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Abstract. Every Köthe echelon Fréchet space X that is Montel and not
isomorphic to a countable product of copies of the scalar �eld admits a power
bounded continuous linear operator T such that I − T does not have closed
range, but the sequence of arithmetic means of the iterates of T converge to
0 uniformly on the bounded sets in X. On the other hand, if X is a Fréchet
space which does not have a quotient isomorphic to a nuclear Köthe echelon
space with a continuous norm, then the sequence of arithmetic means of the
iterates of any continuous linear operator T (for which (1/n)T n converges to
0 on the bounded sets) converges uniformly on the bounded subsets of X, i.e.,
T is uniformly mean ergodic, if and only if the range of I − T is closed. This
result extends a theorem due to Lin for such operators on Banach spaces.
The connection of Browder'equality for power bounded operators on Fréchet
spaces to their uniform mean ergodicity is exposed. An analysis of the mean
ergodic properties of the classical Cesàro operator on Banach sequence spaces
is also given.
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1. Introduction
The purpose of this paper is to investigate the behaviour of the sequence of

arithmetic means T[n] := 1
n

∑n
m=1 Tm, n ∈ N, of the iterates Tm := T ◦ ... ◦ T

of a continuous linear operator T ∈ L(X) on a Fréchet space X. For unde�ned
terminology about Fréchet spaces we refer to [9], [30], for example. A useful result
of Lin [26] (see also [24]) asserts that the following conditions are equivalent for
an operator T (on a Banach space X) which satis�es limn→∞ ||Tn/n|| = 0.

(1) T is uniformly mean ergodic, i.e., there is P ∈ L(X) with limn→∞ ‖T[n]−
P‖ = 0.

(2) The range (I − T )(X) is closed and X = Ker(I − T )⊕ (I − T )(X).
(3) (I − T )2(X) is closed.
(4) (I − T )(X) is closed.
It was observed in Example 2.17 of [3] that there exist power bounded, uni-

formly mean ergodic operators T on the Fréchet space s of rapidly decreasing
sequences for which (I − T )(X) is not closed. On the other hand, Theorem 4.1
of [4] provides an extension of Lin's result to those Fréchet spaces X which are
quotients of countable products of Banach spaces (the so called quojections), un-
der the additional assumption that Ker(I − T ) = {0}. In the present paper we
undertake a careful analysis of the possible extension of Lin's result to the setting
of Fréchet spaces. First, we show in Proposition 3.1 that every Montel Köthe
echelon space λp(A) of order p ∈ [1,∞)∪{0} not isomorphic to a countable prod-
uct of copies of the scalar �eld admits an operator T ∈ L(λp(A)) which is power
bounded and uniformly mean ergodic, but such that I − T is not surjective and
has dense range. The same result also holds if λp(A) is non-normable, admits
a continuous norm and satis�es the density condition; see Proposition 3.3. In
contrast to these results, we prove in Theorem 3.5 that the conditions (1)�(4)
above are equivalent for operators T de�ned on a Fréchet space X which does
not have a separated quotient which is isomorphic to a nuclear Köthe echelon
space with a continuous norm. These spaces, called prequojections, are precisely
those Fréchet spaces whose strong bidual is a quojection. The proof of Theorem
3.5 is �rst established for quojections and then extended to prequojections. As a
concrete example we investigate in Section 4 the mean ergodic properties of the
classical Cesàro operator

C(x) =

(
1
n

n∑

k=1

xk

)

n

, x = (xn)n ∈ CN,

in the quojection Fréchet space CN of all sequences, as well as in the Banach
sequence spaces c0, c, `p (1 < p ≤ ∞), bv0 and bvp (1 ≤ p < ∞). Finally, in
Section 5, inspired by results in [18], [19], we investigate when the identity

{
x ∈ X :

{
n∑

k=1

T kx

}∞

n=1

is a bounded sequence in X

}
= (I − T )(X),

called Browder's equality, holds for a power bounded operator T ∈ L(X) in a
locally convex space X (brie�y, lcHs). The main results of Section 5 are Proposi-
tion 5.6 and Theorem 5.11 which establish the connection of Browder's equality
to uniform mean ergodicity.
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2. Preliminaries
Our notation for lcHs' is standard; we refer to [22, 23, 30]. The traditional

reference for mean ergodic operators is [24]. More detailed information on Fréchet
and Köthe echelon spaces can be found in [9], [30]. We include a few de�nitions
and some notation below to facilitate the reading of the paper. Let X be a lcHs
and ΓX a system of continuous seminorms determining the topology of X. The
strong operator topology τs in the space L(X) of all continuous linear operators
from X into itself (from X into another lcHs Y we write L(X,Y )) is determined
by the family of seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is de�ned in L(X) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For X a Banach
space, τb is the operator norm topology in L(X). If X is metrizable and complete,
then X is called a Fréchet space. In this case ΓX can be taken countable. The
identity operator on a lcHs X is denoted by I.

By Xσ we denote X equipped with its weak topology σ(X, X ′), where X ′ is
the topological dual space of X. The strong topology in X (resp. X ′) is denoted
by β(X, X ′) (resp. β(X ′, X)) and we write Xβ (resp. X ′

β); see [22, �21.2] for the
de�nition. The strong dual space (X ′

β)′β of X ′
β is denoted simply by X ′′. By X ′

σ

we denote X ′ equipped with its weak�star topology σ(X ′, X). Given T ∈ L(X),
its dual operator T ′ : X ′ → X ′ is de�ned by 〈x, T ′x′〉 = 〈Tx, x′〉 for all x ∈ X,
x′ ∈ X ′. It is known that T ′ ∈ L(X ′

σ) and T ′ ∈ L(X ′
β), [23, p.134].

Proposition 2.1. Let X be a Fréchet space, X ′′ be its strong bidual and T ∈
L(X), in which case T ′′ ∈ L(X ′′). Then T ′′(X ′′) is a closed subspace of the
Fréchet space X ′′ if and only if T (X) is a closed subspace of X.
Proof. Suppose that T ′′(X ′′) is closed in X ′′. Then T ′′(X ′′) is also σ(X ′′, X ′′′)�
closed with T ′ continuous from (X ′, σ(X ′, X ′′) into itself. Hence, T ′ is a weak
homomorphism, [23, �32.3(2)], and so T ∈ L(X) is also a homomorphism, [23,
�33.4(2), (d)⇒(a)], which implies that T (X) is closed in X, [23, �33.4(2), (a)⇒(c)].

Conversely, suppose that T (X) is closed in X, in which case T ′ is a weak
homomorphism of (X ′, σ(X ′, X ′′) into itself, [23, �33.4(2), (c)⇒(d)]. Accordingly,
T ′′(X ′′) is σ(X ′′, X ′′′)�closed in X ′′, [23, �32.3(2)], and hence, also closed in
X ′′. ¤

Let X be a lcHs and T ∈ L(X), in which case we de�ne T[0] := I and

T[n] :=
1
n

n∑

m=1

Tm, n ∈ N. (2.1)

Then we have the identities

(I − T )T[n] = T[n](I − T ) =
1
n

(T − Tn+1), n ∈ N, (2.2)
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and
1
n
· Tn = T[n] −

(n− 1)
n

T[n−1], n ∈ N. (2.3)

If T[n] → P in Ls(X) as n →∞, so that τs-limn→∞ T n

n = 0, then P is a projection
satisfying TP = PT = T with KerP = (I − T )(X) and P (X) = Ker(I − T ).
Moreover,

X = Ker(I − T )⊕ (I − T )(X), (2.4)
[3], [40, Chap.VIII, �3, p.213]. Of course, for S ∈ L(X) we de�ne KerS :=
S−1({0}). An operator T ∈ L(X) is called power bounded if the sequence {Tn}∞n=1

of the iterates of T is equicontinuous in L(X). The operator T ∈ L(X) is said
to be mean ergodic (resp. uniformly mean ergodic) if the sequence {T[n]}∞n=1 is
convergent in Ls(X) (resp. in Lb(X)); see [3], [24] for more details.

