Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions

José Bonet, Mikael Lindström and Elke Wolf

Abstract

We investigate weighted composition operators that attain their norm on weighted Banach spaces of holomorphic functions on the unit disc of type H^{∞} . Applications for composition operators on weighted Bloch spaces are given.

1 Introduction and Notation

Let ϕ and ψ be analytic maps on the open unit disk \mathbb{D} of the complex plane \mathbb{C} such that $\phi(\mathbb{D}) \subset \mathbb{D}$ and ψ does not coincide with the function zero. These maps induce on the space $H(\mathbb{D})$ of analytic functions on \mathbb{D} , via composition and multiplication, a linear weighted composition operator $C_{\phi,\psi}$ defined by $(C_{\phi,\psi})(f) = \psi(f \circ \phi)$. Operators of this type have been studied on various spaces of analytic functions. For a discussion of composition operators on classical spaces of analytic functions we refer the reader to the excellent monographs [8] and [16].

Recall that a bounded linear operator $T: X \to Y$ between Banach spaces X and Y is said to attain its norm on X if there exists $f \in X$ with norm 1 such that ||T|| = ||Tf||. We say that a function f with these properties is an *extremal function* for the norm of T. James, see e.g. [9], proved that a Banach space X is reflexive if and only if every compact operator on X is norm-attaining.

Starting with the paper of Hammond [10] in the setting of the Hardy space H^2 , norm-attaining composition operators have been studied on various spaces and by several authors. In particular, Martín [14] characterized norm-attaining composition operators acting on the classical Bloch space \mathcal{B} as well as on the little Bloch space \mathcal{B}_0 . In this note, inspired by her work, we extend her results to the setting of weighted composition operators acting on weighted Banach spaces of holomorphic functions defined below.

A weight v on \mathbb{D} is a strictly positive continuous function on \mathbb{D} which is radial, i.e. $v(z) = v(|z|), z \in \mathbb{D}, v(r)$ is decreasing on [0, 1] and satisfies $\lim_{r \to 1} v(r) = 0$. We associate with a weight v the weighted Banach spaces of holomorphic functions

$$H_v^\infty := \{f \in H(\mathbb{D}); \ \|f\|_v = \sup_{z \in \mathbb{D}} v(z) |f(z)| < \infty\}$$

and

$$H^0_v := \{f \in H^\infty_v; \ \lim_{|z| \to 1-} v(z) |f(z)| = 0\},$$

both endowed with norm $\|.\|_v$. The spaces H_v^{∞} and H_v^0 are not reflexive; see [6, 13]. Spaces of this type and composition operators defined on them have been studied thoroughly. See e.g. [1, 3, 4, 5, 7, 13, 15] and the references therein.

²⁰¹⁰ Mathematics Subject Classification. Primary: 47H33, Secondary: 46E15, 47B38

 $Key\ words\ and\ phrases.$ Weighted composition operators; norm attaining operators; wieghted Banach spaces of holomorphic functions; Bloch spaces.

The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200 and by GV project Prometeo/2008/101.

Our main results are Theorems 2.3 and 3.1. Theorem 2.3 asserts that every bounded weighted composition operator on H_v^{∞} is norm attaining, whereas Theorem 3.1 characterizes the bounded weighted composition operators on H_v^0 which are norm attaining. Examples are provided. Our last section includes consequences for norm attaining composition operators on weighted Bloch spaces.

