2)), z ∈ Cn.

(17)

Since ϕj(x) ≤ ϕσ(x) for all x ∈ R, it follows from (17) that there exists C3 > 0 such that

|fj(z)| ≤ C3 exp(2|z|), z ∈ Cn.

Now our assumption implies that from (14) and (17) we get for each j ≥ j0

C3C ≥ sup
z∈Cn

|fj(z)| exp(−| Im z| − kω(z)) ≥ fj(aj) exp(−kω(tj)) ≥ exp(tj(
1
2
− kω(tj)

tj
)).

Since we assumed that limj→∞ ω(tj)/tj = 0 and since the sequence (tj)j∈N tends to infinity, this
estimate cannot hold for large j ∈ N. This contradiction completes the proof of the Proposition.

¤

19. Theorem. Let ω be a quasianalytic weight function. Then the Borel map

B : E(ω),0(n) → Λ(ω)(n), B(f) := (f (α)(0))α∈Nn
0

is surjective if and only if lim inft→∞ ω(t)/t > 0.

Proof. Since B is linear and continuous, its adjoint Bt : Λ′(ω)(n) → E ′(ω),0(n) is continuous, too.
By Corollary 10 the Fourier-Laplace transform F : E ′(ω),0(n) → A′(ω),0(n) is a linear topological
isomorphism and by Proposition 11 the map T : Λ′(ω)(n) → A(ω)(n) has the same property.
Consequently, F ◦Bt : Λ′(ω)(n) → A(ω),0(n) is a linear topological isomorphism. As in the proof
of Theorem 14. we get that F ◦Bt = J ◦T , where J : A(ω)(n) ↪→ A(ω),0(n) denotes the inclusion
map.

If we assume that lim inft→∞ ω(t)/t > 0 then it follows again that the estimates (9) hold. It
is easy to check that they imply

A(ω),0(n) = A(ω)(n).
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Hence Bt = F−1 ◦ J ◦ T is a linear topological isomorphism. Since the spaces Λ(ω)(n) and
E(ω),0(n) are reflexive, B is an isomorphism whenever lim inft→∞ ω(t)/t > 0.

To show that B is not surjective for each quasianalytic weight function that satisfies
lim inft→∞ ω(t)/t = 0, we argue by contradiction, i.e., we assume that the latter condition
holds and that B is surjective. Since ω is quasianalytic, B is also injective. Hence the
open mapping theorem implies that B is a linear topological isomorphism. Now we apply
Gothendieck’s factorization theorem (see Meise and Vogt [10], 24.33) to get q ∈ N such that
B−1(Λ(ω)(n)) ⊂ E(ω)(B(0, 1

q )). Since the quasianalyticity of ω implies that for k > q the re-
striction ρq,k : E(ω)(B(0, 1

q )) → E(ω)(B(0, 1
k )) is injective, we get that E(ω),0(n) = E(ω)(B(0, 1

q )).
Moreover, if we define for m ∈ N

E(ω),m(n) := {f ∈ C∞(B(0, 1/m)) : For each k ∈ N : pk,m(f) < ∞}
and

A(ω),m(n) := {f ∈ H(Cn) : There is k ∈ N : ‖f‖k := sup
z∈Cn

|f(z)| exp(− 1
m
| Im z| − kω(z)) < ∞}

then we can choose m ∈ N, m > q, such that E(ω),0(n) = E(ω),m(n). Then

Bm : E(ω),m(n) → Λ(ω)(n), Bm = B|E(ω),m(n)

is a linear topological isomorphism. Next note that the proof of Meise and Taylor [9], Proposi-
tion 3.6, shows also in the present case that the Fourier-Laplace transform

F : E ′(ω),m(n) → A(ω),m(n), F(µ)[z] := 〈µx, exp(−i〈x, z〉)〉,
is surjective. From the above it follows that F is in fact an isomorphism. As in the first part
of the proof we now get that F ◦ Bt

m = Jm ◦ T , where Jm denotes the inclusion of A(ω)(n)
in A(ω),m(n). Hence Jm is a linear topological isomorphism. Since A(ω)(n) and A(ω),m(n) are
(DFN)-spaces, it follows that each set B which is bounded in A(ω),m(n) is bounded in A(ω)(n).
Now choose K ∈ N such that condition 2 (α) holds for ω. Then define

B := {f ∈ A(ω),m(n) : ‖f‖K+1 ≤ 1}.
Since B is bounded in A(ω),m(n), there must exist l ∈ N such that

(18) sup
f∈B

sup
z∈Cn

|f(z)| exp(−lω(z)) < ∞.

Since we assumed that lim inft→∞ ω(t)/t = 0, we can choose a sequence (tj)j∈N in [1,∞[ that
satisfies (11). Then we apply Proposition 12 with aj = (itj , 0, . . . , 0) and u(z) := 1

m | Im z|+ω(z)
to get fj ∈ H(Cn) satisfying

fj(aj) ≥ exp( inf
|w−aj |≤1

u(w)− n log(1 + t2j ))

|fj(z)| ≤ C1 exp( sup
|w−z|≤1

u(w) + C2 log(1 + |z|2)).

As in the proof of Theorem 14 these estimates imply the existence of j0 ∈ N such that for j ≥ j0

we have

(19) fj(aj) ≥ exp(
1
m

tj − 2 + ω(1)
m

− 1
K

ω(tj)) ≥ exp(tj/2m)

|fj(z)| ≤ C1 exp(
1
m
| Im z|+ 1

m
+ Kω(z) + Kω(1) + K + C2 log(1 + |z|2))

≤ C3 exp(
1
m
| Im z|+ (K + 1)ω(z)), z ∈ Cn.

(20)
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From (20) we see that the sequence (fj)j∈N is in C3B. Hence we can apply (18), which gives

∞ > sup
j∈N

sup
z∈Cn

|fj(z)| exp(−lω(z))

≥ sup
j≥j0

|fj(aj)| exp(−lω(aj)) ≥ sup
j≥j0

exp(tj(
1

2m
− lω(tj)

tj
)).

Since the right hand side of this estimate tends to infinity as j tends to infinity, we derived a
contradiction. ¤
20. Corollary. Let ω be a quasianalytic weight function. Then the Borel map

B : E(ω),0(n) → Λ(ω)(n)

is surjective if and only if E(ω),0(n) = H(Cn).
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