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ABSTRACT. Let (T'(t))t>0 be a strongly continuous Co—semigroup of bounded linear
operators on a Banach space X such that lim; o ||T°(¢)/t|| = 0. Characterizations of
when (T'()):>0 is uniformly mean ergodic, i.e., of when its Cesaro means r~" ["T'(s) ds
converge in operator norm as 7 — 0o, are known. For instance, this is so if and only
if the infinitesimal generator A has closed range in X if and only if limy o+ AR(), A)
exists in the operator norm topology (where R(\, A) is the resolvent operator of A at \).
These characterizations, and others, are shown to remain valid in the class of quojection
Fréchet spaces, which includes all Banach spaces, countable products of Banach spaces,
and many more. It is shown that the extension fails to hold for all Fréchet spaces.
Applications of the results to concrete examples of Co—semigroups in particular Fréchet
function and sequence spaces are presented.

1. INTRODUCTION.

Let (T'(t))+>0 be a 1-parameter Cp—semigroup of continuous linear operators in a Banach
space X. Ergodic theorems have a long tradition and are usually formulated via existence
of the limits of the Cesaro averages C(r)z = L [ T(t)zdt, r > 0, or of the Abel averages
ARyz = A [;° e MT(t)x dt, A > 0, for each x € X, when 7 — oo and A — 07, respectively.
In the former case one speaks of the mean ergodicity of (T'(t))t>0 and in the latter case
of its Abel mean ergodicity; for the general theory and applications see [11, Ch.4], [20,
Ch.VIII], [23, Ch.V], [24, Ch.XVIII], [31] and the references therein. Of course, the above
convergence is relative to the strong operator topology s in the space L£(X) of all continuous
linear operators on X. The following fundamental result characterizing the mean ergodicity
(resp. Abel mean ergodicity) of (T'(t))i>0 for the operator norm convergence in L(X), in
which case one speaks of uniform mean ergodicity (resp. uniform Abel mean ergodicity),
is due to M. Lin; see |33, Theorem & Corollary 1], [34, Theorem 12].

Theorem 1.1. Let X be a Banach space and (T'(t))i>0 C L(X) be a strongly continuous
Co—semigroup with T'(0) = I satisfying limy_, o H@H = 0. The following assertions are

equivalent.

(1) lim, o0 C(r) ezists for the operator norm topology in L(X).

(2) The range ImA of the infinitesimal generator A of (T'(t))t>0 is a closed subspace
of X.

(3) imy_yo0 Egzl RY exists for the operator norm topology in L(X).

(4) There exists a projection P € L(X) with ImP = {x € X : T(t)x = x Vt > 0} such
that hm/\u)-&- ||>\R/\ — PH = 0.

(5) limy—yo0(ARA)™ exists for the operator norm topology in L(X) for (some) all X > 0.
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(6) There exists Ao > 0 such that

sup ||[Ray|| < o0, y € ImA.
0<A<Xo

Much of modern analysis occurs in locally convex Hausdorff spaces (briefly, IcHs) which
are non-normable. The notions of a Cp—semigroup (7'(t))i>0 € L£(X) (with X a Banach
space) being mean ergodic or Abel mean ergodic relative to 75 are purely topological and
so carry over immediately to the setting when X is a IcHs. The natural analogue of the
operator norm topology in £(X) is the topology 73 of uniform convergence on the bounded
subsets of the lcHs X. Accordingly, the notions of (T'(t));>0 being uniformly mean ergodic
(resp. uniformly Abel mean ergodic), i.e., relative to 7, are also defined. For certain
classical aspects of the theory of mean ergodic semigroups of operators, relative to 7, in
the non—normable setting we refer to [21], [31, Ch.2|, [44, Ch.III, §7] and the references
therein. Further recent results on this topic occur in [6], [7], [9]. The aim of this paper is
to clarify the role of Theorem 1.1 in the setting of lcHs. Some relevant comments in this
respect are appropriate.