Here are examples of weights v(z) on \mathbb{D} :

- (1) The polynomial weights $v(z) = (1 |z|^2)^{\alpha}, \ \alpha > 0.$
- (2) The exponential weights $v(z) = \exp(-\frac{1}{(1-|z|)^{\alpha}}), \ \alpha > 0.$
- (3) The logarithmic weights $v(z) = (\log \frac{e}{1-r})^{-\alpha}, \ \alpha > 0.$

The so called *associated weight* (see [2]) is an important tool to study operators on weighted Banach spaces of analytic functions. For a weight v, the associated weight \tilde{v} is defined by

$$\tilde{v}(z) := (\sup\{|f(z)|; f \in H_v^{\infty}, ||f||_v \le 1\})^{-1} = (||\delta_z||_v)^{-1}, z \in \mathbb{D},$$

where δ_z denotes the point evaluation of z. By [2, Properties 1.2] we know that the associated weight is continuous, radial, $\tilde{v} \ge v > 0$ and that for each $z \in \mathbb{D}$ we can find $f_z \in H_v^{\infty}$, $||f_z||_v = 1$, such that $|f_z(z)|\tilde{v}(z) = 1$. It is also shown in [2, Observation 1.12] that $H_{\tilde{v}}^{\infty}$ coincides isometrically with H_v^{∞} . In particular, $||\cdot||_v = ||\cdot||_{\tilde{v}}$. Under the present assumptions on the weights, it is also true that H_v^0 coincides isometrically with H_v^0 ; see [4].

The norm of a bounded weighted composition operator $C_{\phi,\psi}: H^{\infty}_v \to H^{\infty}_w$, is given by

$$\|C_{\phi,\psi}\|_{H^{\infty}_{v}\to H^{\infty}_{w}} = \sup_{z\in D} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))}$$

See [4, 7, 15]. Moreover, by [7, 15], the essential norm (i.e. the distance to the compact operators) of a bounded composition operator $C_{\phi,\psi}: H_v^0 \to H_w^0$ is given by

$$\|C_{\phi,\psi}\|_{e,H^0_v \to H^0_w} = \limsup_{|z| \to 1^-} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))}.$$

2 Norm attaining weighted composition operators on H_v^{∞}

The following useful Lemma is due to Horokawa, Izuchi and Zheng [11].

Lemma 2.1 ([11]) Let $(z_m)_m \subset \mathbb{D}$ be a sequence such that $|z_m| \to 1$, when $m \to \infty$. Then there is a subsequence $(z_n)_n$ of $(z_m)_m$ and there is a sequence $(g_k)_k$ in the disc algebra $A(\mathbb{D})$ such that

(i)
$$\sup_{z\in\overline{\mathbb{D}}}\sum_{k=1}^{\infty}|g_k(z)| \le 1,$$

and

(ii)
$$|g_n(z_n)| > 1 - \left(\frac{1}{2}\right)^n$$
 for all $n \in \mathbb{N}$.

Proof. The statement follows from the proof of Theorem 3.1 in [11]. In the notation of [11], $g_k := c_k f^{m_k} g_{n_k}$ and the subsequences are selected by (3.3)-(3.6) in that paper.

Observe that in the notation of Lemma 2.1, we have $\sum_{k=1,k\neq n}^{\infty} |g_k(z_n)| \leq \frac{1}{2^n}$ for each $n \in \mathbb{N}$.

Lemma 2.2 Let v be a weight on \mathbb{D} . If $(z_m)_m \subset \mathbb{D}$ be a sequence such that $|z_m| \to 1$, when $m \to \infty$, then there is a subsequence $(z_n)_n$ of $(z_m)_m$ and there is $g \in H_v^\infty$, $||g||_v \leq 1$, such that $|g(z_n)|\tilde{v}(z_n) \to 1$, when $n \to \infty$.

Proof. We apply Lemma 2.1 to construct functions g_k in the disc algebra $A(\mathbb{D})$ satisfying conditions (i) and (ii). Now, for every k, find $f_k \in H_v^{\infty}$, $||f_k||_v = 1$, such that $f_k(z_k)\tilde{v}(z_k) = 1$ and put $g(z) := \sum_{k=1}^{\infty} g_k(z)f_k(z)$. It is easy to see that $g \in H(\mathbb{D})$ and $|g(z)|v(z) \leq 1$ for all $z \in \mathbb{D}$, so $g \in H_v^{\infty}$ and $||g||_v \leq 1$. Moreover, for all n,