Proposition 2.2. Let X be a lcHs and T ∈ L(X) be mean ergodic (resp. uni-
formly mean ergodic). Suppose that Y is a closed subspace of X which is T�
invariant. Then the restriction S := T |Y ∈ L(Y ) is also mean ergodic (resp.
uniformly mean ergodic).

Proof. Suppose T is mean ergodic. Then there is P ∈ L(X) such that T[n] → P
in Ls(X) as n → ∞. Clearly, Y is Tn�invariant, for n ∈ N, the operator S[n] =
T[n]|Y , and Y is also P�invariant. Since Y is closed, it follows that S[n] → P |Y in
Ls(Y ) as n →∞ with P |Y ∈ Ls(Y ). Hence, S is mean ergodic.

The proof for T uniformly mean ergodic is similar. ¤

3. Arithmetic means of operators in certain classes of Fréchet
spaces

We �rst investigate operators on Köthe echelon spaces. A sequence A = (an)n

of functions an : N→ [0,∞) is called a Köthe matrix on N, if 0 ≤ an(i) ≤ an+1(i)
for all i, n ∈ N, and for each i ∈ N there is n ∈ N such that an(i) > 0. To each
p ∈ [1,∞) we associate the linear space

λp(A) :=
{

x ∈ CN : q(p)
n (x) :=

(∑

i∈N
|an(i)xi|p

)1/p
< ∞, ∀n ∈ N

}
. (3.1)

We also require the linear space

λ∞(A) := {x ∈ CN : q(∞)
n (x) := sup

i∈N
an(i)|xi| < ∞, ∀n ∈ N} (3.2)

and its closed subspace (equipped with the relative topology)

λ0(A) := {x ∈ CN : lim
i→∞

an(i)xi = 0, ∀n ∈ N}.

Elements x ∈ CN are denoted by x = (xi)i. The spaces λp(A), for p ∈ [1,∞], are
called Köthe echelon spaces (of order p); they are all Fréchet spaces (separable
if p 6= ∞ and re�exive if p 6= 0, 1,∞) relative to the increasing sequence of
seminorms q

(p)
1 ≤ q

(p)
2 ≤ . . .. For the theory of such spaces we refer to [9], [10],

[22], [30], for example.
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Proposition 3.1. Let p ∈ [1,∞] ∪ {0} and let A be a Köthe matrix on N such
that λp(A) is a Montel space with λp(A) 6= CN. Then there is a power bounded,
uniformly mean ergodic operator T ∈ L(λp(A)) such that I − T is not surjective
and has dense range. In particular, (I − T )(λp(A)) is not closed.

Proof. Since λp(A) ⊆ CN but λp(A) 6= CN, it is routine to exhibit a sequence
t = (ti)i ∈ RN with ti > 1 for all i ∈ N and y ∈ λp(A) such that (tiyi)i 6∈ λp(A)
(see also [10, Proposition 1.8]). Set di := 1 − 1

ti
for all i ∈ N, in which case 0 <

di < 1 for all i ∈ N. With d := (di)i ∈ RN de�ne the operator Td : λp(A) → λp(A)
via Td((xi)i) = (dixi)i for x = (xi)i ∈ λp(A). Then Td is continuous and power
bounded for all p ∈ [1,∞] ∪ {0} as

q(p)
n (Tm

d x) ≤ q(p)
n (x), x ∈ λp(A), m, n ∈ N.

Since λp(A) is a Montel space, it follows that Td is uniformly mean ergodic, [3,
Proposition 2.8].

Clearly, (I−Td)(λp(A)) is dense in λp(A) (recall that if λ∞(A) is Montel, then
it coincides with λ0(A)). If (I−Td) is surjective, there exists x ∈ λp(A) satisfying
(I − Td)x = y, i.e. xi = tiyi for all i ∈ N. This implies x = (tiyi)i ∈ λp(A), a
contradiction. This shows that (I − Td) is not surjective and has dense range.
Since (I − Td) is injective and λp(A) is a Fréchet space, it follows that (I − Td)
cannot have closed range.

¤

We point out that Example 2.17 of [3] is a special case of Proposition 3.1, as
every λp(A) space which is Schwartz and admits a continuous norm is necessarily
Montel and distinct from CN.

Lemma 3.2. Let X be a Fréchet space such that X = X0 ⊕ X1 with X0 topo-
logically isomorphic to a Köthe Montel space λp(A), p ∈ [1,∞) ∪ {0}, such that
λp(A) 6= CN. Then X admits a power bounded uniformly mean ergodic operator
T such that I − T is not surjective and has dense range.

Proof. By Proposition 3.1 there exists S ∈ L(X0) which is power bounded and
uniformly mean ergodic, I − S is not surjective, and I − S has dense range in
X0. De�ne T : X → X by T (x0 + x1) := S(x0) for all x0 ∈ X0 and x1 ∈ X1.
Then T ∈ L(X) with T power bounded and uniformly mean ergodic. Since
I − S : X0 → X0 is not surjective, it follows that I − T is not surjective. Finally,
as (I − T )(X) ⊇ (I − S)(X0)⊕X1 and (I − S)(X0) is dense in X0, we conclude
that I − T has dense range in X. ¤

Recall that a Fréchet space X satis�es the density condition if the bounded
subsets of X ′

β are metrizable; see [8], [9] for this condition in Fréchet and Köthe
echelon spaces.

Proposition 3.3. Let p ∈ [1,∞)∪{0} and λp(A) be a Köthe echelon space which
is non�normable, admits a continuous norm, and satis�es the density condition.
Then there is T ∈ L(λp(A)) which is power bounded and uniformly mean ergodic,
but I − T is not surjective and has dense range. In particular, (I − T )(λp(A)) is
not closed.
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Proof. We �rst observe that λp(A) has a continuous norm if and only if there is
m ∈ N such that am(i) > 0 for all i ∈ N. So, we may assume that an(i) > 0 for
each i, n ∈ N. Clearly, λp(A) 6= CN. On the other hand, as λp(A) is non�normable
and satis�es the density condition, it follows from [12, Corollary 2.4] that there
exists an in�nite set J ⊆ N such that the sectional (hence, complemented) sub-
space λp(J,A) is Schwartz, hence Montel. The result now follows from Lemma
3.2 and Proposition 3.1. ¤

We now consider a class of Fréchet spaces in which the extension of Lin's result,
[26], does hold. Every Fréchet space X is a projective limit of continuous linear
operators Sk : Xk+1 → Xk, for k ∈ N, with each Xk a Banach space. If it is
possible to choose Xk and Sk such that each Sk is surjective and X is isomorphic
to proj j(Xj , Sj), then X is called a quojection, [6, Section 5]. Quojections are
characterized by the fact that every quotient with a continuous norm is a Banach
space, [6, Proposition 3]. This implies that a quotient of a quojection is again a
quojection. Banach spaces and countable products of Banach spaces are clearly
quojections. Actually, every quojection is the quotient of a countable product of
Banach spaces, [11]. In [33] Moscatelli gave the �rst examples of quojections which
are not isomorphic to countable products of Banach spaces. Concrete examples
of quojections are the sequence space ω = CN, the function spaces Lp

loc(Ω), with
1 ≤ p ≤ ∞ and Ω an open subset of Rn, and C(m)(Ω), with m ∈ N0 and Ω
an open subset of Rn, when equipped with their canonical lc�topology. In fact,
the above function spaces are isomorphic to countable products of Banach spaces.
The spaces of continuous functions C(X), with X a σ�compact completely regular
topological space, endowed with the compact open topology, are also examples
of quojections. Doma«ski constructed a completely regular topological space X
such that the Fréchet space C(X) is a quojection which is not isomorphic to a
complemented subspace of a product of Banach spaces [17, Theorem]. For further
information on quojections we refer to the survey paper [31] and the references
therein; see also [6], [16]. A prequojection is a Fréchet space X such that X ′′
is a quojection. Every quojection is a prequojection. A Fréchet space X is a
prequojection if and only if X has no Köthe nuclear quotient which admits a
continuous norm, [6, 15, 36, 38]. This implies that a quotient of a prequojection
is again a prequojection. So, every complemented subspace of a prequojection
is also a prequojection. The problem of the existence of prequojections which
are not quojections arose in a natural way in [6] and was solved in [7], [15], [32],
[34]; see the survey paper [31] for further information. An example of a space of
continuous functions on a suitable topological space which is a non�quojection
prequojection is given in [2].