Leaving the Banach space setting brings with it various inherent (unpleasant) features.
For instance, given any strongly continuous Cp-semigroup (7'(t)):>0 in a Banach space X
there always exists w > 0 such that the semigroup (e “'T'(t));>¢ is uniformly bounded, i.e.,
sup;sg e “HT(t)|| < oo, [23, Ch.I Proposition 5.5]. Already in non-normable (lc-)Fréchet
spaces X this need not be the case (cf. [6], [7], [27], [28], [41]), i.e., (e"“'T'(t))t>0 may fail
to be an equicontinuous subset of £(X) for every w > 0. So, the general theory of Cy—
semigroups in Fréchet spaces is more involved than in Banach spaces. The infinitesimal
generator A of (T'(t))i>0 is always a closed linear operator (not necessarily everywhere
defined). In the Banach space setting the resolvent set p(A) of A is always non—empty
and open, |23, Ch.II Theorem 1.10 & Ch. IV. Proposition 1.3]; not necessarily so if X is
a Fréchet space, |7, Example 3.5(vii)]. It can even happen, for X a non—normable Fréchet
space, that p(A) = 0; see Propostion 4.6 below! Moreover, some of the basic techniques for
Banach spaces which are crucial for establishing various uniform mean ergodic theorems
(eg. if the resolvent operators of A satisfy |R(\, A)]] — 0 as A — 01, then I — R(\, A)
is invertible in £(X) for all A small enough, or the inequality dist(\,o(A)) > m for
A € p(A), or that p(A) is the natural (open) domain in which R(-, A) is holomorphic) are
not always available in non-normable Fréchet spaces. So, one cannot expect Theorem 1.1
to carry over to general lcHs X. In fact, it does not even extend to general Fréchet spaces;
see Example 3.7 below.

Despite the negative comments made above it turns out, nevertheless, that Theorem 1.1
does have a natural extension (cf. Theorem 3.2) to an important and non—trivial class of
Fréchet spaces, namely the quojections; see Section 3 for the definition of this class. All
Banach spaces, all countable products of Banach spaces, and many more Fréchet spaces
are quojections. Concrete examples of quojections include the sequence space w = cN,
the function spaces L (), with 1 < p < oo and Q C RY and open set, and C™)(Q)
with m € Ng and © € RY an open set, when equipped with their canonical lc-topology.
As alluded to above, Theorem 3.2 is the main result of the paper. A further version of
Theorem 3.2 is also presented in Section 3, namely to the class of prequojection Fréchet
spaces (which properly contains the quojections). Section 2 is devoted to establishing
various preliminary results needed in the sequel, many of interest in their own right. The
final Section 4 presents some examples of concrete Cy—semigroups acting in particular
quojection Fréchet spaces, with the aim of determining whether (or not) they are mean
ergodic/uniformly mean ergodic.
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2. PRELIMINARIES.

Let X be a lcHs and 'y a system of continuous seminorms determining the topology of
X. The strong operator topology 75 in the space £(X) of all continuous linear operators
from X into itself (from X into another lcHs Y we write £(X,Y")) is determined by the
family of seminorms ¢, (S) := q(Sz), for S € L(X), for each x € X and ¢q € 'y, in which
case we write Ls(X). Denote by B(X) the collection of all bounded subsets of X. The
topology 7, of uniform convergence on bounded sets is defined in £(X) via the seminorms
qB(S) := sup,ep q(Sz), for S € L(X), for each B € B(X) and ¢ € T'x; in this case we
write £5(X). For X a Banach space, 7, is the operator norm topology in £(X). If T'x is
countable and X is complete, then X is called a Fréchet space. The identity operator on
a lcHs X is denoted by I.

