Orbits of composition operators on spaces of real analytic functions

José Bonet

Instituto Universitario de Matemática Pura y Aplicada IUMPA

Universitat Politècnica de València

Functional Analysis: Applications to Complex Analysis and Partial Differential Equations Bedlewo, Poland

May 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Study the dynamics of composition operators

on spaces of analytic or real analytic functions.

We report on joint work with Pawel Domanski (Univ. Poznań, Poland)

X is a Hausdorff locally convex space (lcs).

 $\mathcal{L}(X)$ is the space of all continuous linear operators on X.

Power bounded operators

An operator $T \in \mathcal{L}(X)$ is said to be *power bounded* if $\{T^m\}_{m=1}^{\infty}$ is an equicontinuous subset of $\mathcal{L}(X)$.

If X is a Fréchet space, or more generally if the uniform boundedness principle is valid for operators defined on X, then T is power bounded if and only if the orbits $\{T^m(x)\}_{m=1}^{\infty}$ of all the elements $x \in X$ under T are bounded.

Mean ergodic operators

An operator $T \in \mathcal{L}(X)$ is said to be *mean ergodic* if the limits

$$Px := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} T^m x, \quad x \in X,$$
(1)

exist in X.

A power bounded operator T is mean ergodic precisely when

$$X = \operatorname{Ker}(I - T) \oplus \overline{\operatorname{Im}(I - T)}, \qquad (2)$$

where I is the identity operator, Im(I - T) denotes the range of (I - T) and the bar denotes the "closure in X".

Hypercyclic operators

An operator $T \in \mathcal{L}(X)$ is said to be *(sequentially) hypercyclic* if there is a vector $x \in X$ whose orbit $\{T^m(x)\}_{m=1}^{\infty}$ is (sequentially) dense in X.

Transitive operators

An operator $T \in \mathcal{L}(X)$ is said to be *topologically transitive* if for every pair of non-empty open subsets U, V in X there is n such that $T^n(U) \cap V \neq \emptyset$.

Proposition

If $T \in \mathcal{L}(X)$ is an operator on a separable complete metrizable lcs X, T is hypercyclic if and only if it is topologically transitive. This is a consequence of Baire category theorem.

$$C_{\varphi}(f) := f \circ \varphi$$

•
$$\varphi: U \to U$$
 holomorphic, $U \subset \mathbb{C}^d$ open set

 $C_{\varphi}: H(U) \to H(U)$

• $\varphi: \Omega \to \Omega$ real analytic, $\Omega \subset \mathbb{R}^d$ open set

$$C_{\varphi}:\mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$$

Iterates:

$$(C_{\varphi})^{n} := \underbrace{C_{\varphi} \circ C_{\varphi} \circ \cdots \circ C_{\varphi}}_{n \text{ times}} = C_{\varphi^{n}}$$

Universal functions for composition operators on H(U) have been investigated by Bernal, Bonilla, Godefroy, Grosse-Erdmann, León, Luh, Montes, Mortini, Shapiro, Zajac and others.

Theorem 1

Let $U \subseteq \mathbb{C}^d$ be a connected domain of holomorphy. The following assertions are equivalent:

- (a) $C_{\varphi}: H(U) \rightarrow H(U)$ is power bounded;
- (b) $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic;
- (c) $C_{\varphi}: H(U) \rightarrow H(U)$ is mean ergodic;
- (d) The map φ has **stable orbits** on U: $\forall K \Subset U \exists L \Subset U$ such that $\varphi^n(K) \subseteq L$ for every $n \in \mathbb{N}$;
- (e) There is a fundamental family of (connected) compact sets (L_j) in U such that $\varphi(L_j) \subseteq L_j$ for every $j \in \mathbb{N}$.

Theorem 2

Let U be a connected open subset of \mathbb{C} and let $\varphi : U \to U$ be a holomorphic self-map. If C_{φ} is power bounded, then either φ is an automorphism of U or all orbits of φ tends to a constant $u \in U$ such that u is a fixed point of φ .

If additionally $U=\mathbb{D},$ then in the automorphism case φ has also a fixed point u and

$$\varphi = \varphi_u^{-1} \circ r_\theta \circ \varphi_u, \qquad \theta \in [0, 2),$$

where

$$\varphi_u(z) := rac{u-z}{1-\overline{u}z}, \quad r_{\theta}(z) = e^{i\theta\pi}z$$

Theorem 2 continued

Moreover,

(i) If φ is not an automorphism then the projection P associated to C_φ is given: P(f)(z) = f(u).