The following lemma was suggested by the referee.

Lemma 3.4. Let E and F be two quojection Fréchet spaces, R ∈ L(F, E) be
surjective and A ∈ L(E). For given operators {Rn}∞n=1 ⊂ L(E) and, with Hn :=
ARn, for n ∈ N, suppose that the following conditions are satis�ed:

(i) Hn = RnA for all n ∈ N.
(ii) R = τb − limn→∞HnR in Lb(F, E).
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(iii) There is a fundamental sequence of seminorms (||.||j)j on E such that all
the operators A, {Rn}∞n=1, {Hn}∞n=1 are continuous from the semi-normed
space (E, ||.||j) into itself, for each j ∈ N.

Then A is invertible, i.e., A is bijective with A−1 ∈ L(E).

Proof. We set Ej := E/ Ker ||.||j endowed with the quotient topology. Since E

is a quojection, Ej is a Banach space. We �x j ∈ N and let Âj , Ĥn,j , R̂n,j and
Îj denote the canonically induced operators in L(Ej). Since R is continuous and
open, there is a seminorm ||.|| on F such that R(U) = Uj , where U = ||.||−1([0, 1])
and Uj = ||.||−1

j ([0, 1]). Since F is a quojection Fréchet space, we can apply [16,
Proposition 1] to �nd a bounded subset B of F such that B̂ = B + Ker ||.|| is
the unit ball of F/ Ker ||.||. Therefore B̂j = R(B) + Ker ||.||j is the unit ball of
Ej . Since R = τb − limn→∞HnR in Lb(F, E) (by condition (ii)), it follows that
Ĥn,j → Îj as n →∞ in the norm of the Banach space Ej . Hence, there is n ∈ N
such that Ĥn,j is invertible in L(Ej). By condition (i), Ĥn,j = ÂjR̂n,j = R̂n,jÂj ,
so that Âj is also invertible in L(Ej). Since j is arbitrary, we can conclude that A
is invertible in L(E). Indeed, the surjectivity of A follows as in the last part of the
proof of Theorem 4.1 in [4], and the injectivity is proved by a direct argument. ¤

Condition (iii) in Lemma 3.4 need not imply that {Rn}∞n=1 and {Hn}∞n=1 are
equicontinuous sets in L(E).

The proof of the following result illustrates the versatility of Lemma 3.4 when
applied in di�erent situations and shows clearly why the �quojection property� is
crucial.

Theorem 3.5. Let X be a prequojection Fréchet space and T ∈ L(X) such that
τb-limn→∞ T n

n = 0. The following conditions are equivalent.
(1) T is uniformly mean ergodic.
(2) (I − T )(X) is closed and X = Ker(I − T )⊕ (I − T )(X).
(3) (I − T )2(X) is closed.
(4) (I − T )(X) is closed.

Proof. Case (I). X is a quojection.
(1)⇒(2). By assumption, there is a projection P ∈ L(X) such that τb-

limn→∞ T[n] = P . This implies that the decomposition (2.4) holds. It remains
to show that (I − T )(X) is closed. Let Y := (I − T )(X). Then Y is also a
quojection Fréchet space as a complemented subspace of the quojection Fréchet
space X. Moreover, Y is easily seen to be T�invariant. So, the restriction map
S := T |Y ∈ L(Y ) and S[n] → 0 in Lb(Y ) as n → ∞. Clearly, Ker(I − S) = {0}
and Sn

n = T n

n → 0 in Lb(Y ) as n →∞.
Let {rj}∞j=1 be a fundamental increasing sequence of seminorms generating the

lc�topology of X. Since T n

n → 0 in Lb(X) as n → ∞ and X is a Fréchet space,
the sequence

{
T n

n

}∞
n=1

is equicontinuous. So, for each j ∈ N there exists cj > 0
such that

rj

(
Tnx

n

)
≤ cjrj+1(x), x ∈ X, n ∈ N; (3.3)

there is no loss in generality by assuming that rj+1 can be chosen.
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De�ne qj on X by qj(x) := max
{
rj(x), supn∈N rj

(
T nx

n

)}
, for x ∈ X. Then

(3.3) ensures that {qj}∞j=1 is also a fundamental increasing sequence of seminorms
generating the locally convex topology of X for which

qj(Tx) ≤ 2qj(x), x ∈ X, j ∈ N. (3.4)
For each j ∈ N, set ||.||j := qj |Y and observe that {||.||j}∞j=1 also generates
the locally convex topology of Y . We use Lemma 3.4 with F = E = Y and
R = I ∈ L(Y, Y ). Set A := I − S and consider the sequences {Rn}∞n=1 and
{Hn}∞n=1 in L(Y ) given by Rn := 1

n

∑n−1
m=0

∑m
h=0 Sh and Hn := I − S[n], for

n ∈ N. Observe that Hn = ARn = RnA for all n ∈ N. Then condition (1)
implies that Hn → I = R in Lb(Y ) and so condition (ii) of Lemma 3.4 holds.
Moreover, (3.4) yields the validity of condition (iii) in Lemma 3.4. Therefore I−S
is invertible and so, surely surjective. We have

Y = (I − S)(Y ) = (I − T )(Y ) ⊆ (I − T )(X) ⊆ Y.

Thus, Y = (I − T )(X), i.e., (I − T )(X) is closed in X.
(2)⇒(3). The proof follows as in [26, Theorem,(2)⇒(3)].
(3)⇒(4). The proof follows as in [26, Theorem,(3)⇒(4)].
(4)⇒(1). De�ne Y := (I − T )(X). By assumption Y is closed in X, hence it

is a quojection Fréchet space, being a quotient space of the quojection Fréchet
space X. Set S := T |Y . As Y is T�invariant, S ∈ L(Y ).

Let {qj}∞j=1 be the fundamental increasing sequence of seminorms generating
the locally convex topology of X as de�ned in (1)⇒(2) and set ||.||j := qj |Y for
all j ∈ N. We can again consider the sequences {Rn}∞n=1 and {Hn}∞n=1 in L(Y )
given by Rn := 1

n

∑n−1
m=0

∑m
h=0 Sh and Hn := I − S[n], for n ∈ N. Now we use

Lemma 3.4 with F = X,E = Y and R = I − T . Again, for A := I − S, we
have Hn = ARn = RnA for all n ∈ N and with all the operators involved being
||.||j-continuous for each j ∈ N. Moreover,

Hn(I − T ) = I − T +
1
n

(Tn+1 − T ), n ∈ N,

which implies limn→∞Hn(I − T ) = I − T in Lb(X,Y ). Since R := (I − T ) ∈
L(X, Y ) is surjective and the operators A, {Rn}∞n=1 and {Hn}∞n=1 (in L(Y ))
satisfy all the assumptions of Lemma 3.4, we can apply it to conclude that A =
(I − S) is invertible.

Since I − S is surjective, we have that
(I − T )(X) = Y = (I − S)(Y ) = (I − T )(Y ) = (I − T )2(X).