By X, we denote X equipped with its weak topology o(X, X’), where X’ is the topo-
logical dual space of X. The strong topology in X (resp. X') is denoted by S(X, X’)
(resp. B(X', X)) and we write Xz (vesp. Xj); see [29, §21.2] for the definition. The strong
dual space (Xj)j of Xj is denoted simply by X”. By X; we denote X' equipped with
its weak-star topology o(X’, X). Given T € L(X), its dual operator T': X' — X' is
defined by (z,T'2") = (Tz,2’) for all x € X, 2/ € X'. Tt is known that 77 € £(X]) and
T' € £(X}), [30, p.134].

Definition 2.1. Let X be a IcHs and (T'(¢))i>0 € L£(X) be a l-parameter family of
operators. The map t — T(t), for ¢t € [0,00), is denoted by T': [0,00) — L(X).
We say that (T'(t))e>0 is a semigroup if it satisfies
(i) T'(s)T'(t) =T(s+t) for all s,t >0, with 7'(0) = 1.
A semigroup (T'(t))e>0 is locally equicontinuous if, for fixed K > 0, the set {T'(¢) : 0 <t <
K} is equicontinuous, i.e., given p € I'x there exist ¢ € I'x and M > 0 (depending on p
and K) such that
p(T(t)z) < Mqg(z), zeX,tel0, K] (2.1)
A semigroup (T'(t))¢>0 is said to be a Co—semigroup if it satisfies
(ii) limy g+ T(t) = I in L4(X).
If the Cy—semigroup (7'(t))s>0 satisfies the additional condition that
(iii) lmy_y, T(t) = T(to) in L4(X), for each tg > 0,
then it is called a strongly continuous Cy—semigroup.

A semigroup (T'(t))¢>0 is said to be exponentially equicontinuous if there exists a > 0
such that (e T (t));>0 C £(X) is equicontinuous, i.e.,

Vp € Tx 3q € T'x, M, > 0 with p(T(t)z) < Mpe“q(x) Vt > 0,2 € X. (2.2)
If a = 0, then we simply say equicontinuous. Finally, a semigroup (7'(t))¢>0 is said to be
a uniformly continuous Cy—semigroup if T': [0, 00) — Lp(X) is continuous, i.e.,

(iv) limy, T(t) = T'(to) in Ly(X), for each to > 0 (with t — 07 if tg = 0).

Given any locally equicontinuous Cp-semigroup (7'(t))¢>0 (resp. any locally equicontin-
uous, uniformly continuous Cp—semigroup) on a lcHs X, observe that condition (iii) (resp.
condition (iv)) in Definition 2.1 is equivalent to T'(t) — I in L4(X) (resp. in L£p(X)) as
t — 0%, [6, Remark 1(iii)].

Remark 2.2. (i) Let X be a IcHs and (T'(t))i>0 be an equicontinuous Cpo—semigroup on
X. For p € 'y define p(z) := sup;>o p(T'(t)z), for x € X. By Definition 2.1(i)-(iii) p is
well-defined, is a seminorm and satisfies

plw) < B(2) < Myq(w) < Myi(a), =€ X, (2.3)
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Hence, Ty := {p: p € I'x} also generates the given lc—topology of X. Moreover, for
p € I'x, we have
P(T(t)x) = supp(T' ()T (s)x) = supp(T(t + s)x) < p(z), xz€ X, t>0. (2.4)
5>0 s>0

(ii) In [28, Prop. 1.1] it is shown that in a barrelled IcHs X every strongly continuous
Co—semigroup (T'(t))e>0 is locally equicontinuous.

(iii) Every Cp-semigroup of operators in a Banach space, being strongly continuous,
[23, Ch. I, Proposition 5.3|, is necessarily exponentially equicontinuous, [20, p.619], |23,
Ch. I, Proposition 5.5]. For Fréchet spaces this need not be so. Indeed, in the sequence
space w = CN (topology of coordinate convergence), T'(t)x := (e™z,)S;, for t > 0 and
x = (zp)52, € w, defines a strongly continuous Cp—semigroup which is not exponentially
equicontinuous. As w is a Montel space, (T'(t))¢>0 is also uniformly continuous.