$$\begin{aligned} |g(z_n)|\tilde{v}(z_n) &= |\sum_{k=1}^{\infty} g_k(z_n)f_k(z_n)\tilde{v}(z_n)| = |g_n(z_n)f_n(z_n)\tilde{v}(z_n) + \sum_{k=1,k\neq n}^{\infty} g_k(z_n)f_k(z_n)\tilde{v}(z_n)| \\ &\ge |g_n(z_n)| - \sum_{k=1,k\neq n}^{\infty} |g_k(z_n)| \ge 1 - \left(\frac{1}{2}\right)^n - \left(\frac{1}{2}\right)^n. \end{aligned}$$

Hence $1 - \frac{1}{2^{n-1}} \le |g(z_n)|\tilde{v}(z_n) \le 1$ for each $n \in \mathbb{N}$. This implies the conclusion.

Theorem 2.3 (a) Every bounded composition operator $C_{\phi,\psi} : H_v^{\infty} \to H_w^{\infty}$ is norm attaining. (b) A function $f \in H_v^{\infty}$ is extremal for $C_{\phi,\psi} : H_v^{\infty} \to H_w^{\infty}$ if and only if there is a sequence $(z_n)_n$ in \mathbb{D} such that $\lim_{n\to\infty} \tilde{v}(\phi(z_n))|f(\phi(z_n))| = 1$ and $\lim_{n\to\infty} \frac{|\psi(z_n)|w(z_n)|}{\tilde{v}(\phi(z_n))} = ||C_{\phi,\psi}||.$

Proof. (a) Since the norm of a bounded weighted composition operator $C_{\phi,\psi}: H_v^{\infty} \to H_w^{\infty}$, is given by $\|C_{\phi,\psi}\| = \sup_{z \in D} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))}$, we can find a sequence $(z_n) \subset \mathbb{D}$ and $b \in \overline{\mathbb{D}}$ with $\phi(z_m) \to b$ as $m \to \infty$ such that

$$\lim_{m} \frac{|\psi(z_m)|w(z_m)}{\tilde{v}(\phi(z_m))} = ||C_{\phi,\psi}||.$$

We distinguish two cases.

Case 1: |b| = 1. We apply Lemma 2.2 to $(\phi(z_m))_m$ to find a subsequence $(z_n)_n$ of $(z_m)_m$ and $g \in H_v^{\infty}$, $||g||_v \leq 1$, such that $\lim_{n\to\infty} g(\phi(z_n))\tilde{v}(\phi(z_n)) = 1$.

Case 2: |b| < 1. There exists a $g \in H_v^{\infty}$, $||g||_v = 1$, with $g(b)\tilde{v}(b) = 1$. Therefore

$$\lim_{n \to \infty} g(\phi(z_n))\tilde{v}(\phi(z_n)) = g(b)\tilde{v}(b) = 1$$

We have, in both cases,

$$\begin{split} ||C_{\phi,\psi}g|| &= \sup_{z \in \mathbb{D}} |\psi(z)||g(\phi(z))|w(z) \ge \lim_{n} \frac{|\psi(z_{n})||g(\phi(z_{n}))|\tilde{v}(\phi(z_{n}))w(z_{n})}{\tilde{v}(\phi(z_{n}))} = \\ &= \lim_{n} \frac{|\psi(z_{n})|w(z_{n})}{\tilde{v}(\phi(z_{n}))} = ||C_{\phi,\psi}||. \end{split}$$

This implies that $g \in H_v^{\infty}$, $||g||_v \leq 1$, is an extremal function for $C_{\phi,\psi}: H_v^{\infty} \to H_w^{\infty}$.

(b) The proof of part (a) shows that if $f \in H_v^{\infty}$, $||f||_v \leq 1$, satisfies that there is a sequence $(z_n)_n$ in \mathbb{D} such that $\lim_{n\to\infty} \tilde{v}(\phi(z_n))|f(\phi(z_n))| = 1$ and $\lim_n \frac{|\psi(z_n)|w(z_n)}{\tilde{v}(\phi(z_n))} = ||C_{\phi,\psi}||$, then f is an extremal function for $C_{\phi,\psi}: H_v^{\infty} \to H_w^{\infty}$.