Therefore, given x ∈ X there is y ∈ Y such that (I − T )x = (I − T )y, i.e.,
(I − T )(x − y) = 0. It follows that x = (x − y) + y with (x − y) ∈ Ker(I − T )
and y ∈ Y = (I − T )(X). This shows that X = Ker(I − T ) ⊕ (I − T )(X). In
particular, Ker(I−T ) is also a quojection Fréchet space. We show that T[n] → P
in Lb(X) as n → ∞, where P is the projection on X with P (X) = Ker(I − T )
and KerP = (I − T )(X). Indeed, T[n] = I on Ker(I − T ) and so T[n] → I in
Lb(Ker(I−T )). As every bounded subset B of X can be written as B = B1 +B2

with B1 ∈ B(Ker(I − T )) and B2 ∈ B((I − T )(X)), it remains to prove that
limn→∞ T[n] = 0 in Lb(Y ). The surjective operator I − T : X → (I − T )(X) = Y
lifts bounded sets by [30, Lemma 26.13], since the quojections X and Ker(I −T )
are quasinormable Fréchet spaces. Therefore, for each bounded set C in (I −
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T )(X) there exists a bounded set B in X such that (I − T )(B) ⊇ C. This yields
pC(T[n]) = supc∈C p(T[n]c) → 0 for n →∞, because of T[n](I−T ) = 1

n(T −Tn+1),
the inclusion T[n](C) ⊂ T[n](I − T )(B) and τb-limn→∞ T n

n = 0.
Case (II). X is a prequojection.
By de�nition X ′′ is a quojection Fréchet space and also T ′′ ∈ L(X ′′). Moreover,

T n

n → 0 in Lb(X) as n →∞ implies that also (T ′′)n

n → 0 in Lb(X ′′) as n →∞.
(1)⇒(2). Since T is uniformly mean ergodic, T[n] → P in Lb(X) as n → ∞

with P ∈ L(X) a projection and X = Ker(I − T ) ⊕ (I − T )(X). On the other
hand, it is routine to check that (T ′′)[n] → P ′′ in Lb(X ′′) as n → ∞ and so,
by the result (1)⇒(2) already proved for quojections in Case (I), we have that
(I − T ′′)(X ′′) = (I − T )′′(X ′′) is closed in X ′′. Then Proposition 2.1 implies that
(I − T )(X) is closed in X. Therefore, X = Ker(I − T )⊕ (I − T )(X).

(2)⇒(3) and (3)⇒(4) follow as in the proof of [26, Theorem].
(4)⇒(1). If (I − T )(X) is closed in X, then Proposition 2.1 implies that

(I − T ′′)(X ′′) = (I − T )′′(X ′′) is closed in X ′′. So, by (4)⇒(1) of Case (I), we
have that T ′′ is uniformly mean ergodic. Since T ′′|X = T , it follows that T is
uniformly mean ergodic. ¤
Remark 3.6. Let X be a prequojection Fréchet space and T ∈ L(X). The four
equivalent conditions of Theorem 3.5 are also equivalent to the condition:

(5) (I − T )k(X) is closed for (some) every k ≥ 2.

This answers a question raised by Richard Aron. The proof is as follows.
(2)⇒(5). Let k ∈ N with k ≥ 2. Clearly, (I − T )k(X) ⊆ (I − T )k−1(X).

Conversely, let z ∈ (I − T )k−1(X) = (I − T )k−2((I − T )(X)) and so there is
y ∈ (I − T )(X) such that z = (I − T )k−2y. Now, condition (2) ensures that
y = (I − T )x with x = x0 + x1 for some x0 ∈ Ker(I − T ) and x1 ∈ (I − T )(X).
It follows that y = (I − T )x = (I − T )x1 and hence,

z = (I − T )k−2y = (I − T )k−1x1 ∈ (I − T )k(X).

So, (I − T )k(X) = (I − T )k−1(X).
Iterating this argument it follows that

(I − T )k(X) = (I − T )k−1(X) = (I − T )k−2(X) = . . . = (I − T )(X)

and so (I − T )k(X) is closed.
(5)⇒(4). The proof as for Banach spaces (see [29]) and proceeds by induction

on k. We �rst show that (I − T )k−1(X) is closed. To do this we claim that
(I−T )k−1(X)+Ker(I−T ) is closed (note that (I−T )k−1(X)∩Ker(I−T ) = {0}).
Indeed, if yn = (I − T )k−1(xn) + zn → y for n → ∞, with {xn}∞n=1 ⊂ X and
{zn}∞n=1 ⊂ Ker(I − T ), then (I − T )yn = (I − T )kxn → (I − T )y for n → ∞.
Since {(I − T )kxn}∞n=1 ⊂ (I − T )k(X) and (I − T )k(X) is closed, it follows that
(I − T )y ∈ (I − T )k(X) and so, (I − T )y = (I − T )kw for some w ∈ X. Thus,
y − (I − T )k−1w ∈ Ker(I − T ), i.e., y = (I − T )k−1w + (y − (I − T )k−1w) ∈
(I − T )k−1(X) + Ker(I − T ). This establishes the claim.

The facts that (I − T )k−1(X) + Ker(I − T ) is closed, Ker(I − T ) is closed and
(I − T )k−1(X) ∩Ker(I − T ) = {0} imply that (I − T )k−1(X) is also closed.

Iterating this procedure, one shows that (I − T )(X) is closed.
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Remark 3.7. For X a Banach space the condition T n

n → 0 in Lb(X) as n →∞ is
known to be necessary to conclude that T is uniformly mean ergodic if (I−T )(X)
is closed. Indeed, let X 6= {0} be any lcHs, select x0 ∈ X and x′0 ∈ X ′ such that
x′0(x0) = 1 and de�ne T (x) := rx′0(x)x0, where |r| > 1. Denote by X0 the
one-dimensional linear span of x0. Then (I − T )(X) = X0 is surely closed in
X. Moreover, T[n]x0 = r(1−rn)

n(1−r) x0, for n ∈ N, and so T is not mean ergodic. Of
course, 1

nTnx0 = rn

n x0 fails to converge to 0 as n →∞.

Remark 3.8. Let X be a quojection Fréchet space and T ∈ L(X) satisfy T n

n → 0
in Lb(X) as n → ∞. De�ne Y := (I − T )(X) and S := T |Y ∈ L(X). In the
proof of Theorem 3.5 the following facts were established.

(1) If {T[n]}∞n=1 converges in Lb(X), then I − S : Y → Y is bijective and
(I − T )(X) is closed in X.

(2) If (I−T )(X) is closed in X, then I−S : Y → Y is bijective and {T[n]}∞n=1

converges in Lb(X).

Corollary 3.9. Let X be a prequojection Fréchet space and T ∈ L(X).

(1) If T is power bounded and uniformly mean ergodic, then the sequence
{nT[n]y}∞n=1 is bounded for every y ∈ (I − T )(X) = (I − T )(X).

(2) Suppose that τb-limn→∞ T n

n = 0. If Y := (I − T )(X) is a prequojection
Fréchet space and the sequence {nT[n]y}∞n=1 is bounded for every y ∈ Y ,
then T is uniformly mean ergodic.

Proof. (1). Uniform mean ergodicity of T and (2.3) imply that T n

n → 0 in Lb(X)
as n →∞. So, by Theorem 3.5, (I−T )(X) is closed in X and hence, (I−T )(X) =
(I − T )(X).

Fix y ∈ (I − T )(X). Then y = (I − T )x for some x ∈ X. Then (2.2) yields
nT[n]y = (T − Tn+1)x for every n ∈ N. Since T is power bounded, i.e., the
sequence {Tn}∞n=1 is equicontinuous, it follows that {nT[n]y}∞n=1 is a bounded set
in X.

(2). Since Y is T�invariant, the restriction S := T |Y belongs to L(Y ) and
Sn

n = T n

n → 0 in Lb(Y ) as n → ∞. Moreover, the sequence {nS[n]}∞n=1 is
equicontinuous as Y is barrelled and {nS[n]y}∞n=1 is a bounded set in Y for every
y ∈ Y . This implies that S[n] → 0 in Lb(Y ) as n → ∞, i.e., S is uniformly
mean ergodic. Now, Theorem 3.5 applied to the prequojection Fréchet space Y
ensures that (I − S)(Y ) is closed in Y . On the other hand, we have also that
(S′′)n

n = (Sn)′′
n → 0 and (S′′)[n] = (S[n])′′ → 0 in Lb(Y ′′) as n → ∞ too. So,

as Y ′′ is a quojection Fréchet space, we can apply Theorem 4.1,(iii)⇒(ii), of [4]
to conclude that the operator I − S′′ = (I − S)′′ : Y ′′ → Y ′′ is surjective, i.e.,
(I − S′′)(Y ′′) = (I − S)′′(Y ′′) = Y ′′. This ensures that (I − S)(Y ) is dense in Y .
Since (I − S)(Y ) is both closed and dense in Y , we obtain that (I − S)(Y ) = Y .
It follows that Y = (I − S)(Y ) ⊆ (I − T )(X) ⊆ Y which implies that Y =
(I − T )(X) and so, (I − T )(X) is closed in X. Applying again Theorem 3.5 to
the prequojection Fréchet space X, we can conclude that T is uniformly mean
ergodic. ¤
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An examination of the proof of Theorem 2.7 in [24, p.90] shows that the power
boundedness of T ∈ L(X) assumed there can be replaced with the weaker condi-
tion limn→∞ ‖Tn/n‖ = 0 to yield the following criterion.

