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Abstract

We study the dynamical behaviour of composition operators Cϕ defined on spaces A (Ω)
of real analytic functions on an open subset Ω of Rd. We characterize when such operators
are topologically transitive, i.e. when for every pair of non-empty open sets there is an orbit
intersecting both of them. Moreover, under mild assumptions on the composition operator,
we investigate when it is sequentially hypercyclic, i.e., when it has a sequentially dense orbit.
If ϕ is a self map on a simply connected complex neighbourhood U of R, U 6= C, then
topological transitivity, hypercyclicity and sequential hypercyclicity of Cϕ : A (R) → A (R)
are equivalent.

1 Introduction and Notation

The aim of this article is to study hypercyclic and topologically transitive composition operators
Cϕ(f) := f ◦ ϕ on spaces A (Ω) of real analytic functions defined on an open subset Ω of Rd,
ϕ : Ω → Ω a real analytic self map. Recall that an operator T : X → X, X a locally
convex space, is called topologically transitive whenever for each pair of non-empty open sets
U , V in X there is n ∈ N such that Tn(U) ∩ V 6= ∅. A vector x ∈ X is called hypercyclic
(or sequentially hypercyclic) if the x-orbit {Tnx : n ∈ N} of T is dense (or sequentially dense,
respectively) in X. Clearly, every sequentially hypercyclic operator on a locally convex space
X is hypercylic, and hypercyclic operators are topologically transitive. In Theorem 2.3 we
characterize when composition operators Cϕ : A (Ω) → A (Ω) are topologically transitive. This
happens exactly when ϕ is injective, ϕ′ is never singular on Ω and ϕ runs away on Ω. In
Proposition 3.5 we analyze when the operator is sequentially hypercyclic. If ϕ is a self map
on a simply connected complex neighbourhood U of R, U 6= C, then topological transitivity,
hypercyclicity and sequential hypercyclicity of Cϕ : A (R) → A (R) are equivalent, and these
equivalent conditions are characterized in this case in terms of ϕ in Theorem 3.6. Several
illustrating examples are presented in Section 4.

There is a huge literature about the dynamical behavior of various linear continuous op-
erators on Banach, Fréchet and more general locally convex spaces; see the survey paper by
Grosse-Erdmann [20] and the recent books by Bayart and Matheron [2] and by Grosse-Erdmann
and Peris [22]. Composition operators on different function spaces have been also extensively
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investigated; see, for instance, [30], [3], [5] and [21]. For general theory of composition opera-
tors on Banach spaces of holomorphic functions we refer the reader to [13], [29]. A systematic
investigation of composition operators on spaces of real analytic functions has been undertaken
by Langenbruch and the second author; see for example [17] and the recent paper [16] with
Goliński. These papers concentrate on aspects different from the dynamical behaviour of the
operator. An investigation of those composition operators on A (Ω) such that the orbit of every
element is bounded was undertaken by the authors in [7]. In that paper we also characterized
mean ergodic composition operators on A (Ω). Operators with the orbits of all the elements
bounded are called power bounded.

A description of the natural topology on A (Ω), that goes back to Martineau, is given, for
instance, in [18]. The space A (Ω) has very good properties: it is nuclear, separable, complete,
barrelled and even ultrabornological, satisfies the closed graph theorem, but surprisingly it has
no Schauder basis by [18].

To be precise, the space A (Ω) is equipped with the unique locally convex topology such that
for any U ⊂ Cd open, Rd ∩ U = Ω, the restriction map R : H(U) −→ A (Ω) is continuous and
for any compact set K ⊂ Ω the restriction map r : A (Ω) −→ H(K) is continuous. We endow
the space H(U) of holomorphic functions on U with the compact-open topology and the space
H(K) of germs of holomorphic functions on K with its natural locally convex inductive limit
topology:

H(K) = indn∈N H∞(Un),

where (Un)n∈N is a basis of Cd-neighbourhoods of K. Martineau proved that there is exactly
one topology on A (Ω) satisfying the condition above. Endowed with this topology one has the
following description as a countable projective limit:

A (Ω) = projN∈N H(KN ).

Here (KN )N is a fundamental sequence of compact subsets of Ω. For our purpose, it is im-
portant to recall that a sequence (fn)n∈N in A (Ω) tends to f if and only if there is a complex
neighbourhood W of Ω such that each fn and f extend to W and fn → f uniformly on compact
subsets of W . Analogously one defines the topology on A (Ω) when Ω is a real analytic manifold
[33]. A long survey on the space of real analytic functions with very precise description of its
topology is contained [15].

We say that a map ϕ : Ω → Ω runs away on Ω if for every compact set K b Ω there is n ∈ N
such that ϕn(K)∩K = ∅. This term was invented by Bernal and Montes [3]. Clearly, if ϕ runs
away on Ω it has no fixed point in Ω.

Proposition 1.1 A continuous map ϕ : (a, b) → (a, b) runs away on the open interval (a, b) ⊂ R
if and only if it has no fixed point.