Conversely, assume that $f \in H_v^{\infty}$, $||f||_v \leq 1$, satisfies

$$||C_{\phi,\psi}|| = ||C_{\phi,\psi}f||_w = \sup_{z \in \mathbb{D}} w(z)|\psi(z)||f(\phi(z))|.$$

Select a sequence $(z_n)_n$ in \mathbb{D} such that, for each $n \in \mathbb{N}$,

$$\left(1 - \frac{1}{n}\right) ||C_{\phi,\psi}|| < w(z_n)|\psi(z_n)||f(\phi(z_n))| \le ||C_{\phi,\psi}||.$$

Hence, for each $n \in \mathbb{N}$,

$$\left(1-\frac{1}{n}\right)\frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))} < w(z_n)|\psi(z_n)||f(\phi(z_n))|.$$

This implies $1 - \frac{1}{n} < \tilde{v}(\phi(z_n))|f(\phi(z_n))| \le 1$; the last inequality because $||f||_v = 1$. We get $\lim_{n\to\infty} \tilde{v}(\phi(z_n))|f(\phi(z_n))| = 1$. By the inequality above for $||C_{\phi,\psi}||$, we conclude

$$\lim_{n} \frac{|\psi(z_n)|w(z_n)}{\tilde{v}(\phi(z_n))} = ||C_{\phi,\psi}||.$$

3 Norm attaining weighted composition operators on H_v^0

Theorem 3.1 A bounded composition operator $C_{\phi,\psi}: H^0_v \to H^0_w$ is norm attaining if and only if there are $b \in \mathbb{D}$ and $(z_n)_n$ in \mathbb{D} with $\lim_{n\to\infty} \phi(z_n) = b$ such that

$$||C_{\phi,\psi}|| = \lim_{n \to \infty} \frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))},$$

and there is $f \in H_v^0, ||f||_v = 1$, (which is an extremal function) satisfying $\tilde{v}(b)f(b) = 1$.

Proof. Assume first that $C_{\phi,\psi}: H_v^0 \to H_w^0$ is norm attaining. There is $f \in H_v^0, ||f||_v = 1$, such that $||C_{\phi,\psi}|| = ||C_{\phi,\psi}f||_w$. Since $f \in H_v^0 = H_{\tilde{v}}^0$, there is $R \in]0, 1[$ such that $\tilde{v}(\zeta)|f(\zeta)| < 1/2$ for each $\zeta \in \mathbb{D}, |\zeta| > R$. If $z \in \mathbb{D}$ satisfies $|\phi(z)| > R$, then

$$w(z)|\psi(z)||f(\phi(z))| \le \frac{1}{2} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))} \le \frac{1}{2} ||C_{\phi,\psi}||.$$

Set $A := \{z \in \mathbb{D} \mid |\phi(z)| \le R\}$. We have

$$||C_{\phi,\psi}|| = ||C_{\phi,\psi}f||_w = \sup_{z \in A} w(z)|\psi(z)||f(\phi(z))|.$$

For each $n \in \mathbb{N}$ we select $z_n \in A$ with

$$\left(1 - \frac{1}{n}\right) ||C_{\phi,\psi}|| < w(z_n)|\psi(z_n)||f(\phi(z_n))| \le ||C_{\phi,\psi}f||_w = ||C_{\phi,\psi}||.$$

Passing to a subsequence if necessary, we may assume that $\lim_{n\to\infty} \phi(z_n) = b$, with $|b| \leq R < 1$, hence $b \in \mathbb{D}$. Moreover, for each $n \in \mathbb{N}$,

$$\left(1-\frac{1}{n}\right)\frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))} < w(z_n)|\psi(z_n)||f(\phi(z_n))|.$$