Fact. Let X be a Banach space and T ∈ L(X) satisfy limn→∞ ‖Tn/n‖ = 0.
Then T is uniformly mean ergodic if and only if

(6) Either 1 is in the resolvent set of T or 1 is a simple pole of the resolvent
map of T .

In particular, condition (6) is equivalent with each of the conditions (1)�(4) in
Lin's Theorem as stated in Section 1. We now clarify the role of condition (6) for
Fréchet spaces.

Let X be a Fréchet space and T ∈ L(X). The Banach resolvent set ρB(T ) of T
consists of all λ ∈ C such that R(λ, T ) := (λI−T )−1 exists in L(X), whereas the
largest open subset ρ(T ) of the Riemann sphere C ∪ {∞} in which λ 7→ R(λ, T )
is holomorphic (i.e., locally has a τb�convergent power series expansion in the
lc�algebra Lb(X)) is called the resolvent set of T ; its complement σ(T ) is called
the spectrum of T , [39, De�nition 1.1]. Note that ρ(T ) \ {∞} ⊆ ρB(T ). A
point λ0 ∈ σ(T ) is called a simple pole of R(·, T ) if there is a punctured disc
D(λ0, r) := {z ∈ C : 0 < |z−λ0| < r} ⊆ ρ(T ), for some r > 0, and 0 6= P ∈ L(X)
such that λ 7→ R(λ, T )−(λ−λ0)−1P has a holomorphic, Lb(X)�valued extension
from D(λ0, r) to the open disc D(λ0, r) ∪ {λ0}. The point ∞ is never a pole of
R(·, T ), [39, Satz 2.8].

Proposition 3.10. Let X be a prequojection Fréchet space and T ∈ L(X) satisfy
τb-limn→∞ T n

n = 0. If T satis�es condition (6), then T is uniformly mean ergodic.

Proof. If 1 is a simple pole of R(·, T ), then the uniform mean ergodicity of T
follows from [39, Korollar 4.1.2]. On the other hand, if 1 ∈ ρ(T ), then (I − T )
is an isomorphism on X and so (I − T )(X) = X is closed. Then Theorem 3.5
ensures that T is uniformly mean ergodic. ¤

The converse of Proposition 3.10 fails in general, even in (non�normable) quo-
jection Fréchet spaces.

Example 3.11. Let X = CN be the Fréchet space of all sequences with the
seminorms qk : X → [0,∞), for k ∈ N, where qk(x) = max1≤j≤k |xj |, for x =
(xn)n ∈ X, in which case X is Montel and a quojection. De�ne T ∈ L(X) by
Tx := (γnxn)n, for x ∈ X, where γ1 := 1 and 0 < γn ↑ 1 in [0, 1) for n ≥ 2.
Then T is power bounded and so satis�es τb-limn→∞ T n

n = 0. As X is Montel,
T is uniformly mean ergodic, [3, Proposition 2.8]. Direct calculation shows that
σ(T ) = {γn}∞n=1 and, for λ ∈ ρ(T ) \ {∞}, that

R(λ, T )x =
(

xn

(λ− γn)

)

n

, x ∈ X.

Accordingly, T fails to satisfy condition (6) because 1 6∈ ρ(T ), actually Ker(I −
T ) = {x ∈ X : xn = 0, ∀n ≥ 2}, and 1 also fails to be a simple pole of R(·, T )
as there is no punctured disc, centred at 1, which is contained in ρ(T ).
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4. The Cesàro operator in sequence spaces
In this section we investigate the mean ergodic properties of the Cesàro operator

C : CN → CN, which is de�ned in the Fréchet space CN (see Example 3.11) by

C(x) =

(
1
n

n∑

k=1

xk

)

n

, x = (xn)n ∈ CN.

Then C is a bicontinuous isomorphism of CN onto itself with C−1 : X → X given
by

C−1(y) = (nyn − (n− 1)yn−1)n, y = (yn)n ∈ X, (4.1)
where we set y−1 := 0. Denote by 1 the constant sequence (1, 1, . . .) ∈ CN. The
element of CN with 1 in its n-th coordinate and 0 elsewhere is denoted by en, for
n ∈ N.
Proposition 4.1. The Cesàro operator C : CN → CN is power bounded, uniformly
mean ergodic and satis�es Cn

n → 0 in Lb(CN) as n →∞. Moreover, Ker(I−C) =
span{1} and (I − C)(CN) = {x ∈ CN : x1 = 0} = span{er}r≥2 is closed.

Proof. Set X = CN. That C is continuous and power bounded follows from
qk(Cnx) ≤ qk(x), x ∈ X, k, n ∈ N. (4.2)

Moreover, (4.2) implies that τb-limn→∞ Cn

n = 0. Since X is Montel, C is uniformly
mean ergodic, [3, Proposition 2.8]. So, by Theorem 3.5 we have that (I −C)(X)
is closed in X and X = Ker(I − C)⊕ (I − C)(X).

We show that Ker(I − C) = span{1} is the one�dimensional subspace of X
consisting of all constant sequences and so I −C is necessarily not surjective. To
establish the claim, suppose that Cx = x for some x 6= 0. Equating coordinates
yields

x1 + x2 + . . . xn

n
= xn, n ∈ N,

which implies that xn = x1 for all n ∈ N. Since x 6= 0, we have x1 6= 0 and so
x = x1(1, 1, 1, . . .) = x11 ∈ span{1}. As C1 = 1, the conclusion follows.

We �nally prove that (I −C)(X) = {x ∈ X : x1 = 0} = span{er}r≥2. Clearly
(I − C)(X) ⊆ {x ∈ X : x1 = 0}. Since {er}∞r=1 is a basis of X (absolute even)
it is routine to check that {x ∈ X : x1 = 0} = span{er}r≥2. In view of this, it
remains to show that er ∈ (I −C)(X), for r ≥ 2. This follows from the identities
er+1 = (I − C)yr, for r ∈ N, with

yr := er+1 − 1
r

r∑

k=1

ek, r ∈ N, (4.3)

which can be established via direct calculation. Accordingly, {er}r≥2 ⊆ (I −
C)(X). This completes the proof. ¤

Nothing seems to be available in the literature concerning the mean ergodic
properties of C acting in Banach sequence spaces. So, we proceed to examine
such properties of C in the classical sequence spaces c0, c, `p (1 < p ≤ ∞), bv0

and bvp (1 ≤ p < ∞).
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Let 1 < p < ∞. It is known [21, Theorem 326, p.239] that the Cesàro operator
maps the Banach space `p continuously into itself, which we denote by C(p) : `p →
`p, and that ‖C(p)‖ = p′, where 1

p + 1
p′ = 1. Moreover, its spectrum is given by

σ(C(p)) =
{

λ ∈ C : |λ− p′

2
| ≤ p′

2

}

and C(p) has no eigenvalues, [25, Theorems 1&2]. In particular, the spectral
radius of C(p) is then r(C(p)) := sup{|λ| : λ ∈ σ(C(p))} = p′ and p′ ∈ σ(C(p)).
So, r(C(p)) = ‖C(p)‖ = p′. Since `p is a Banach lattice and C(p) is a positive
operator on `p, it follows from an old result of Karlin, [24, p.93], that C(p) is not
uniformly mean ergodic. Actually, more is true.

Proposition 4.2. The Cesàro operator C(p) : `p → `p fails to be power bounded
and is not mean ergodic. Moreover, Ker(I − C(p)) = {0} and (I − C(p))(`p) =
span{er}r≥2 = {x ∈ `p : x1 = 0} is closed.