Proof: If ϕ : (a, b) → (a, b) has a fixed point, it does not run away on (a, b). Conversely, if
ϕ : (a, b) → (a, b) has no fixed points, then either ϕ(x) > x for every x ∈ (a, b) or ϕ(x) < x for
every x ∈ (a, b), by the mean value theorem. Accordingly, the sequence (ϕn(x))n∈N is monotonic
for every x ∈ (a, b) so either convergent (necessarily to a fixed point; a contradiction) or tends
to a or to b. Assume for example that all these sequences converge to b. By Dini’s theorem, for
every compact subset K of (a, b), ϕn tends to b uniformly on K. Thus ϕ runs away on (a, b). 2

We will use the Kobayashi semi-distance kV (·, ·) on a complex manifold V ⊆ Cd. Here the
beautiful book [26] is a standard reference. Every holomorphic map ϕ : V → V is always
non-expansive with respect to kV . The manifold V is called hyperbolic if kV is a distance (and
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then it induces the standard topology of V ). Every domain biholomorphic to a bounded set
is automatically hyperbolic [26, Cor. 4.1.10, Prop. 3.2.2]. In particular, every open subset of
C with complement consisting of at least two points is hyperbolic. The manifold V is called
Kobayashi complete if (V, kV ) is a complete metric space, or equivalently, if every ball in this
space is relatively compact [26, Prop. 1.1.9]. Every bounded open set V ⊂ Cd such that each
of its boundary point admits a weak peak function is Kobayashi complete [26, Cor. 4.1.11].
Both hyperbolicity and Kobayashi completeness are biholomorphic invariants. In fact every
open subset of C with complement of at least two points is automatically hyperbolic complete.
Kobayashi distance on D is just the Poincaré metric ([19]), denoted ρ throughout the paper.

For each set A and each function f : A → C we denote ‖f‖A := supx∈A |f(x)|. By B(x, r)
and BkV

(x, r) we denote, respectively, euclidean and Kobayashi closed balls of center x and
radius r. The notation K b U means that K is a compact subset of the open set U . By R̄
we denote the extended real line R ∪ {∞} ∪ {−∞}. For non-explained notions from functional
analysis we refer to [27]. For complex analysis of several variables see [24] and for real analytic
manifolds see [23]. For dynamics of holomorphic maps see [1], [28].

2 Topologically transitive composition operators

Lemma 2.1 Let ϕ : Ω → Ω, Ω ⊆ Rd open, be a real analytic injective map with derivative
invertible at every point of Ω. There is a complex neighbourhood U of Ω such that ϕ is defined and
holomorphic on U, it is injective there and its derivative is never singular on U . In particular,
ϕ is biholomorphic from U onto ϕ(U).

Proof: Clearly there is a complex neighbourhood U1 of Ω such that detϕ′ does not vanish
on U1. We define

F : U1 × U1 → U1 − U1, F (z, w) := ϕ(z)− ϕ(w).

The zero set V (F ) of F consists of the points of the diagonal of U1 × U1 and maybe some
additional points; the set of these additional points will be denoted by V1. Clearly V1∩(Ω×Ω) =
∅. Since ϕ′ is never singular on U1 the singular set of the analytic set V (F ) is empty, i.e. V (F )
is a manifold. On the other hand, if x ∈ V1 ∩ (Ω × Ω), then x ∈ V (F ) and must belong to the
diagonal of U1 × U1 and thus x belongs to the singular part of V (F ); a contradiction. We have
proved that V1 is disjoint with some neighbourhood of Ω× Ω. Thus for every compact K ⊆ Ω
there is a complex neighbourhood VK of K such that ϕ is injective on VK .

Let (Kk) be a compact exhaustion of Ω =
⋃

k∈NKk, additionally K0 := ∅. We construct
inductively a family of complex neighbourhoods (Uk

n)k=0,...,n of Kn decreasing in k for each n
and such that

1. ϕ is injective on Uk
n for every n and k ≤ n;

2. ϕ is injective on Un
n ∪ Un

m for every n and n ≤ m.

We define U0
0 = ∅ and U0

n to be a complex neighbourhood of Kn such that ϕ is injective on
U0

n.
Assume that we have found U0

n, U1
n, . . . , Uk−1

n for every n ∈ N. First, we define Uk
k . Let us

take an arbitrary complex neighbourhood V of Kk which is relatively compact in Uk−1
k . Define

WV := {z ∈ V : ∃ w ∈ Ω \ Uk−1
k ϕ(z) = ϕ(w)}.
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If for every V the set WV is non-empty, then we find a point x ∈ Kk and two sequences of
elements (zj), (wj) such that

lim
j→∞

zj = x, (wj) ⊆ Ω \ Uk−1
k , ϕ(zj) = ϕ(wj) for every j ∈ N.

Since ϕ′ is invertible in x, by the inverse mapping theorem, there is a real neighbourhood A
of ϕ(x) and a real neighbourhood B of x, B ⊆ Uk−1

k , such that ϕ maps B bijectively onto A.
Clearly, there is j ∈ N such that ϕ(wj) = ϕ(zj) ∈ A and ϕ takes value ϕ(wj) at some point in B.
This contradicts injectivity of ϕ on Ω. Accordingly, we can find a relatively compact complex
neighbourhood Uk

k of Kk with Uk
k ⊂ Uk−1

k such that

ϕ(Uk
k ) ∩ ϕ(Ω \ Uk−1

k ) = ∅.

Hence, there is a complex neighbourhood W of Ω \ Uk−1
k such that ϕ(Uk

k ) ∩ ϕ(W ) = ∅. As ϕ is
injective on Uk−1

k the sets

Uk
n := Uk−1

n ∩ (Uk−1
k ∪W ) for n > k

satisfy the required conditions. This completes the inductive definition of Uk
n for n, k ≤ n.

Now, ϕ is injective on the complex neighbourhood
⋃∞

n=0 Un
n of Ω. 2

Lemma 2.2 Every compact set K ⊂ Rd has a basis of complex neighbourhoods consisting of
polynomial polyhedra, i.e., sets of the form:

{
z ∈ Cd : |Pj(z)| < 1 for j = 1, . . . , n

}

for finitely many polynomials P1, . . . , Pn.

Proof: It follows from [25, Lemma 2.7.4]. 2

Now, we are ready to formulate a characterization of transitivity of composition operators.