If X is a sequentially complete 1cHs and (T'(t))i>0 is a locally equicontinuous Cp—
semigroup on X, then the linear operator A defined by

Ay e lim L@z -2

t—0+ t ’

for z € D(A) = {x € X : lim_o+ "7 exists in X}, is closed with D(A) = X, [28,
Propositions 1.3 & 1.4|. The operator (A, D(A)) is called the infinitesimal generator of
(T'(t))t>0. Moreover, A and (7'(t));>0 commute, |28, Proposition 1.2(1)], i.e., for each
t >0 we have {T'(t)z: x € D(A)} C D(A) and AT (t)x = T(t)Ax, for all x € D(A). Also
known, [28, Proposition 1.2(2)], is that

t t
T(t)xr —x = / T(s)Axds = / AT (s)xds, =z € D(A), (2.5)
0 0
and, [28, Corollary p.261], that
t
T(t)r —x = A/ T(s)rds, xe€X. (2.6)
0

For each z € D(A) (resp. = € X), the integrals occuring in (2.5) (resp. (2.6)) are Riemann
integrals of an X—valued, continuous function on [0, t]; see |6, Appendix|. The closedness
of A ensures that Ker A := {x € D(A) : Ax = 0} is a closed subspace of X. The range of
A is the subspace ImA := {Ax : z € D(A)}.

Let A: D(A) C X — X be a linear operator on a lcHs X. Whenever A € C is such that
(M — A): D(A) — X is injective, the linear operator (A\I — A)~! is understood to have
domain Im(AI — A). The resolvent set of A is defined by

p(A) :={\ e C: (M —A): D(A) = X is bijective and (A — A)~' € L(X)}

and the spectrum of A is defined by o(A) := C\ p(A). For A € p(A) we also write
R(X\, A) := (M — A)~L. For A\, u € p(A) it is routine to check that the resolvent equation

R(A,A) = R(u, A) = (11 = N)R(\, A)R(p, A)

is valid. The spectral theory for closed linear operators A in a (non—normable) lcHs X is
not as well developed as in Banach spaces and many features depart from the well known
theory in Banach spaces; see |7, Section 3|, for example, where those aspects that we
require in this paper can be found.

The following general results, also of interest in their own right, play a crucial role in
later sections.
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Proposition 2.3. Let X be a sequentially complete lcHs and (T'(t))i>0 C L(X) be a locally
equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) so that {@ St > to}

1s equicontinuous for some tg > 0. Then
Co+ :={z € C: Re(z) >0} C p(A4)

and {R(X\, A) : Re(\) > a} is equicontinuous for every a > 0. Moreover, for every x € X
and n € N we have

1 n—1 dn—l A 1 o
(-1 R\ A)z _ / tnflef)‘tT(t){L' dt, XeCy+.

R\ A)"x = (n—1)! DT A

Proof. According to [6, Remark 1(iii)] the Cp—semigroup (7'(t))+>0 is strongly continuous.
Let p € I'x. Then there exist A, and r € I'y such that p (T(?x> < Apr(x) for z € X and
t > tg, that is,

p(T(t)z) < Aptr(z), x€ X, t>1.
By local equicontinuity of (7'(t))i>0 the set {T'(¢t) : t € [0,tp]} € L(X) is equicontinuous
and so there exist ¢ € I'x with ¢ > r and B, > 0 such that
p(T(t)x) < Bpg(z), x€ X, te 0,1
Fix any a > 0. Since max{1,t} < cee® for ¢t > 0 (with ¢, := max{1,1}) it follows that
p(T(t)r) < cuMpe™q(z), x€ X, t>0, (2.7)

where M, := max{A,, By}, i.e., the semigroup (T'(t))>0 is a-exponentially equicontinuous.
Then Lemma 5.2 and Remark 5.3 of [7] imply that {z € C: Re(z) > a} C p(A4) and

R\ A)x = / e MT(t)xdt, x€ X, Re()) > a, (2.8)
0
with the integral existing as an improper X-valued Riemann integral. Since a > 0 is
arbitrary, it follows that Cy+ C p(A).
Inequalities (2.7) and (2.8) ensure that

& M,
R\, A)z) < ca, ~Re-a)t gy — ___“ep X
p( ( ’ ):B) >C pQ(x)/O € (Re()\) _ a)q(w)v T e )
whenever Re(A) > a. For € > 0 we have m < 1 whenever A satisfies Re(\) > a +¢.