Proof. By the spectral mapping theorem σ((C(p))n) = {λn : λ ∈ σ(C(p)}, for
n ∈ N. Since p′ ∈ σ(C(p)) it follows that (p′)n ∈ σ((C(p))n), for n ∈ N, and so

(p′)n ≤ r((C(p))n) ≤ ‖(C(p))n‖ ≤ ‖C(p)‖n = (p′)n, n ∈ N.

Accordingly,

sup
n∈N

‖(C(p))n‖
n

= sup
n∈N

(p′)n

n
= ∞ (as p′ > 1).

So, C(p) is not power bounded. Since C(p) has no eigenvalues, we have Ker(I −
C(p)) = {0}. Moreover, according to the discussion after the Auxiliary Theorem
3 on p.356 of [20], the subspace (I −C(p))(`p) is closed in `p. In particular, since
the vectors {yr}∞r=1 given by (4.3) also belong to `p, we can argue as in the proof
of Proposition 4.1 to conclude that

(I − C(p))(`p) = span{er}r≥2 = {x ∈ `p : x1 = 0}.
So, (I − C(p))(`p) is a proper, closed subspace of `p. This together with Ker(I −
C(p)) = {0} ensure that C(p) is not mean ergodic. ¤

The operator C(p) : `p → `p provides another example of an operator T in a
re�exive Banach space X such that (I − T )(X) is a closed (proper) subspace of
X but, T is even not mean ergodic. Of course, via (2.3), C(p) fails the necessary
condition supn ‖Tn/n‖ < ∞ for mean ergodicity; see also Remark 3.7.

The situation is more interesting for the sequence spaces c0, c and `∞. It is
routine to check that the Cesàro operator maps each of these into itself. Denote
these operators by C(∞) : `∞ → `∞, C(c) : c → c and C(0) : c0 → c0.

Proposition 4.3. The Cesàro operators C(∞) : `∞ → `∞, C(c) : c → c and
C(0) : c0 → c0 are power bounded but not mean ergodic. Moreover,

Ker(I − C(0)) = {0}, Ker(I − C(∞)) = Ker(I − C(c)) = span{1},
and (I − C(0))(c0) is not closed with

(I − C(0))(c0) = span{er}r≥2 = {x ∈ c0 : x1 = 0}. (4.4)
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Proof. Direct calculation shows that ‖C(∞)‖ = ‖C(c)‖ = ‖C(0)‖ = 1. Accord-
ingly, each of these 3 operators is power bounded. It is known that σ(C(0)) =
{λ ∈ C : |λ− 1

2 | ≤ 1
2} and that C(0) has no eigenvalues, [25, Theorem 3]. Hence,

Ker(I − C(0)) = {0}. Since {en}∞n=1 is a basis for c0, the same argument as for
CN establishes (4.4). If C(0) were mean ergodic, then we would have

c0 = Ker(I − C(0))⊕ (I − C(0))(c0) = {0} ⊕ span{er}r≥2

which is not the case. Accordingly, C(0) is power bounded but not mean ergodic.
Moreover, (I − C(0))(c0) is not closed. If it were, then [26, Theorem] together

with the fact that limn→∞ ‖(C(0))n/n‖ = 0 would imply that C(0) is uniformly
mean ergodic and hence, also mean ergodic. But, this is not the case. So, (I −
C(0))(c0) is not closed.

We point out that σ(C(∞)) = σ(C(c)) = {λ ∈ C : |λ − 1
2 | ≤ 1

2} and also that
Ker(I − C(∞)) = Ker(I − C(c)) = span{1}, [25, Theorems 4 & 5]. It follows
from Proposition 2.2 that C(∞) and C(c) fail to be mean ergodic, because C(0)

is not mean ergodic and c0 is a closed C(c)-invariant subspace of c and a closed
C(∞)-invariant subspace of `∞. ¤

Consider now the space bv0 consisting of all x ∈ c0 such that

‖x‖bv0 :=
∞∑

k=1

|xk+1 − xk| < ∞, x = (xn)n,

which is known to be a Banach space relative to ‖ · ‖bv0 . Observe that bv0 is
isometrically isomorphic to `1 via the isometry Φ: bv0 → `1 de�ned by Φ(x) :=
(xn+1 − xn)n, for x = (xn)n ∈ bv0. So, bv0 is weakly sequentially complete with
the Schur property.

According to [35, Lemma 1.2 & Theorem 2.2] the Cesàro operator C maps bv0

into itself, has norm ‖Cbv0‖ = 1, and σ(Cbv0) = {λ ∈ C : |λ−1/2| ≤ 1/2}, where
Cbv0 : bv0 → bv0 denotes the corresponding Cesàro operator.

Proposition 4.4. The Cesàro operator Cbv0 : bv0 → bv0 is power bounded but not
mean ergodic. Moreover, Ker(I − Cbv0) = {0} and (I − Cbv0)(bv0) is not closed.

Proof. Since ‖Cbv0‖ = 1, Cbv0 is power bounded. As bv0 ⊆ c0 and C(0) : c0 → c0

has no eigenvalues, also Cbv0 has no eigenvalues, [35, Corollary 1.5]. So, Ker(I −
Cbv0) = {0}. It is routine to verify that Y := {x ∈ bv0 : x1 = 0} is a proper
closed subspace of bv0. Since the �rst row of the matrix for I −Cbv0 is identically
zero, it follows that (I −Cbv0)(bv0) ⊆ Y and so (I − Cbv0)(bv0) ⊆ Y . If Cbv0 were
mean ergodic, then

bv0 = Ker(I − Cbv0)⊕ (I − Cbv0)(bv0) = {0} ⊕ (I − Cbv0)(bv0) ⊆ Y,

which is not the case. Hence, Cbv0 is not mean ergodic. So, Cbv0 fails to be
uniformly mean ergodic and is power bounded. It follows from [26, Theorem]
that (I − Cbv0)(bv0) is not closed. ¤

Remark 4.5. Using the fact that {∑n
k=1 ek}∞n=1 is a basis for bv0 and that

(I − Cbv0)yr = er+1, for r ∈ N, with {yr}∞r=1 ⊆ bv0 given by (4.3), it can be
shown that (I − Cbv0)(bv0) = {x ∈ bv0 : x1 = 0}.
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For 1 ≤ p < ∞ the space bvp consists of all x ∈ CN such that

‖x‖bvp :=

(
|x1|p +

∞∑

k=1

|xk+1 − xk|p
)1/p

, x = (xn)n.

These Banach spaces are studied in detail in [5]. According to [5, Theorem 2.2]
the Banach space bvp is isometrically isomorphic to `p, 1 ≤ p < ∞ via the map
Φp : bvp → `p de�ned by Φp(x) := (x1, x2 − x1, x3 − x2, . . .), x ∈ bvp. Hence, bvp

is re�exive for all 1 < p < ∞. Moreover, bv1 (usually denoted by bv) is weakly
sequentially complete with the Schur property.

Proposition 4.6. bv0 is a proper closed subspace of bv.

Proof. For each n ∈ N, let ξn : `1 → C be the n-th coordinate functional, i.e.,
ξn(u) = un, for u = (un)n ∈ `1. It follows that

ϕn :=
n∑

k=1

(ξk ◦ Φ1) : bv → C, n ∈ N,

are bounded linear functionals on bv. But, direct calculation shows that ϕn(x) =
xn, for x ∈ bv, i.e., the coordinate functionals satisfy

{ϕn}∞n=1 ⊆ (bv)′. (4.5)

On the other hand, it is routine to verify that

‖x‖∞ ≤ ‖x‖bv, x ∈ bv. (4.6)

In particular, bv ⊆ `∞ with a continuous inclusion.
Suppose that {z(k)}∞k=1 ⊆ bv0 converges to z in bv. Then {z(k)}∞k=1 is Cauchy

relative to ‖ · ‖bv. It follows from (4.6) that {z(k)}∞k=1 ⊆ bv0 ⊆ c0 is Cauchy
relative to ‖ · ‖∞. By completeness of c0 there exists u ∈ c0 with ‖z(k)−u‖∞ → 0
as k → ∞. Also, ‖z(k) − z‖bv → 0 as k → ∞. Coordinate functionals on c0 are
continuous and, by (4.5), the coordinate functionals on bv are also continuous. It
follows that z = u and so z ∈ bv ∩ c0, i.e., z ∈ bv0. Hence, bv0 is closed in bv.
Finally, bv \ c0 6= ∅ as it contains span({1}). ¤

According to [1, Theorem 3.1 & Theorem 3.3] the Cesàro operator maps bvp

into itself (denote it by Cbvp), has norm ‖Cbvp‖ = 1 and σ(Cbvp) = {λ ∈ C :
|λ− 1/2| ≤ 1/2} for all 1 ≤ p < ∞.