Theorem 2.3 Let ϕ : Ω → Ω be an analytic map on an open subset Ω of Rd. The composition
operator Cϕ : A (Ω) → A (Ω) is topologically transitive if and only if ϕ is injective, ϕ′ is never
singular on Ω and ϕ runs away on Ω.

Proof: Necessity. If Cϕ is topologically transitive, then for each pair of functions f ,
g ∈ A (Ω), each ε > 0 and each compact set K b Ω there is h ∈ A (Ω) and n ∈ N such that

‖f − h‖K ≤ ε, ‖Cϕn(h)− g‖K ≤ ε.

This is so since ‖ · ‖K is a continuous seminorm on A (Ω). Now, we consider

f(w) = 0, g(w) = 4ε for every w ∈ Ω.

Then ‖h‖K ≤ ε and if ϕn(K) ∩ K 6= ∅ for every n ∈ N, then for every n ∈ N at some point
x ∈ K we have |Cϕn(h)(x)| ≤ ε. This contradicts the definition of g. So ϕ runs away.

Analogously, if ϕ(z) = ϕ(w) for some z, w ∈ Ω then Cϕn(h) cannot approximate g such that
g(z) 6= g(w). Thus we have proved that ϕ is injective.

Assume that ϕ′(w) ∈ L(Cd) is singular for some w ∈ Ω. This means that there is a vector
v such that (ϕn)′(w)v = 0 for every n ∈ N. Since differentiation is a continuous map on A (Ω)
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transitivity implies that for every f, g ∈ A (Ω) and every ε > 0, K b Ω there are h ∈ A (Ω) and
n ∈ N such that for every x ∈ K

|f ′(x)v − h′(x)v| ≤ ε, |(Cϕn(h))′(x)v − g′(x)v| ≤ ε.

Let us take g(x) = 〈x, v〉 for every x ∈ Ω. Then g′(w)v = 〈v, v〉. Clearly, (Cϕn(h))′(w)v = 0 for
any n > 0; a contradiction for ε < 〈v, v〉. We have proved that ϕ′ must be invertible everywhere
on Ω.

Sufficiency. Take a compact set K ⊂ Ω and arbitrary f, g ∈ A (Ω). There is n ∈ N such
that

ϕn(K) ∩K = ∅,
i.e., there exists ε > 0 such that

[K + B(0, ε)] ∩ [ϕn(K) + B(0, ε)] = ∅.

By Lemma 2.1 there is a complex neighbourhood U of Ω such that ϕ|U is biholomorphic.
Let us take a closed complex neighbourhood W̃ of K contained in K + B(0, ε) such that

W̃ , ϕ(W̃ ), ϕ2(W̃ ), . . . , ϕn(W̃ ) b U, ϕn(W̃ ) ⊆ ϕn(K) + B(0, ε)

and such that f, g are defined on W̃ . Then g ◦ ϕ−n is defined on ϕn(W̃ ) and it is holomorphic
there. Let W1 ⊂ W̃ ∪ϕn(W̃ ) be a polynomial polyhedron satisfying K ⊂ W1 and ϕn(K) ⊂ W1.
Fix δ > 0. We can apply [25, Theorem 2.7.7] to get a polynomial h such that

‖h− f‖W̃∩W1
≤ δ, ‖h− g ◦ ϕ−n‖ϕn(W̃ )∩W1

≤ δ.

Hence for any complex neighbourhood W ⊂ W̃ ∩W1 of K such that ϕn(W ) ⊂ W1 we have

‖h ◦ ϕn − g‖W ≤ δ.

We have proved that for every f, g ∈ A (Ω) and every compact K b Ω there is a complex
neighbourhood W of K such that for every δ > 0 we have

Cϕn(BW (f, δ)) ∩BW (g, δ) 6= ∅,

where BW (f, δ) denotes the closed ball of center f and radius δ with respect of the norm ‖ · ‖W .
Since for every neighbourhood Vf of f and Vg of g in A (Ω) there are a compact set K b Ω
such that for every complex neighbourhood W of K there is δ > 0 such that BW (f, δ) ⊂ Vf and
BW (g, δ) ⊂ Vg, the assertion we have just shown implies that Cϕ is topologically transitive. 2

Remark. Using the proof of Theorem 2.3 one can easily show that the composition operator
is never transitive on H(K) for any compact set K. Indeed, ϕ : K → K never “runs away on
K”. However, there are hypercyclic operators on H(K) by [8]; see also [31, Th. 1.10].

3 Hypercyclic composition operators induced by self maps on a
complex neighbourhood

We start with a necessary condition for Cϕ : A (Ω) → A (Ω) to be hypercyclic that follows from
Theorem 2.3, since hypercyclic operators are topologically transitive.
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Corollary 3.1 If Cϕ : A (Ω) → A (Ω) is hypercyclic then ϕ is injective, runs away on Ω and
ϕ′ is never singular on Ω.

Clearly, if U is a complex neighbourhood of an open subset Ω ⊂ Rd, then H(U) is dense in
A (Ω). Thus if ϕ : U → U is holomorphic, ϕ(Ω) ⊂ Ω, then hypercyclicity of Cϕ : H(U) → H(U)
implies sequential hypercyclicity of Cϕ : A (Ω) → A (Ω).

The proof of the following sufficient condition is based on the same idea of proofs given in
[3], [4], [5].

Proposition 3.2 Let ϕ : U → U be a holomorphic map, where U is an open subset of Cd. If
the map Cϕ is hypercylic on H(U), then ϕ is injective on U , its derivative is never singular on
U and ϕ runs away on U .