Thus, for each $n \in \mathbb{N}$,

$$1 - \frac{1}{n} < \tilde{v}(\phi(z_n))|f(\phi(z_n))| \le ||f||_v = 1$$

This implies $\tilde{v}(b)f(b) = 1 = \lim_{n \to \infty} \tilde{v}(\phi(z_n))|f(\phi(z_n))|$. From where it follows

$$\begin{aligned} ||C_{\phi,\psi}|| &= \lim_{n \to \infty} w(z_n) |\psi(z_n)| |f(\phi(z_n))| = \\ &= \lim_{n \to \infty} \frac{w(z_n) |\psi(z_n)|}{\tilde{v}(\phi(z_n))} \tilde{v}(\phi(z_n)) |f(\phi(z_n))| = \lim_{n \to \infty} \frac{w(z_n) |\psi(z_n)|}{\tilde{v}(\phi(z_n))} \end{aligned}$$

The proof of this implication is complete.

To prove the other implication, select $b \in \mathbb{D}$, $(z_n)_n$ and $f \in H^0_v$, $||f||_v = 1$, as in the assumption. We have

$$||C_{\phi,\psi}|| = \lim_{n \to \infty} \frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))} = \lim_{n \to \infty} w(z_n)|\psi(z_n)||f(\phi(z_n))|\frac{\tilde{v}(b)}{\tilde{v}(\phi(z_n))}\frac{|f(b)|}{f(\phi(z_n))|} = \lim_{n \to \infty} w(z_n)|\psi(z_n)||f(\phi(z_n))| \le ||C_{\phi,\psi}f||_w.$$

This implies that $f \in H_v^0$ is an extremal function for the operator $C_{\phi,\psi}: H_v^0 \to H_w^0$.

Corollary 3.2 Let v be a weight such that for each $b \in \mathbb{D}$ there is $f \in H_v^0, ||f||_v = 1$, such that $\tilde{v}(b)f(b) = 1$. If $C_{\phi,\psi} : H_v^0 \to H_w^0$ is a bounded operator such that $||C_{\phi,\psi}||_e < ||C_{\phi,\psi}||$ (for example if $C_{\phi,\psi}$ is compact and non-zero), then $C_{\phi,\psi} : H_v^0 \to H_w^0$ is norm attaining.

Proof. According to [15, Theorem 2.2], as $||C_{\phi,\psi}||_e < ||C_{\phi,\psi}||$,

$$\limsup_{|z| \to 1^{-}} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))} < \sup_{z \in \mathbb{D}} \frac{w(z)|\psi(z)|}{\tilde{v}(\phi(z))}.$$

Select $(z_m)_m$ in \mathbb{D} such that $||C_{\phi,\psi}|| = \lim_{n\to\infty} \frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))}$. By the inequality above, there is a subsequence $(z_n)_n$ of $(z_m)_m$ such that $z_n \to a \in \mathbb{D}$ as $n \to \infty$. Put $b = \phi(a)$. By assumption, there is $f \in H_v^0$, $||f||_v = 1$, such that $\tilde{v}(b)f(b) = 1$. We can apply Theorem 3.1 to conclude that $f \in H_v^0$ is an extremal function for $C_{\phi,\psi} : H_v^0 \to H_w^0$.

We discuss now examples of weights satisfying the assumption of Corollary 3.2:

(**)
$$\forall b \in \mathbb{D} \ \exists f \in H_v^0, \ ||f||_v = 1$$
, such that $\tilde{v}(b)f(b) = 1$.

First recall the following notation: For $a \in \mathbb{D}$, we denote by $\sigma_a(z) := \frac{a-z}{1-\overline{a}z}$. We have $\sigma'_a(z) = \frac{|a|^2-1}{(1-\overline{a}z)^2}$ and $|\sigma'_a(z)| = \frac{1-|\sigma_a(z)|^2}{1-|z|^2}$ for each $z, a \in \mathbb{D}$. See e.g. [17].