Proposition 4.7. Each Cesàro operator Cbvp : bvp → bvp, 1 < p < ∞, is power
bounded and mean ergodic, whereas Cbv : bv → bv is power bounded but not mean
ergodic.

Proof. As ‖Cbvp‖ = 1 for all 1 ≤ p < ∞, each operator Cbvp is power bounded
for 1 ≤ p < ∞. Since bvp is re�exive for 1 < p < ∞, the operator Cbvp is mean
ergodic for each 1 < p < ∞. On the other hand, since bv0 is a closed Cbv-invariant
subspace of bv, we can apply Proposition 2.2 and Proposition 4.4 to conclude that
Cbv is not mean ergodic. ¤
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5. The Browder equality and Uniform Mean Ergodicity
Let X be a lcHs and T ∈ L(X). We recall from Section 1, with the notation

S(T ) :=

{
x ∈ X :

{
n∑

k=1

T kx

}∞

n=1

∈ B(X)

}
,

that the identity (when it holds)

S(T ) = (I − T )(X) (5.1)

is called Browder's equality. Inspired by [18], [19], we investigate the validity of
(5.1) in relation to uniform mean ergodicity of T .

Lemma 5.1. Let X be a lcHs and T ∈ L(X) be a power bounded operator. Then,
for each B ∈ B(X), we have (I − T )(B) ⊆ S(T ).

Proof. As T is power bounded, given p ∈ ΓX there exist c > 0 and q ∈ ΓX such
that

p(Tnx) ≤ cq(x), x ∈ X, n ≥ 0. (5.2)
Fix B ∈ B(X). From (5.2) it follows that C(B) := ∪∞n=0T

n(B) belongs to B(X).
By (2.2) we have, for each b ∈ B and n ∈ N, that

p

((
n∑

m=1

Tm

)
(I − T )(b)

)
= p(Tb− Tn+1b) ≤ p(Tb) + p(Tn+1b)

≤ 2cq(b) ≤ 2c sup
x∈C(B)

q(x).

This implies, for each p ∈ ΓX , that

sup
n∈N

sup
b∈B

p

((
n∑

m=1

Tm

)
(I − T )(b)

)
≤ 2c sup

x∈C(B)
q(x) < ∞. (5.3)

Accordingly, (I − T )(B) ⊆ S(T ).
Next, let y ∈ (I − T )(B). Then there exists a net (bα)α∈A ⊆ B with limα(I −

T )bα = y in X. Fix p ∈ ΓX and select q ∈ ΓX according to (5.2). For each n ∈ N,
there exists αn ∈ A so that

q(y − (I − T )bαn) <
1
n

. (5.4)

Combining (5.2), (5.3) and (5.4), we obtain, for each n ∈ N, that

p

(
n∑

m=1

Tmy

)
≤ p

((
n∑

m=1

Tm

)
(y − (I − T )bαn)

)
+ p

((
n∑

m=1

Tm

)
(I − T )bαn

)

≤ ncq(y − (I − T )bαn) + p

((
n∑

m=1

Tm

)
(I − T )bαn

)

< c + 2c sup
x∈C(B)

q(x).
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Accordingly, for each y ∈ (I − T )(B) we have supn∈N p (
∑n

m=1 Tmy) ≤ c +
2c supx∈C(B) q(x) and hence, that

sup
y∈(I−T )(B)

sup
n∈N

p

(
n∑

m=1

Tmy

)
≤ c + 2c sup

x∈C(B)
q(x) < ∞.

As p ∈ ΓX is arbitrary, we have (I − T )(B) ⊆ S(T ). This completes the proof.
¤

Let X be a lcHs and T ∈ L(X) be power bounded. By [40, Ch. VIII, �3,
Theorem 1], we have

(I − T )(X) = {x ∈ X : lim
n→∞T[n]x = 0}. (5.5)

Corollary 5.2. Let X be a lcHs and T ∈ L(X) be a power bounded operator.
Then

(I − T )(X) ⊆ S(T ) ⊆ (I − T )(X). (5.6)
In particular, if S(T ) is closed, then

S(T ) = (I − T )(X) = {x ∈ X : lim
n→∞T[n]x = 0}.

Proof. As (I−T )(X) = ∪x∈X(I−T )({x}), Lemma 5.1 implies that (I − T )(X) ⊆
S(T ). On the other hand, if x ∈ S(T ), then {nT[n]x}∞n=1 ∈ B(X) and so
limn→∞ T[n]x = 0, i.e., x ∈ (I − T )(X) by (5.5). ¤

In [28] Lin and Sine showed the existence of a mean ergodic operator T acting
on a Banach space X for which neither of the inclusions in (5.6) is an equality.

We are now interested in the Browder's equality (5.1) for the lcHs setting. In
[14, Lemma 5] Browder proved that (5.1) holds for every power bounded operator
T acting in a re�exive Banach space. To extend this to lcHs' (see Corollary 5.4
below) we require the following fact.

Proposition 5.3. Let X be a lcHs for which there exists a coarser lcH�topology
τ on X such that every τ -closed, absolutely convex, bounded subset of X is τ�
compact. Let T ∈ L(X) be any power bounded operator such that T : (X, τ) →
(X, τ) is continuous. Then S(T ) = (I − T )(X).

Proof. By Corollary 5.2 we have (I − T )(X) ⊆ S(T ). Now �x x ∈ S(T ) and de�ne
B := {∑n

m=1 Tmx : n ∈ N} so that B ∈ B(X). Let C be the τ -closed, absolutely
convex hull of B ∪ {x}. Then C is τ�compact by assumption. For each n ∈ N
set xn := x − T[n]x. Since x − xn = 1

n(nT[n]x) and x ∈ S(T ), we have xn → x

in X as n → ∞. Moreover, xn = (I − T )[ 1
n

∑n
m=1(I + T + . . . + Tm−1)x] ∈

(I − T )(X), for n ∈ N, with each yn := 1
n

∑n
m=1(

∑m−1
k=0 T kx) ∈ 2C satisfying

(I − T )yn = xn. By τ -compactness there is a τ -cluster point y ∈ 2C of the
sequence {yn}∞n=1. As T is τ�continuous, (I − T )y is also a τ -cluster point of
the sequence {xn}∞n=1 = {(I − T )yn}∞n=1. On the other hand, x = limn→∞ xn

in X and so also x = limn→∞ xn in (X, τ) as τ is a coarser topology on X.
Thus x = (I − T )y is the only τ -cluster point of {xn}∞n=1 = {(I − T )yn}∞n=1, i.e.,
x ∈ (I − T )(X). By the arbitrariness of x, the inclusion S(T ) ⊆ (I − T )(X) also
holds. The proof is thereby complete. ¤
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A lcHs X is called semire�exive if the algebraic identity X = X ′′ holds. Equiv-
alently, every B ∈ B(X) is relatively compact in Xσ. Given a lcHs X, let τ(X ′, X)
denote the Mackey topology on X ′ induced by the dual pair 〈X,X ′〉, in which
case we write X ′

τ .
Corollary 5.4. Let X := (X, η) be a lcHs and T ∈ L(X) be a power bounded
operator.