Proof: If ϕ(z) = ϕ(w) then every function in the image of Cϕn has the same values in z
and in w, thus Cϕ cannot be hypercyclic. If ϕ′(z)v = 0, then inductively (ϕn)′(z)v = 0 for every
n ∈ N and every function in im Cϕn has a derivative at z vanishing on the vector v. Again Cϕ

cannot be hypercylic. If ϕn(K) ∩K 6= ∅ for every n ∈ N then for any function f ∈ H(U) with
f(K) ⊆ B(0, r) the function Cϕn(f) takes some values in B(0, r) and so it cannot approximate
any function with moduli of all values bigger than r. 2

Unfortunately, for arbitrary open Ω ⊂ Rd and real analytic ϕ : Ω → Ω such that Cϕ is
hypercyclic we do not know if there is a complex neighbourhood U of Ω such that ϕ(U) ⊂ U .
Even if such a neighbourhood exists we do not know if ϕ is injective on U and if the derivative is
invertible at every z ∈ U . Let us note that if V is a hyperbolic neighbourhood of (a, b) ⊆ R such
that ϕ is holomorphic on V and ϕ(V ) ⊂ V , with ϕ : (a, b) → (a, b) real analytic, then there are
many neighbourhoods W with ϕ(W ) ⊂ W : one can take, for instance, {z ∈ Ω : kV (z, (a, b)) < ε}
for every ε > 0 where kV is the Kobayashi metric for V . But even in this situation it is not
clear whether we can choose this neighbourhood in such a way that ϕ is injective there. In case
U ⊂ C simply connected the condition in Proposition 3.2 is also sufficient for hypercyclicity of
Cϕ : H(U) → H(U) [21, Th. 3.21]. For similar results in many variable case see [34].

Although we cannot characterize hypercyclic composition operators Cϕ : A (Ω) → A (Ω), we
can do it under some additional assumptions. We start with some auxiliary results:

Lemma 3.3 Let U be an open complete hyperbolic complex neighbourhood of Ω ⊂ Rd in Cd such
that U ∩ Rd = Ω. If ϕ : U → U , ϕ(Ω) ⊂ Ω, and ϕ runs away on Ω, then it runs away on U .

Proof: Fix x ∈ U . Since U is hyperbolic complete, the Kobayashi disc BkU
(x, r) is relatively

compact in U for every r and for every compact subset of U there is r such that the compact
set is contained in BkU

(x, r). Let K b U , K ⊂ BkU
(x, r). Thus

ϕn(K) ⊂ BkU
(ϕn(x), r).

On the other hand, since ϕ runs away on U ∩ Rd there exists n ∈ N such that

ϕn(BkU
(x, 3r) ∩ Rd) ∩BkU

(x, 3r) = ∅,

in particular, ϕn(x) 6∈ BkU
(x, 3r). Therefore,

ϕn(K) ∩K ⊂ BkU
(ϕn(x), r) ∩BkU

(x, r) = ∅.

2

6



Proposition 3.4 Let W be an arbitrary complex neighbourhood of R and let ϕ : W → W ,
ϕ(R) ⊂ R, be holomorphic.

(i) If W 6= C, then there exists a complete hyperbolic complex neighbourhood U ⊂ W of R
such that ϕ(U) ⊂ U .

(ii) If in addition U is finitely connected, then there exists a simply connected complex neigh-
bourhood V ⊂ U of R, symmetric with respect to the real axis such that ϕ(V ) ⊂ V . Moreover,
there is a biholomorphism ψ : V → D such that ψ(R) = (−1, 1).

Proof: (i) Since ϕ(R) ⊂ R we get ϕ(z̄) = ϕ(z) for all z, z̄ ∈ W . Assume that W = C \ {w},
w 6∈ R. Select z ∈ W with ϕ(z) = w̄. If z̄ ∈ W , then ϕ(z̄) = ϕ(z) = w, which contradicts
ϕ(W ) ⊂ W . Therefore z̄ /∈ W , hence z̄ = w. Setting U := W \ {w̄}, we have ϕ(U) ⊂ U . We
have proved that there exists a complex neighbourhood U of R, ϕ(U) ⊂ U such that C \ U
contains at least 2 points. By [26, Cor. 3.7.3], U is complete hyperbolic.

(ii) Suppose now that U is finitely connected. If we take ε > 0 small enough, then

Uε := {z ∈ U : kU (z,R) < ε}

is contained in a simply connected neighbourhood of R contained in U and it is clearly not equal
C. Set V1 := {z ∈ Uε|z̄ ∈ Uε}, since ϕ(z̄) = ϕ(z) we have ϕ(V1) ⊂ V1.

Let us define V to be V1 together with its holes, i.e., all compact closed-open subsets of
the complement. Since V1 ⊂ Uε and Uε is included in a simply connected neighbourhood of R
contained in U , we have V ⊂ U . We claim that that ϕ(V ) ⊂ V . Indeed, if ϕ is constant then it
must be real and the result holds. If ϕ is not constant, then ϕ is open. Let L be any subset of
C \ V1 closed-open in it and compact. We show that ϕ(L) is contained in V . To see this, first
observe that ϕ(L) ∩ (C \ V1) = ϕ(V1 ∪ L) ∩ (C \ V1). Thus ϕ(L) ∩ (C \ V1) is both closed and
open in (C \ V1) so it is a connected component of the latter set, and in fact a bounded one.
Such a component is just the hole of V1 and so it is contained in V .