(ii) If
$$\varphi$$
 is an automorphism and $\theta = \frac{p}{q}$ is rational then

$$P(f)(z) = \frac{1}{q} \sum_{j=0}^{q-1} f(\varphi_u^{-1}(r_{\frac{jp}{q}}(\varphi_u(z)))).$$

(iii) If φ is an automorphism and θ is irrational then $P(f)(z) = \frac{1}{2} \int_0^2 f(\varphi_u^{-1}(r_\theta(\varphi_u(z)))) d\theta.$

- $\Omega \subseteq \mathbb{R}^d$ open connected set.
- The space of real analytic functions $\mathscr{A}(\Omega)$ is equipped with the unique locally convex topology such that for each $U \subseteq \mathbb{C}^d$ open, $\mathbb{R}^d \cap U = \Omega$, the restriction map $R : H(U) \longrightarrow \mathscr{A}(\Omega)$ is continuous and for each compact set $K \subseteq \Omega$ the restriction map $r : \mathscr{A}(\Omega) \longrightarrow H(K)$ is continuous. In fact,

$$\mathscr{A}(\Omega) = \operatorname{proj}_{N \in \mathbb{N}} \ H(K_N) = \operatorname{proj}_{N \in \mathbb{N}} \ \operatorname{ind}_{n \in \mathbb{N}} \ H^{\infty}(U_{N,n}).$$

- $(f_n)_{n \in \mathbb{N}}$ tends to f in $\mathscr{A}(\Omega)$ if and only if there is a complex neighbourhood W of Ω such that each f_n and f extend to W and $f_n \to f$ uniformly on compact subsets of W.
- $\mathscr{A}(\Omega)$ is complete, separable, barrelled and Montel. **Domański**, **Vogt, 2000**, proved that the space $\mathscr{A}(\Omega)$ has no Schauder basis.

Theorem 3

Let $\varphi: \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected, be a real analytic map. Then the following assertions are equivalent:

- (a) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is power bounded;
- (b) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is uniformly mean ergodic;
- (c) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is mean ergodic;
- (d) $\forall K \Subset \Omega \exists L \Subset \Omega \quad \forall U \text{ complex neighbourhood of } L \exists V \text{ complex neighbourhood of } K$:

 $\forall n \in \mathbb{N} \quad \varphi^n \text{ is defined on } V \text{ and } \varphi^n(V) \subseteq U;$

(e) For every complex neighbourhood U of Ω there is a complex (open!) neighbourhood V ⊆ U of Ω such that φ extends as a holomorphic function to V and φ(V) ⊆ V.

Theorem 4

Let $a, b \in \mathbb{R}$ and let $\varphi :]a, b[\rightarrow]a, b[$ be real analytic. The following are equivalent:

- (a) $C_{\varphi}: \mathscr{A}(]a, b[) \longrightarrow \mathscr{A}(]a, b[)$ is power bounded;
- (b) there exists a complex neighbourhood U of]a, b[such that φ(U) ⊆ U, C \ U contains at least two points, and φ has a (real) fixed point u, or equivalently, there is a fundamental family of such neighbourhoods of]a, b[;
- (c) φ is one of the following forms:

$$\varphi = \operatorname{id};$$

$$\mathbf{2} \ \varphi^2 = \mathsf{id} \ ;$$

 As n→∞ the sequence φⁿ tends to a constant function ≡ u ∈]a, b[in 𝔄(]a, b[).

Theorem 4 continued

If u is the fixed point of φ then the above cases in (c) correspond to:

$$\ \, \mathbf{O} \ \, \varphi'(u) = 1;$$

2
$$\varphi'(u) = -1;$$

③
$$|\varphi'(u)| < 1.$$

Moreover, C_{φ} is uniformly mean ergodic and the projection

 $P := \lim_{N \in \mathbb{N}} \frac{1}{N} \sum_{n=1}^{N} C_{\varphi^n}$ is of the following form:

1
$$P = id;$$

2
$$P(f) = \frac{f + f \circ \varphi}{2}$$
, ImP = {f : f = f $\circ \varphi$ }, ker $P = \{f : f = -f \circ \varphi\}$;

Example:

Even if $\varphi:]-1, 1[\rightarrow] -1, 1[$ maps]-1, 1[in one compact set, it does not follow that $C_{\varphi}: \mathscr{A}(]-1, 1[) \rightarrow \mathscr{A}(]-1, 1[)$ is power bounded. Define

$$\varphi:]-1,1[\to]-1,1[,\varphi(x)=\frac{x}{1+x^2}.$$

We have $\varphi(]-1,1[) =]-1/2,1/2[$. By Theorem 4, C_{φ} is not power bounded since $\varphi'(0) = 1$ and $\varphi^n \to 0$.

By Theorem 3 there is no complex neighbourhood V such that $\varphi(V) \subseteq V$. Observe that φ has two singularities i and -i.