Lemma 3.3 The polynomial weights $v(z) = (1 - |z|^2)^{\alpha}$, $\alpha > 0$, satisfy the condition (**).

Proof. It is known, see [2], that the polynomial weights satisfy $v = \tilde{v}$. Given $b \in \mathbb{D}$, consider the function

$$f_b(z) := (\sigma'_b(z))^{\alpha} = \left(\frac{|b|^2 - 1}{(1 - \overline{b}z)^2}\right)^{\alpha}$$

Since $f_b \in H^{\infty}$, we have $f_b \in H_v^0$. Moreover

$$||f_b||_v = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |\sigma'_b(z)|^{\alpha} = \sup_{z \in \mathbb{D}} (1 - |\sigma_a(z)|^2)^{\alpha} = 1$$

Clearly $v(b)|f_b(b)| = 1$.

Corollary 3.4 Let v be a polynomial weight $v(z) = (1 - |z|^2)^{\alpha}$, $\alpha > 0$, and let w be an arbitrary weight. A bounded composition operator $C_{\phi,\psi} : H_v^0 \to H_w^0$ is norm attaining if and only if there are $b \in \mathbb{D}$ and $(z_n)_n$ in \mathbb{D} with $\lim_{n\to\infty} \phi(z_n) = b$ such that

$$||C_{\phi,\psi}|| = \lim_{n \to \infty} \frac{w(z_n)|\psi(z_n)|}{\tilde{v}(\phi(z_n))}$$

Proof. This is a direct consequence of Theorem 3.1 and Lemma 3.3.

Our next proposition permits us to exhibit more examples of weights satisfying condition (**).

Proposition 3.5 Let v be a weight such that $v = \tilde{v}$ satisfying condition (**). If w is another weight such that $w = \tilde{w}$, then u := vw satisfies also the condition.

Proof. First of all it is easy to conclude from [2, Properties 1.2 (iv)] that $\tilde{u}(z) \leq \tilde{v}(z)\tilde{w}(z)$ for each $z \in \mathbb{D}$. This implies $u \leq \tilde{u} \leq \tilde{v}\tilde{w} = vw = u$. Thus $u = \tilde{u} = \tilde{v}\tilde{w}$. Now, to check condition (**) for u, fix $b \in \mathbb{D}$. We find $g \in H_w^{\infty}$, $||g||_w = 1$ with $g(b) = 1/\tilde{w}(b) = 1/w(b)$. Since v satisfies condition (**), there is $f \in H_v^0$, $||f||_v = 1$ such that $f(b) = 1/\tilde{v}(b) = 1/v(b)$. Setting h = fg, we have $||h||_u \leq 1$, $\tilde{u}(b)h(b) = u(b)h(b) = 1$ and $h \in H_u^0$, as $\lim_{|z| \to 1^-} u(z)|h(z)| \leq \lim_{|z| \to 1^-} v(z)|f(z)| = 0$. \Box

As a consequence of Lemma 3.3 and Proposition 3.5, the following weights satisfy condition (**):

- (1) $u(z) = (1 |z|^2)^{\alpha} \exp(-\frac{1}{(1 |z|)^{\beta}}), \ \alpha, b > 0.$
- (2) $u(z) = (1 |z|^2)^{\alpha} (\log \frac{e}{1-r})^{-\beta}, \ \alpha, b > 0.$
- (3) u(z) = 1 |z|. Just take $v(z) = 1 |z|^2$, w(z) = 1/(1 + |z|) and apply [2, Corollary 1.6].