Since V is simply connected not equal to C there is a unique biholomorphism ψ : V → D such
that ψ(0) = 0 and ψ′(0) > 0. Since V is symmetric we can define ψ1 : V → D, ψ1(z) = ψ(z̄).
It is biholomorphic and ψ1(0) = 0, ψ′1(0) > 0. Thus by uniqueness ψ = ψ1. This implies that
ψ|R ⊂ R. 2

Proposition 3.5 Let ϕ : Ω → Ω be analytic, Ω ⊂ R open. Assume that there is a finitely
connected complex neighbourhood U 6= C of Ω such that ϕ extends holomorphically to U and
ϕ(U) ⊂ U . If ϕ runs away on Ω and there is a complex neighbourhood V ⊂ U of Ω such that
ϕn is injective on V for every n ∈ N, then Cϕ : A (Ω) → A (Ω) is sequentially hypercyclic.

Proof: Since U 6= C, we can apply Proposition 3.4 and may assume that ϕ : D → D is
holomorphic and ϕ((−1, 1)) ⊂ (−1, 1). Moreover, there is a complex neighbourhood V ⊂ D of
(−1, 1) such that ϕn are injective on V for every n ∈ N. By Lemma 3.3, ϕ runs away on D.

Without loss of generality we may assume that

V =
⋃

j∈N
(Kj + εjD),

where (Kj)j∈N is a fundamental system of compact sets in (−1, 1) and (εj)j∈N is a sequence of
positive numbers and (Kj +εjD) is relatively compact in D. In particular, V is simply connected.

Let (pk)k∈N be a dense sequence of polynomials in H(V ) equipped with the compact open
topology. We define inductively a sequence of polynomials (fk)k∈N and an increasing sequence
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of positive integers (nj)j∈N. Take f0 ≡ 0. Assume that f0, f1, . . . , fk−1 are defined. Then

⋃

j<k

ϕnj


⋃

l≤j

(Kl + εlD)





 ∪


⋃

j≤k

(Kj + εjD)


 =: Lk

is an open relatively compact set in D. We take Mk to be Lk with filled holes. It is still open
and relatively compact in D and the sequence of Mk is increasing. Since ϕ runs away on D there
is nk ∈ N bigger than nk−1 such that

ϕnk


⋃

j≤k

(Kj + εjD)


 ∩Mk = ∅.

As
⋃

j≤k(Kj + εjD) is simply connected and ϕnk is injective then ϕnk

(⋃
j≤k(Kj + εjD)

)
is

simply connected and the complement of

ϕnk


⋃

j≤k

(Kj + εjD)


 ∪Mk

is connected. By Runge theorem, there is a polynomial fk such that

|fk(z)− pk ◦ ϕ−nk(z)| ≤ 2−k for z ∈ ϕnk


⋃

j≤k

(Kj + εjD)




while
|fk(z)− fk−1(z)| ≤ 2−k for z ∈ Mk.

The sequence (fj)j∈N is uniformly convergent on every Mk thus its limit f is holomorphic
on the union of (Mk)k∈N. Let z ∈ ⋃

j≤k(Kj + εjD). Then

|f ◦ϕnk(z)−pk(z)| ≤ |(f−fk)◦ϕnk(z)|+ |(fk−pk ◦ϕ−nk)◦ϕnk(z)| ≤
∞∑

m=k+1

2−m +2−k = 2−k+1.

Thus the sequence (f ◦ϕnk)k∈N is a dense sequence in H(V ) and thus it is sequentially dense in
A ((−1, 1)). 2

Remark. We explain the difficulties to prove the converse of Proposition 3.5. Suppose that
ϕ : Ω → Ω is real analytic on an open interval Ω of R such that there is complex neighbourhood U
of Ω such that ϕ extends to U and ϕ(U) ⊂ U . If Cϕ : A (Ω) → A (Ω) is sequentially hypercyclic,
then ϕ runs away on Ω by Theorem 2.3. Now, let f ∈ A (Ω) be a sequentially hypercyclic vector
in A (Ω) with respect to Cϕ. There is an increasing sequence of natural numbers (kn)n∈N such
that f ◦ ϕkn (as a function defined on Ω) tends to g as n tends to ∞, with g(z) = z in A (Ω).
Accordingly, there is a connected complex neighbourhood V ⊂ U of Ω such that each f ◦ ϕkn

can be extended to a holomorphic function fkn on V and the extended sequence converges to
g(z) = z uniformly on the compact subsets of V . However, it is not clear a priori whether these
extensions fkn actually coincide with the composition f ◦ ϕkn , since it is not even clear if the
composition is defined. If the compositions were defined on the set V , e.g. in case f was an
entire function, then we could conclude that all the iterates ϕn would be injective on V .
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Proposition 3.4 implies that if ϕ : R → R extends to a self map on some complex finitely
connected neighbourhood U 6= C, then we can take without loss of generality U = D the unit
disc and R corresponds to (−1, 1). That is why the following theorem is interesting and more
general than it might look.

Theorem 3.6 Let ϕ : D → D be holomorphic, ϕ((−1, 1)) ⊂ (−1, 1). Then the following asser-
tions are equivalent:

(a) Cϕ : A (−1, 1) → A (−1, 1) is sequentially hypercyclic;

(b) Cϕ : A (−1, 1) → A (−1, 1) is hypercyclic;

(c) Cϕ : A (−1, 1) → A (−1, 1) is topologically transitive;

(d) ϕ runs away on (−1, 1) and ϕ′ does not vanish on (−1, 1);

(e) there is a simply connected complex neighbourhood W of (−1, 1) in D such that ϕ(W ) ⊂ W ,
ϕ is injective on W and ϕ runs away on W ;

(f) there is a simply connected complex neighbourhood W of (−1, 1) in D such that ϕ(W ) ⊂ W
and Cϕ : H(W ) → H(W ) is hypercyclic.