Accordingly,

M,
p(R(\, A)z) < & —Lq(x), @ €X, Re(N) Za+te,

which shows that {R(\, A) : Re(\) > a+¢} is equicontinuous. Since a and € are arbitrary,
it follows that {R(A, A) : Re(\) > b} is equicontinuous for every b > 0.

Fix A € Cy+. Then there exists n > 0 such that the closure of V(A\,n) := {z € C :
|z — A| < n} is contained in Cy+ C p(A). Moreover, {R(u, A) : pe V(\n)} C{R(u, A):
Re(p) > n} and so {R(u, A) : p € V(A n)} C L(X) is equicontinuous. Setting U := Cy+
it follows from |7, Proposition 3.4(i)| that R(-, A): Co+ — L(X) is holomorphic from Cy+
into L£p(X) with
(=1)"d"'R(X A)

RN\ A" = N.
WA =T et "€
It remains to establish, for z € X and n € N, that
(=) td"LR(\, A)x 1 /°° 1 e
= t" T(t)xdt, M\ . 2.
(n—1)! dan1 n—1) J, e T zdl, A€ Co (29)
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The case n = 1 is given by (2.8). Consider now n = 2. Let Re(\) > 0 and set a := Rez()‘) >
0. Given p € I'x choose ¢ € I'x and M,, > 0 such that (2.7) holds. Then
plte T (1)2) < cuMyte™ TV -Dg(a) = c,Myte™ " q(a), (2.10)

X Re())
for x € X and t > 0, with fooo te” ‘

the improper X—valued Riemann integral [j°teMT(t)z dt exists. Moreover, (2.10) and
[6, Proposition 11(vii)] imply that the operator z — [~ te™ T (t)z dt, for z € X, belongs
to L(X). Fix any n € <0 Reo‘)), in which case V/(A\,n) C {u € C: Re(p) > n}. Then it
follows from (2.7) and (2.8) that, for every p € V(A\,n) with u # X and =z € X,

(
( (/\ Az <—/0 te NT(t)x dt)>
— (/0 [eij — ikt n te_)‘t] T(t)x dt)

Re(M\)t

e~ 3 dt. (2.11)

+1

Considering the power series for the exponential function we have
ef(ﬂf)‘)t — 1

W= A

‘M )\‘k 1tk o k ltk
< Z i

< te™ < max{1,t}e™ < cn/QeTt,

where we have used the fact that max{1,t} < cn/QG%t for t > 0. Accordingly, for t > 0 and
w satisfying 0 < | — A| < 1 we have

e_(“‘_)‘)t — 1
W= A

Re(\)t Rc(A)>t

3
+tle 2 gcn/2e<2” 2 (2.12)

Re())

) is integrable

Since (%n — REQ(’\)) <0(as0<n< Reg()‘)), the function ¢t — CW26(277—

on [0,00). So, the Dominated Convergence Theorem, the estimates (2.11) and (2.12), and
the fact that the pointwise limit

—(p=Nt _1q .
lim <e+t> 2 0, teo,00),

= o — A
imply that lim,_, ) % — > te™MT(t)dt in L4(X). This is precisely (2.9) for
n=2.
This argument can be adapted, together with induction, to verify that (2.9) holds for
all n € N and for Re(\) > 0. O

Remark 2.4. Suppose that X is sequentially complete and barrelled and that (7'(¢)):>0 C
L(X) is a strongly continuous Cy—semigroup satisfying lim; y =0in Ls(X).
(i) Under the above conditions the hypotheses of Proposition 2.3 are satisfied for every

to > 0. Indeed, according to Remark 2.2(ii) the semigroup (7'(t)):>0 is locally equicon-
7— = 0in X and so

there exists 7, > to such that {@ st > Tx} is bounded in X. By local equicontinuity

tinuous. Fix now any tg > 0. Given x € X we have limy_,

{T'(t)x : t €[0,7;]} is bounded in X and hence, so is {@ : t € [to, Tx]} It follows that
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{@ > to} is also bounded. Since x € X is arbitrary and X is barrelled, we can

conclude that {y tt> to} is equicontinuous in £(X).