Example 3.6 Let v be a polynomial weight $v(z) = (1 - |z|^2)^{\alpha}$, $\alpha > 0$. Consider the holomorphic self map $\phi(z) = \sigma_a(z)$ on \mathbb{D} for some $a \in \mathbb{D}$. The composition operator $C_{\phi} : H_v^0 \to H_v^0$ is not norm attaining. Indeed, for each $z \in \mathbb{D}$, we have

$$\frac{v(z)}{v(\phi(z))} = \frac{(1-|z|^2)^{\alpha}}{(1-|\sigma_a(z)|^2)^{\alpha}} = \frac{1}{|(\sigma_a'(z))^{\alpha}|} = \frac{|1-\overline{a}z|^{2\alpha}}{(1-|a|^2)^{\alpha}}.$$

Accordingly, a sequence $(z_n)_n$ in \mathbb{D} with $||C_{\phi}|| = \sup_{z \in \mathbb{D}} \frac{v(z)}{v(\phi(z))} = \lim_{n \to \infty} \frac{v(z_n)}{v(\phi(z_n))}$ must satisfy $|z_n| \to 1$ as $n \to \infty$. We can apply Corollary 3.4 for $\psi(z) = 1$ to conclude that $C_{\phi} : H_v^0 \to H_v^0$ is not norm attaining.

Examples 3 and 4 in Martín [14] (see also [12]) have the following consequences in our setting that are relevant in connection with Corollary 3.2.

- **Examples 3.7** (1) Let v be a polynomial weight $v(z) = (1 |z|^2)^{\alpha}$, $\alpha > 0$. Consider the holomorphic maps $\phi(z) = (z + 1)/2$ and $\psi(z) = 1/2$. The weighted composition operator $C_{\phi,\psi}: H_v^0 \to H_v^0$ is not norm attaining by Corollary 3.4 and $||C_{\phi,\psi}||_e = ||C_{\phi,\psi}||$.
 - (2) Let v be the weight $v(z) = 1 |z|^2$. Consider the lens map $\phi(z) = (\sigma(z)^{\alpha} 1)/(\sigma(z)^{\alpha} + 1), 0 < \alpha < 1$, with $\sigma(z) = (1 + z)/(1 z)$, and $\psi(z) = \phi'(z)$. The weighted composition operator $C_{\phi,\psi} : H_v^0 \to H_v^0$ is norm attaining by Corollary 3.4, but $||C_{\phi,\psi}||_e = ||C_{\phi,\psi}||$. Thus the converse of Corollary 3.2 does not hold in general.

4 Consequences for composition operators on weighted Bloch spaces

Let v be a weight. The weighted Bloch space is defined by

$$\mathcal{B}_{v} = \{ f \in H(\mathbb{D}) : f(0) = 0, \ \|f\|_{\mathcal{B}_{v}} = \sup_{z \in D} v(z) |f'(z)| < \infty \},\$$

and the little Bloch space

$$\mathcal{B}_{v,0} = \{ f \in \mathcal{B} : \lim_{|z| \to 1-} v(z) |f'(z)| = 0 \}.$$

They are Banach spaces endowed with the norm $|| \cdot ||_{\mathcal{B}_v}$.

The classical Bloch space \mathcal{B} and little Bloch space \mathcal{B}_0 correspond to the weight $v(z) := 1 - |z|^2$. Among the many references on these spaces, we mention Zhu [17], for example.

Define the bounded operators $S : \mathcal{B}_v \to H_v^{\infty}$, S(h) = h' and $S^{-1} : H_v^{\infty} \to \mathcal{B}_v$, $(S^{-1}h)(z) = \int_0^z h(\xi) d\xi$. Then $SS^{-1} = id_{H_v^{\infty}}$, $S^{-1}S = id_{\mathcal{B}_v}$ and S, S^{-1} are isometric onto maps. These operators induce isometries between H_v^0 and $\mathcal{B}_{v,0}$.