Remark. The implications (e)⇒(f)⇒(a)⇒(b)⇒(c)⇒(d) hold for every analytic ϕ : (−1, 1) →
(−1, 1) without any assumption. The assumption that ϕ extends to a self map of D is needed
only for (d)⇒(e). Example 4.2 shows that (d) does not imply (e) in general.

Every selfmap ϕ of D has either a fixed point in D or it has the so-called Denjoy-Wolff point
τ ∈ ∂D, i.e., ϕn tends uniformly on compact subsets of D to τ [29, p. 78] or [30]. According to
[29, p. 78, The Grand Iteration Theorem (b)] (see also [10]), all selfmaps ϕ of the unit disc can
be classified as

1. elliptic: those with a fixed point inside the disc;

2. hyperbolic: those which have Denjoy-Wolff point τ ∈ ∂D but the angular derivative at this
point ϕ′(τ) is strictly smaller than 1;

3. parabolic: those which have Denjoy-Wolff point τ ∈ ∂D but its angular derivative there
ϕ′(τ) = 1.

Recall that a disc internally tangent to the boundary of the unit disc at some point w is called
a horodisc at w.

We need some auxiliary results.

Lemma 3.7 Let ϕ : D → D be holomorphic, ϕ((−1, 1)) ⊂ (−1, 1) and its real orbits tend to 1.
Then for every compact set K ⊂ D and every horodisc h at 1 there is N ∈ N such that for every
n ≥ N we have ϕn(K) ⊂ h.

Proof: Let us define w0 = 0, wn+1 = ϕ(wn). Then wn tends to 1 radially. It is easily seen
that for every r < 1 there is N ∈ N such that for every n ≥ N the hyperbolic ball BkD(wn, r) ⊂ h.
Now, if K b D then K ⊂ BkD(0, r) for some r < 1. Clearly, ϕn(K) ⊂ BkD(wn, r) ⊂ h. 2

We thank M. Contreras for the following remark: The statement of Lemma 3.7 does not hold
if we drop the assumption that ϕ((−1, 1)) ⊂ (−1, 1). The map T (z) := (1+z)/(1−z) transforms
the unit disc in the right half plane in a bijective form taking 1 to∞. Define ϕ(z) := T−1(T (z)+i)
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for z ∈ D. The map ϕ is a selfmap of the unit disc whose Denjoy-Wolff point is 1, as all the
orbits tend to 1. To see that the thesis of the lemma fails, we work in the right halfplane. The
horodiscs are mapped by T into semiplanes of the form {w ∈ C : Re (z) > α}, α > 0. The
function ϕ in the semiplane acts as w → w+ i, that keeps the horodiscs. However, the iterations
of a fixed compact set K do not enter a horodisc unless they are already contained in it.

Lemma 3.8 [29, Th. 5.3] Let ϕ : D → D be holomorphic, ϕ((−1, 1)) ⊂ (−1, 1), and ϕ runs
away on (−1, 1). Then ϕ(h) ⊂ h for any horodisc h at the Denjoy-Wolff point of ϕ.

Proof of Theorem 3.6: (a)⇒(b)⇒(c): Obvious.
(c)⇒(d): Theorem 2.3.
(d)⇒(e): By Lemma 3.3, ϕ runs away on D. Thus, by the Denjoy-Wolff Theorem and the

classification of self maps of D mentioned above (see [29, p. 78], [30] or [10, p.10, Th. 4.1])
it is of either hyperbolic or parabolic type and ϕn converges on compact sets uniformly to its
Denjoy-Wolff point τ on the boundary which must be real in our case. Without loss of generality
we assume that τ = 1. Clearly then ϕ(x) > x for every x ∈ (−1, 1). By [11, Th. 2.2] and [9,
Lemma 5 and remarks below] (or [10, Th. 6.2, 6.3]) there is a simply connected set V ⊂ D such
that ϕ(V ) ⊂ V , ϕ is injective on V and for every compact K b D there is N ∈ N such that
ϕn(K) ⊂ V holds for every n ≥ N . By Lemmas 3.7 and 3.8 there are plenty of such sets since
for any horodisc h at 1 the set h ∩ V also satisfies the above requirements.

We apply Lemma 2.1 to find a complex neighbourhood U of (−1, 1) in D such that ϕ|U is
injective. Let us assume that [x, 1) ⊂ V . We find a horodisc h at 1 such that

ρ(ϕ(x), h) >
1
2
,

where ρ is the Poincaré metric on D, [19] We find r, 0 < r < 1, such that

{z ∈ D : ρ(z, [x, ϕ(x)]) < r} ⊂ V.

Then we assume without loss of generality that

U ⊂
{

z ∈ D : ρ(z, (−1, ϕ(x)]) <
r

4

}
∪ V.

Fix a fundamental sequence of compact sets (Kn)n∈N in the set (−1, ϕ(x)]. For every n ∈ N
there is kn such that

ϕkn(Kn) b V ∩ h.

Take a complex neighbourhood Wn of Kn such that ϕkn(Wn) ⊂ V ∩ h and

Wn ∪ ϕ(Wn) ∪ · · · ∪ ϕkn(Wn) ⊂ U

and define
W = W̃ ∪ (V ∩ h),

with
W̃ =

⋃

n∈N
Wn ∪ ϕ(Wn) ∪ · · · ∪ ϕkn(Wn) ⊂ U.

Clearly, ϕ(W ) ⊂ W , ϕ is injective both on W̃ and on V ∩ h.
We want to show that ϕ is injective on W . Since it is injective on V it suffices to show that

if z ∈ W̃ \ V , w ∈ V ∩ h and z 6= w, then ϕ(z) 6= ϕ(w).
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If z ∈ W̃ \ V ⊂ U \ V thus
ρ(z, (−1, ϕ(x)]) <

r

4
.