Theorem 5

Let $\varphi : \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected, be a real analytic map. Then the following assertions are equivalent:

(a) $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is topologically transitive;

(b) φ is injective, φ' is never singular on Ω and φ runs away on Ω, i.e. for every compact set K ⊆ Ω there is n ∈ N such that φⁿ(K) ∩ K = Ø.

In particular, if $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ is hypercyclic then φ is injective, runs away on Ω and φ' is never singular on Ω .

The concept of a function running away on an open set was introduced by Bernal and Montes in 1995

Hypercyclic composition operators on spaces of real analytic functions

Theorem 6

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic, $\varphi((-1, 1)) \subset (-1, 1)$. The following assertions are equivalent:

(a) $C_{\varphi}: \mathscr{A}(-1,1) \to \mathscr{A}(-1,1)$ is sequentially hypercyclic;

(b)
$$C_{\varphi}: \mathscr{A}(-1,1) \to \mathscr{A}(-1,1)$$
 is hypercyclic;

(c) $C_{\varphi}: \mathscr{A}(-1,1) \to \mathscr{A}(-1,1)$ is topologically transitive;

- (d) φ runs away on (-1,1) and φ' does not vanish on (-1,1);
- (e) φ has no fixed point on (-1,1) and φ' does not vanish on (-1,1);
- (f) there is a one connected complex neighbourhood W of (-1,1) in \mathbb{D} such that $\varphi(W) \subset W$, φ is injective on W and φ runs away on W;
- (g) there is a one connected complex neighbourhood W of (-1,1) in \mathbb{D} such that $\varphi(W) \subset W$ and $C_{\varphi} : H(W) \to H(W)$ is hypercyclic.

|御を (ほを)(ほ)

Hypercyclic composition operators on spaces of real analytic functions

Remark

If $\varphi : \mathbb{R} \to \mathbb{R}$ extends to a self map on some complex finitely connected neighbourhood $U \neq \mathbb{C}$, then we can take without loss of generality $U = \mathbb{D}$ the unit disc and \mathbb{R} corresponds to (-1, 1). That is why the theorem above is interesting and more general than it might look.

Hypercyclic composition operators on spaces of real analytic functions

Comments on the Proof of Theorem 6

- (f) ⇔ (g) by Bernal, Montes, Grosse-Erdmann, Mortini Theorem on composition operators on H(W).
- (g)⇒(a) follows from the hypercyclic comparison principle,
 (a)⇒(b)⇒(c) are trivial, and (c)⇒(d) follows from Theorem 5.
- (d) ⇔ (e) because φ runs away on an interval *I* if and only if φ has no fixed point on *I*.
- O The assumption that φ extends to a self map of D is needed only for (d)⇒(f). The proof uses the classification of selfmaps on the unit disc and Denjoy-Wolff theorem.

Examples

1. There are examples of self maps $\varphi : \mathbb{D} \to \mathbb{D}$ such that $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$ is not hypercyclic (since φ is not injective on \mathbb{D}) but $C_{\varphi} : \mathscr{A}((-1,1)) \to \mathscr{A}((-1,1))$ is hypercyclic.

Define

$$\varphi(z) := \frac{(z+1)^3}{32} + \frac{3}{4}.$$

Clearly $\varphi(\mathbb{D}) \subset \mathbb{D}$ and φ is not injective on \mathbb{D} since $\varphi(\alpha e^{\frac{\pi}{3}i} - 1) = \varphi(\alpha e^{-\frac{\pi}{3}i} - 1)$ for suitably small $\alpha > 0$.

However, φ is a self map on

$$U:=\mathbb{D}\cap\left\{z=x+iy:|y|<\frac{1}{\sqrt{3}}x+\frac{1}{\sqrt{3}}\right\},$$

and $C_{\varphi}: H(U) \rightarrow H(U)$ is hypercyclic.

Examples

2. The following family of self maps $\varphi : \mathbb{D} \to \mathbb{D}$ such that $\varphi((-1,1)) \subset (-1,1)$ has been investigated by Cowen and Ko, 2010.

Take $a_0, a_1 \in \mathbb{R}$ and define

$$\varphi(z) := a_0 + \frac{a_1 z}{1 - a_0 z}, \ z \in \mathbb{D}.$$

Then φ is a linear fractional map with real coefficients and φ maps the unit disc into itself if and only if

$$|a_0| < 1$$
 and $-1 + |a_0|^2 \le a_1 \le (1 - |a_0|)^2$.

This is equivalent to the fact that φ maps the interval (-1,1) into itself. It is enough to consider $0 \le a_0 < 1$ and distinguish three cases. **Case 1.** $0 \le a_0 < 1$ and $a_1 = -1 + a_0^2$.

In this case $\varphi(z) = (a_0 - z)/(1 - a_0 z)$ is an automorphism of \mathbb{D} such that $\varphi(1) = -1$ and $\varphi(-1) = 1$.