(ii) The above hypotheses also imply that (7'(t)):>0 is exponentially equicontinuous.

Indeed, by part (i) we have {y Dt > to} is equicontinuous. Moreover, (T'(t))¢>0 is locally

equicontinuous by Remark 2.2(ii). In particular, {T'(t) : ¢ € [0, 1]} is equicontinuous. Let
p € I'x. Then there exist q1, g2 € I'x such that

p(T(t)x) < Miqi(z) < Myelqi(z), =€ X,tel0,1],

p(T(t)x) < tMaga(z) < Maelqe(x), ze€ X, t>1,

for constants My, My > 0. For some ¢ > max{q1, g2} with ¢ € T'x and M > max{Mj, My}
we have p(T(t)x) < Me'q(z), for x € X, t >0, i.e., (T(t))>0 is exponentially equicontin-
uous.

Corollary 2.5. Let X be a barrelled, sequentially complete lcHs and (T'(t))t>0 C L(X) be a
locally equicontinuous Cy—semigroup with infinitesimal generator (A, D(A)) and satisfying
Ts-limy o0 @ = 0. Then (0,00) C p(A) and X\ — AR(\, A) is continuous from (0, 00)
into Lp(X).

Proof. 1t suffices to show that A — AR(A, A) is continuous from (0, 00) into £(X). Remark
2.4(i) and Proposition 2.3 imply that (0,00) C p(A) and that {R(N\, A) : a < A < oo} is
equicontinuous for every a > 0.
Fix p > 0. Let p € I'x and B € B(X). By equicontinuity of {R(A\,A) : X €
(1t/2, (31)/2]} there exist M, > 0 and g € I'x such that
po3p

p(R(\, A)x) < Mpq(z), zeX, A€ [2, 2} )

For every A\ € [%, 37”} it follows from the resolvent equation that

pB(R(A A) — R(p, A)) = [A — p Stelgp(R(/\, A)R(p, A)x) < MpX — plgs(R(p, A)).
For \ € {%, 37“} it follows that 7-limy_,,, R(\, A) = R(u, A), i.e., R(-, A) is continuous at
u. Since p € (0,00) is arbitrary, we are done. O

Proposition 2.6. Let X be a sequentially complete lcHs and (T'(t))i>0 € L(X) be a locally
equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) so that {@ Dt > to}

15 equicontinuous for some tg > 0 and Tp-lims_ o0 y = 0. Then, for every real A > 0, we

have

AR\, A))™

7 — lim =0.

n—00 n
Proof. Fix a real number A > 0. According to Proposition 2.3 the set Cy+ C p(A) and, for
every x € X and n € N, we have

1 o0
RO\, Atz = / " Le Ntz dt, > 0. (2.13)
(n—=1)!Jo
Fix p e T'x, e > 0 and B € B(X). It follows from 7p-lim; y = 0 that there exists
t1 > 0 such that
supp(T(t)x) < eXt, t>1;. (2.14)
zeB
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The local equicontinuity of (T'(t))i>0 ensures that {T'(¢) : t € [0,¢1]} € L£(X) is equicon-
tinuous and so there exist M, > 0 and ¢ € I'x with

p(T(t)x) < Mpg(z), x€X,te|0,t]. (2.15)

It follows from (2.13), (2.14) and (2.15) and [6, Proposition 11(vii)| that, for every x € B
and n € N, we have

AR\, A))™ M A" ty Antlo oo
p<( EO, 4)) x) < ra(®) ),/ e Mg 4 e / e M dt.
- JO t1

n n (n-—1 n!

k+1

Since “J fooo e Mtk dt = 1 for every k € Ny and real p > 0, it follows that

) <()\R()\,A))"x> < Mpz(x)

n

+¢e, xzeB,neN.