If ρ(z, [x, ϕ(x)]) < r
4 then z would belong to V ; a contradiction. Therefore

ρ(z, (−1, x]) <
r

4
.

Hence ρ(ϕ(z), (−1, ϕ(x)]) < r
4 < 1

4 . Since w ∈ V ∩ h, ϕ(w) ∈ h (see Lemma 3.8) and since
ρ(ϕ(w), (−1, ϕ(x)]) > 1

2 , we have

ρ(ϕ(w), ϕ(z)) >
1
2
− 1

4
> 0

and ϕ(w) 6= ϕ(z).
We can make W simply connected by [13, Ex. 2.4.4]. The map ϕ runs away on W by Lemma

3.3.
(e)⇒(f): It is [21, Theorem 3.21].
(f)⇒(a): Obvious, since H(W ) is dense in A ((−1, 1)). 2

We give an alternative proof of the implication (d)⇒(a) in Theorem 3.6: By Lemma 3.3, the
map ϕ runs away on D. Clearly it has no fixed point in D thus ϕ has to be either hyperbolic or
parabolic.

Parabolic case. By [11, Th. 2.2], there is a holomorphic map σ : D→ C such that

σ ◦ ϕ(z) = σ(z) + 1

and from the construction in the cited paper it follows that σ((−1, 1)) ⊂ R. Moreover, there is
an open set V ⊂ D such that σ|V is injective and eventually every orbit of ϕ is in V .

First, we show that σ on (−1, 1) is injective and its derivative never vanishes there. Indeed,

(1) σ(ϕn(z)) = σ(z) + n

thus
σ′(ϕn(z)) · (ϕn)′(z) = σ′(z).

Since ϕ′ never vanishes on (−1, 1) we get

σ′(z) = 0 implies σ′(ϕn(z)) = 0.

For sufficiently big n ∈ N we have ϕn(z) ∈ V and σ′(ϕn(z)) 6= 0. So we have proved that σ′(z)
does not vanish for any z ∈ (−1, 1) and consequently is strictly monotonic, i.e., injective on
(−1, 1). Now, by Lemma 2.1, there is a 1-connected complex neighbourhood U of (−1, 1) in D
such that σ is injective on U . By (1) also ϕn is injective on U .

Hyperbolic case. By [9, Part. 2.3] there is a holomorphic map σ : D→ C such that

σ ◦ ϕ(z) =
1
λ

σ(z), 0 < λ < 1.

In fact, the whole construction in [9] is done in the upper half plane instead of the unit disc. It
is easily seen from the construction that the imaginary positive axis is mapped by σ into itself.
Transferring into the unit disc we will get that σ((−1, 1)) ⊂ (−1, 1). Moreover, by [9, Lemma 5
and remarks below], there is an open set V ⊂ D such that σ|V is injective and eventually every
orbit of ϕ is in V .
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We will show again that σ is injective on (−1, 1) and its derivative never vanishes there.
Indeed,

(2) σ(ϕn(z)) =
1
λn

σ(z)

thus
σ′(ϕn(z)) · (ϕn)′(z) =

1
λn

σ′(z).

Since ϕ′ never vanishes on (−1, 1) we get that if σ′(z) = 0 for z ∈ (−1, 1) then σ′(ϕn(z)) = 0.
This cannot be the case since for sufficiently big n ∈ N we have ϕn(z) ∈ V and σ′ never vanishes
on V . We have proved that σ′ never vanishes on (−1, 1) and consequently it is strictly monotonic,
i.e., injective on (−1, 1). Again by Lemma 2.1, there is a 1-connected complex neighbourhood
U of (−1, 1) in D such that σ is injective on U . By (2), also ϕn is injective on U .

Summarizing, both in parabolic and hyperbolic cases we have constructed a 1-connected
complex neighbourhood U of (−1, 1) in D such that ϕn are injective on U for every n ∈ N. Use
Proposition 3.5. 2

We conclude this section with the following open question:

Problem 3.9 Is there a hypercyclic (composition) operator T : A (Ω) → A (Ω), Ω ⊂ Rd,
which is not sequentially hypercyclic? Is there a transitive (composition) operator T : A (Ω) →
A (Ω), Ω ⊂ Rd, which is not hypercyclic?

4 Examples

There are examples of self maps ϕ : D → D such that Cϕ : H(D) → H(D) is not hypercyclic
(since ϕ is not injective on D) but Cϕ : A ((−1, 1)) → A ((−1, 1)) is hypercyclic.

Example 4.1 A holomorphic non-injective map ϕ : D → D such that Cϕ : A ((−1, 1)) →
A ((−1, 1)) is hypercyclic.

Define

ϕ(z) :=
(z + 1)3

32
+

3
4
.

Clearly ϕ(D) ⊂ D and ϕ is not injective on D since ϕ(αe
π
3
i − 1) = ϕ(αe−

π
3
i − 1) for suitably

small α > 0. We will prove that ϕ is a self map on

U := D ∩
{

z = x + iy : |y| < 1√
3
x +

1√
3

}
.

The map z 7→ z + 1 maps U into

(D+ 1) ∩
{

z : | arg z| < π

6

}
,

thus z 7→ (z+1)3

32 maps U injectively into
{

z : Re z > 0, |z| < 1
4

}
=: V

Obviously V + 3
4 ⊂ U . We have proved that ϕ(U) ⊆ U .