(1) If X is semire�exive, then S(T ) = (I − T )(X).
(2) Suppose that there exist a barrelled lcHs Y and R ∈ L(Y ) such that X =

Y ′ and T = R′. If either η is compatible for the duality 〈Y, Y ′〉, i.e.,
σ(Y ′, Y ) ⊆ η ⊆ τ(Y ′, Y ), or η = β(Y ′, Y ), then S(T ) = (I − T )(X).

Proof. (1) Apply Proposition 5.3 with τ = σ(X, X ′).
(2) Since Y is barrelled, the properties of being equicontinuous, relatively com-

pact in Y ′
σ, bounded in Y ′

σ and bounded in Y ′
β are equivalent for any subset of Y ′.

Set τ := σ(X,Y ).
Suppose that η = β(Y ′, Y ). Then T = R′ with R ∈ L(Y ) ensures that

T : (X, τ) → (X, τ) is continuous, i.e., T ∈ L(Y ′
σ); see Section 2. Moreover,

since the bounded subsets of X are equicontinuous in Y ′, the Alaoglu-Bourbaki
Theorem implies that τ satis�es the assumptions of Proposition 5.3 needed to
conclude that S(T ) = (I − T )(X).

On the other hand if Y ′
σ ⊆ X ⊆ Y ′

τ , then the closure of any absolutely convex
set in Y ′ is the same for σ(Y ′, Y ) as for the compatible lc�topology η. Moreover,
the η-bounded subsets of Y ′ coincide with the σ(Y ′, Y )-bounded subsets and
hence, are equicontinuous. Again, via the Alaoglu-Bourbaki Theorem, we can
apply Proposition 5.3 to deduce that S(T ) = (I − T )(X). ¤

Remark 5.5. (i) Corollary 5.4(1) is Browder's result for Banach spaces, [14,
Lemma 5]. Corollary 5.4(2), for η = β(Y ′, Y ), extends a result of Lin for dual
Banach spaces, [27, Theorem 3.1]; see also [28, Theorem 5].

(ii) In Corollary 5.4(2), for the case when η = β(Y ′, Y ), it is possible to choose
Y quasibarrelled. For, in this case the equicontinuous subsets of Y ′ are precisely
the bounded sets in Y ′

σ, [22, p.368]. Hence, for τ = σ(Y ′, Y ), every τ -closed,
absolutely conves set which is bounded in (X, η) = Y ′

β is equicontinuous and so
the same argument as in the proof of Corollary 5.4(2) applies.

The following result should be compared with Theorem 1.1 in [18].
Proposition 5.6. Let X be a prequojection Fréchet space and T ∈ L(X) be a
power bounded operator. Then the following conditions are equivalent.

(1) T is uniformly mean ergodic.
(2) (I − T )(X) is closed.
(3) S(T ) is closed and (I − T )(X) is a prequojection Fréchet space.
(4) S(T ) is a complemented subspace of X.

Proof. (1)⇔(2). This follows from Theorem 3.5.
(2)⇒(3). By (5.6) we can conclude that S(T ) is closed. Moreover, (I − T )(X) =

(I−T )(X) is a prequojection Fréchet space being a quotient of the prequojection
Fréchet space X via the map (I − T ); see [6], [15], [36], [38].

(3)⇒(1). This follows from Corollary 3.9(2).
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(1)⇒(4). By Theorem 3.5 the uniform mean ergodicity of T ensures that
(I − T )(X) is closed with X = Ker(I − T )⊕ (I − T )(X). By Corollary 3.9(1) it
follows that S(T ) = (I − T )(X) and hence, S(T ) is a complemented subspace of
X.

(4)⇒(3). Being a complemented subspace of X, S(T ) is a prequojection
Fréchet space and is clearly closed. Then (5.6) implies that S(T ) = (I − T )(X),
i.e., (I − T )(X) is a prequojection. ¤

As a consequence of Corollary 5.4(1) and Proposition 5.6 and recalling that
re�exive prequojection Fréchet spaces are quojections, we obtain
Corollary 5.7. Let X be a re�exive quojection Fréchet space and T ∈ L(X) be
a power bounded operator. Then the following conditions are equivalent.

(1) T is uniformly mean ergodic.
(2) S(T ) is closed.

Proof. (1)⇒(2). This is immediate from Proposition 5.6.
(2)⇒(1). Since X is re�exive, by Corollary 5.4(1) we have S(T ) = (I−T )(X).

Then the assumption on S(T ) yields that (I−T )(X) is closed in X. In particular,
(I−T )(X) is a Fréchet space. So, (I−T )(X) is a quojection Fréchet space being
a quotient of the quojection Fréchet space X via the map (I − T ). The result
now follows from (3)⇒(1) of Proposition 5.6. ¤
Remark 5.8. The validity of Proposition 5.6 and Corollary 5.7 remains con�ned
to the setting of prequojection Fréchet spaces. Indeed, consider the operator T
constructed in Proposition 3.1 and acting in the Köthe Montel space λp(A) 6= CN,
p ∈ [1,∞]∪{0}. Then T is power bounded and uniformly mean ergodic, but I−T
is not surjective and has dense range. So, (I − T )(λp(A)) is a proper subspace of
(I − T )(λp(A)) = λp(A). On the other hand, since λp(A) is re�exive, Corollary
5.4(1) implies that S(T ) = (I − T )(λp(A)) and so S(T ) is not closed.

For Banach spaces our last two results are Proposition 2.1 and Theorem 2.3 of
[19].
Lemma 5.9. Let X be a lcHs and T ∈ L(X) be a power bounded operator. Then
T is mean ergodic if and only if

(I − T )[(I − T )(X)] = (I − T )(X). (5.7)
Proof. If T is mean ergodic, then (2.4) clearly implies (5.7).

Suppose now that (5.7) holds. By (5.5) we have
Y := (I − T )(X) = {z ∈ X : lim

n→∞T[n]z = 0}.
Fix x ∈ X. Since (I − T )(X) = (I − T )(Y ), there is y ∈ Y such that (I − T )x =
(I − T )y, i.e., T (x− y) = x− y. Thus,

x− y =
1
n

n∑

m=1

Tm(x− y) =
1
n

n∑

m=1

Tmx− 1
n

n∑

m=1

Tmy, n ∈ N.

But, y ∈ Y and so 1
n

∑n
m=1 Tmy = T[n]y → 0 as n →∞. Hence, limn→∞ 1

n

∑n
m=1 Tmx =

x − y exists, i.e., Px := limn→∞ T[n]x exists, for all x ∈ X. Since {T[n]}∞n=1 is
equicontinuous (as T is power bounded), it follows that P ∈ L(X), i.e., T is mean
ergodic. ¤
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Remark 5.10. Let X be a semire�exive lcHs and T ∈ L(X) be power bounded.
Then T is mean ergodic, [13, Proposition 3.3], and so (5.7) necessarily holds; see
Lemma 5.9. Then Corollary 5.4(1) ensures that

S(T ) = (I − T )[(I − T )(X)]. (5.8)

Let X be a lcHs. A sequence {xn}∞n=1 is called a basis for X if for every x ∈ X
there is a unique sequence (αn)∞n=1 of scalars such that the series

∑∞
n=1 αnxn

converges to x.

Theorem 5.11. For a Fréchet space X with a basis the following assertions are
equivalent.

(1) X is re�exive.
(2) Every power bounded operator in X is mean ergodic.
(3) Every power bounded operator T ∈ L(X) satis�es (5.8).

Proof. (1)⇔(2). See [3, Theorem 1.4].
(1)⇒(3). See Remark 5.10.
(3)⇒(1). By (5.6) we have, for each power bounded T ∈ L(X), that (I −

T )[(I − T )(X)] ⊆ (I −T )(X) ⊆ S(T ). So, by the assumption of (5.8) holding we
have that (I − T )[(I − T )(X)] = (I − T )(X) = S(T ). According to Lemma 5.9
every power bounded operator in X is then mean ergodic. By [3, Theorem 1.4]
it follows that X is re�exive. ¤

For non-re�exive Fréchet spaces with a basis, another result in the spirit of
(1) ⇔ (2) in the previous theorem occurs in [37, Theorem 12].
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