Consider a composition operator $C_{\phi}: \mathcal{B}_v \to \mathcal{B}_v$. We can use Theorem 2.3 to find an extremal function $g \in H_v^{\infty}$ for the norm of $C_{\phi,\phi'}: H_v^{\infty} \to H_v^{\infty}$, so that $||C_{\phi}|| = ||C_{\phi,\phi'}|| = ||SC_{\phi}S^{-1}|| = ||(SC_{\phi}S^{-1})g||_v$. Now using that S is an isometry, it follows that $h := S^{-1}(g) \in \mathcal{B}_v$ is an extremal function for the norm of $C_{\phi}: \mathcal{B}_v \to \mathcal{B}_v$. Accordingly we get the following extension of Martín [14, Theorem 6].

Corollary 4.1 Every composition operator $C_{\phi} : \mathcal{B}_v \to \mathcal{B}_v$ is norm-attaining.

Proceeding similarly for $C_{\phi} : \mathcal{B}_{v,0} \to \mathcal{B}_{v,0}$ we obtain the following consequence of Corollary 3.4 that is an extension of Martín [14, Theorem 1].

Corollary 4.2 Let v be a polynomial weight $v(z) = (1 - |z|^2)^{\alpha}$, $\alpha > 0$. A composition operator $C_{\phi} : \mathcal{B}_{v,0} \to \mathcal{B}_{v,0}$ is norm attaining if and only if there are $b \in \mathbb{D}$ and $(z_n)_n$ in \mathbb{D} with $\lim_{n\to\infty} \phi(z_n) = b$ such that

$$\sup_{z \in \mathbb{D}} \frac{w(z)|\phi'(z)|}{\tilde{v}(\phi(z))} = \lim_{n \to \infty} \frac{w(z_n)|\phi'(z_n)|}{\tilde{v}(\phi(z_n))}.$$

References

- K.D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic functions on bounded domains, *Michigan Math. J.* 40 (1993), 271-297.
- [2] K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic functions, *Studia Math.* 127 (1998), 137-168.
- [3] J. Bonet, P. Domański, M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, *Canad. Math. Bull.* 42, no. 2, (1999), 139-148.
- [4] J. Bonet, P. Domański, M. Lindström, J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), 101-118.
- [5] J. Bonet, M. Lindström, E. Wolf, Isometric weighted composition operators on weighted Banach spaces of type H[∞], Proc. Amer. Math. Soc. 136 (2008), 4267–4273.
- [6] J. Bonet, E. Wolf, A note on weighted spaces of holomorphic functions, Archiv Math. 81 (2003), 650-654.
- [7] M.D. Contreras, A.G. Hernández-Díaz, Weighted composition operators in weighted banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000) 41-60.
- [8] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [9] J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math. vol. 485, Springer, Berlin, 1975.
- [10] C. Hammond, On the norm of a composition operator with linear fractional symbol, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 813-829.
- [11] T. Hosokawa, K. Izuchi, D. Zheng, isolated points and essential components of composition operators on H[∞], Proc. Amer. Math. Soc. 130 (2001), 1765-1773.
- [12] T. Hosokava, S. Ohno, Topological structures of the sets of composition operators the Bloch spaces, J. Math. anal. Appl. 303 (2005), 499-508.
- [13] W. Lusky, On the isomorphy classes of weighted spaces of harmonic and holomorphic functions, *Studia Math.* 175 (2006), 19–45.
- [14] M. Martín, Norm-attaining composition operators on the Bloch spaces, J. Math. Anal. Appl. 369 (2010), 15-21.
- [15] A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. 61 (2000), no. 2, 872-884.
- [16] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.

[17] K. Zhu, Operator Theory in Function Spaces. Second Edition, Amer. Math. Soc., 2007.

Authors' Addresses.

J. Bonet: Instituto Universitario de Matematica Pura y Aplicada IUMPA-UPV, Universidad Politécnica de Valencia, E-46022 Valencia, SPAIN

e-mail: jbonet@mat.upv.es

M. Lindström: Department of Mathematical Sciences, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, FINLAND e-mail: mikael.lindstrom@oulu.fi

E. Wolf: Institute of Mathematics, University of Paderborn, D-33095 Paderborn, GERMANY. e-mail: lichte@math.uni-paderborn.de