Moreover, ϕ is strictly increasing on (−1, 1) and ϕ(x) > x for all x ∈ (−1, 1). Thus for every
x ∈ (−1, 1) its orbit (ϕn(x))n∈N tends to 1 and ϕ runs away on (−1, 1). Hence ϕ is injective
on U and runs away on U by Lemma 3.3. We can apply [21, Theorem 3.21] to conclude that
Cϕ : H(U) → H(U) is hypercyclic, so Cϕ : A ((−1, 1)) → A ((−1, 1)) is hypercyclic.
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Our next example shows that the implication (d) implies (e) in Theorem 3.6 does not hold
in general.

Example 4.2 A topologically transitive composition operator Cϕ : A ((0, 1)) → A ((0, 1)) such
that there is no complex neighbourhood U of (0, 1) such that ϕn is injective on U for every n ∈ N.
In particular, there is no open complex neighbourhood W of (0, 1) such that ϕ is a self map on
W and Cϕ is hypercyclic on H(W ). We are thankful to the referee for giving us a much easier
and nicer example than our original one.

Consider the map ϕ(z) := z2 on (0, 1) (or equivalently ϕ(z) := (z2 + 2z − 1)/2 on (−1, 1)).
The operator Cϕ : A ((−1, 1)) → A ((−1, 1)) is topologically transitive by Theorem 2.3 and
Proposition 1.1. However, there is no complex neighbourhood U of (0, 1) such that ϕn(z) = z2n

is injective on U for every n ∈ N. Note that ϕn(1
2 exp(±2πi/2n)) = 1/22n

for each n ∈ N.

Problem 4.3 (1) Is the operator Cϕ : A ((0, 1)) → A ((0, 1)), ϕ(z) = z2, (sequentially) hyper-
cyclic?

(2) Is the operator Cϕ : A (R) → A (R), ϕ(z) = exp(z), (sequentially) hypercyclic? It is
topologically transitive by Theorem 2.3.

(3) Does every sequentially hypercyclic operator Cϕ : A (Ω) → A (Ω) satisfy that there
is complex neighbourhood U of Ω such that ϕ extends holomorphically to U , ϕ(U) ⊂ U and
Cϕ : H(U) → H(U) is hypercyclic? Compare with Theorem 3.6 (a)⇒(f) and with the Remark
after Proposition 3.5.

The following family of self maps ϕ : D → D such that ϕ((−1, 1)) ⊂ (−1, 1) has been
investigated by Cowen and Ko [12] in connection with Hermitian weighted composition operators
on H2.

Example 4.4 Take a0, a1 ∈ R and define

ϕ(z) := a0 +
a1z

1− a0z
, z ∈ D.

Then ϕ is a linear fractional map with real coefficients. By [12, Lemma 2.2 and Corollary 2.3],
ϕ maps the unit disc into itself if and only if

|a0| < 1 and − 1 + |a0|2 ≤ a1 ≤ (1− |a0|)2.

Moreover, by [14, Theorem 10], this is equivalent to the fact that ϕ maps the interval (−1, 1)
into itself. We want to study the operator Cϕ : A ((−1, 1)) → A ((−1, 1)). To do this, it is
enough to consider the case 0 ≤ a0 < 1. Otherwise select, as in [12, proof of Corollary 2.3],
θ such that ϕ̃(z) := eiθϕ(e−iθz) = |a0| + a1z/(1 − |a0|z). We also suppose that a1 6= 0, since
otherwise ϕ(z) = a0 for each z ∈ D. Clearly ϕ′(z) = a1/(1− a0z)2, hence ϕ′(x) 6= 0, x ∈ (−1, 1),
and a1ϕ

′(x) > 0 for each x ∈ (−1, 1). By Proposition 1.1 and Theorem 3.6 Cϕ : A ((−1, 1)) →
A ((−1, 1)) is (sequentially) hypercyclic if and only if ϕ has no fixed point on (−1, 1). This is
easily seen to be equivalent to 0 < a0 < 1 and a1 = (1− a0)2. In the other cases, Cϕ is not even
topologically transitive. A finer analysis of the dynamics of Cϕ requires the distinction of three
cases.

Case 1. 0 ≤ a0 < 1 and a1 = −1 + a2
0.
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In this case ϕ(z) = (a0 − z)/(1 − a0z) is an automorphism of D such that ϕ(1) = −1 and
ϕ(−1) = 1. Moreover 1 − (1 − a0)1/2 ∈ [0, 1) is a fixed point. Thus ϕ is elliptic and, by [7,
Theorem 2.8], the operator Cϕ : A ((−1, 1)) → A ((−1, 1)) is power bounded and mean ergodic.

Case 2. 0 ≤ a0 < 1 and −1 + a2
0 < a1 < (1− a0)2.

In this case −1 < ϕ(−1) < 1, −1 < ϕ(1) < 1 and ϕ maps the closed unit disc D into the open
unit disc; see page 5778 in [12]. Therefore Cϕ is power bounded on H(D) and on A ((−1, 1)) by
[6] and by [7, Theorems 2.1 and 2.2].

Case 3. 0 ≤ a0 < 1 and a1 = (1− a0)2.
If a0 = 0, then ϕ(z) = z, z ∈ D, and Cϕ coincides with the identity on A ((−1, 1)). In case

0 < a0 < 1, we get ϕ′(x) > 0 for each x ∈ (−1, 1), ϕ is not an automorphism of the disc, ϕ(1) =
1,−1 < ϕ(−1) < 1, there are no fixed points in (−1, 1) and Cϕ : A ((−1, 1)) → A ((−1, 1)) is
sequentially hypercyclic, as we mentioned above.

Acknowledgement. The authors are very grateful to the referee for his careful reading of the
manuscript and his/her many suggestions which improved the presentation and the content of
our paper.
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159 (1998), 587–595.

[9] F. Bracci, P. Poggi-Corradini, On Valiron’s theorem, in: Proc. Future Trends in Geometric
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