Moreover $1 - (1 - a_0)^{1/2} \in [0, 1)$ is a fixed point.

Thus φ is elliptic and the operator $C_{\varphi} : \mathscr{A}((-1,1)) \to \mathscr{A}((-1,1))$ is power bounded and mean ergodic by Theorem 3. In particular it is not topologically transitive.

Case 2. $0 \le a_0 < 1$ and $-1 + a_0^2 < a_1 < (1 - a_0)^2$.

In this case $-1 < \varphi(-1) < 1$, $-1 < \varphi(1) < 1$ and φ maps the closed unit disc $\overline{\mathbb{D}}$ into the open unit disc.

Therefore C_{φ} is power bounded on $H(\mathbb{D})$ and on $\mathscr{A}((-1,1))$ by Theorems 1 and 3, hence it is not topologically transitive.

Case 3. $0 \le a_0 < 1$ and $a_1 = (1 - a_0)^2$.

If $a_0 = 0$, then $\varphi(z) = z, z \in \mathbb{D}$, and C_{φ} coincides with the identity that is not topologically transitive on $\mathscr{A}((-1, 1))$.

In case $0 < a_0 < 1$, we get $\varphi'(x) > 0$ for each $x \in (-1, 1)$, φ is not an automorphism of the disc, $\varphi(1) = 1, -1 < \varphi(-1) < 1$ and there are no fixed points in (-1, 1).

We can apply our Theorem 6 to conclude that $C_{\varphi} : \mathscr{A}((-1,1)) \to \mathscr{A}((-1,1))$ is sequentially hypercyclic.

3. Our last example shows that the implication (d) implies (f) in the Theorem 6 does not hold in general.

Just take

$$\varphi(z):=z^2, z\in (0,1).$$

 $C_{\varphi} : \mathscr{A}((0,1)) \to \mathscr{A}((0,1))$ is topologically transitive by Theorem 5 on the characterization of transitive operators.

However, there is no complex neighbourhood U of (0,1) such that $\varphi^n(z) = z^{2^n}$ is injective on U for every $n \in \mathbb{N}$. Note that $\varphi^n(\frac{1}{2}\exp(\pm 2\pi i/2^n)) = 1/2^{2^n}$ for each $n \in \mathbb{N}$.

Peris has shown very recently that $C_{\varphi} : \mathscr{A}((0,1)) \to \mathscr{A}((0,1))$ for $\varphi(z) := z^2, z \in (0,1)$, is even sequentially hypercyclic.

Accordingly not every sequentially hypercyclic operator $C_{\varphi} : \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$ satisfies that there is complex neighbourhood U of Ω such that φ extends holomorphically to U, $\varphi(U) \subset U$, and $C_{\varphi} : H(U) \to H(U)$ is hypercyclic

Idea of Peris' argument

•
$$\varphi(z) := z^2, z \in (0, 1).$$

- ② $(p_n(z))_n$ a dense sequence of polynomials. Set $f_n(z) := z(1-z)p_n(z), n \in \mathbb{N}$.
- S_n := C_{γn}, γ_n(z) := exp(2⁻ⁿ log z), with log z the branch of the logarithm defined on C\] − ∞, 0]. Clearly (C^k_φ ∘ S_k)h = h for each polynomial h.
- A sequentially hypercyclic vector for C_φ : A((0,1)) → A((0,1)) is given explicitly by

$$f:=\sum_{j=1}^{\infty}S_{n_j}f_{n_j}$$

for certain subsequence $(n_j)_j$ of \mathbb{N} .

Open Problems

(1) Is the operator $C_{\varphi} : \mathscr{A}(\mathbb{R}) \to \mathscr{A}(\mathbb{R}), \ \varphi(z) = \exp(z)$, (sequentially) hypercyclic? It is topologically transitive by Theorem 5.

(2) Is there a hypercyclic (composition) operator $T: \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$, $\Omega \subset \mathbb{R}^d$, which is not sequentially hypercyclic? Is there a transitive (composition) operator $T: \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$, $\Omega \subset \mathbb{R}^d$, which is not hypercyclic?

(3) Is there a mean ergodic operator on a Banach space (or a locally convex space) which is hypercyclic? Recall that no power bounded operator can be hypercyclic, but there are mean ergodic operators which are not power bounded.

- J. Bonet, P. Domański, Mean ergodic composition operators on spaces of holomorphic functions, RACSAM 105 (2011), 389–396.
- J. Bonet, P. Domański, Power bounded composition operators on spaces of analytic functions, Collectanea Math. 62 (2011), 69–83.
- J. Bonet, P. Domański, Hypercyclic composition operators on spaces of real analytic functions, Math. Proc. Cambridge Phil. Soc. .