Hence, with K := sup,cp¢(z), we can conclude that

(()\R()\T,lA))”x) < MK

< e, neN,
n

sup p
zeB

(AR(MA))"x

) < e. Letting ¢ — 0%, the
proof is complete. 0

from which it follows that limsup,,_, . sup,cp p(

Lemma 2.7. Let X be a sequentially complete lcHs and (T'(t))>0 C L(X) be a locally
equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) such that p(A) # 0.
Then

Fix(T(-)) = Ker(I — AR(\, A4)), X € p(A), (2.16)
where Fix(T(+)) == {z € X : T(t)r = x Vt > 0}. In particular, x € Fix(T(-)) precisely
when x = AR(\, A)zx for some (all) X € p(A).

Proof. Fix any A € p(A). Let x € Ker(I — AR(X, A)). Then x = AR(\, A)z € D(A) and
so the identity (2.5) holds for this particular z. On the other hand, x € D(A) also implies
that R(\, A)(M] — A)z = x = AR(\, A)z and so, by the injectivity of R(\, A), we obtain
(M — A)x = Az, i.e., Az = 0. Then (2.5) reveals that T'(t)z —z = 0 for all ¢ > 0, i.e.,
x € Fix(T(+)). So, Ker(I — AR(\, A)) C Fix(T'(+)).

Conversely, if z € Fix(T'(+)), then lim;_,o+ % = 0. Hence, x € D(A) and Az = 0.
So,

=R\ AN —A)x =R\ A) (A — Az) = AR(\, A)x.

Accordingly, x € Ker(I —AR()\, A)) and so Fix(7T'(+)) € Ker(I —AR(A, A)). This completes
the proof of (2.16). O

Remark 2.8. In the setting of Lemma 2.7 if 0 € p(A), then Fix(7T(-)) = Ker I = {0} and
so Ker(I — AR(X, A)) = {0} for every X € p(A).

Lemma 2.9. Let X be a sequentially complete lcHs and (T'(t))>0 € L(X) be a locally
equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) such that p(A) # 0.
Then

ImA = AR\, A) — I)(X), X € p(A).

Proof. Fix any A € p(A). Then (A — A)R(N\,A) =1 on X and R(\, A) (Al — A) =1 on
D(A). Tt follows that AR(\, A) =T + AR(A\, A) on X and so

(AR(\, A) — I)(X) = A(R(\, A)(X)) C ImA.
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On the other hand, for every y € ImA there is © € D(A) with Ax = y. Accordingly, = =
RN, A)Y M —A)z = AR\, A)x—R(\, Ay, i.e., R(\, A)y = (AR(X\, A)—I)z. Consequently,

we have
y = (M—ARNAy=A—-A)(ARNA) - Dz
= (AR A)—I)(M — A)x € (AR(NA) - I)(X).
The arbitrariness of y in ImA implies the reverse inclusion
ImA C (AR(M\, A) — I)(X).
O

Let (T'(t))t>0 be a locally equicontinuous Ch—semigroup on a sequentially complete 1cHs
X. The linear operators

,
C(0) :=1T1 and C(r)z := i/ T(t)xdt, z=e€X,r>0, (2.17)
0
are called the Cesdro means of (T'(t))i>0. The integrals in (2.17) are X—valued Riemann
integrals with respect to the locally convex topology of X; see [6], [27], [46], for example.
The Cesaro means {C(r)},>0 are well defined and belong to £(X), [6, Section 3|. If
(T'(t))e>0 is equicontinuous, then {C(r)},>¢ is also equicontinuous, [6, Section 3|. In case
X is barrelled the Cesaro means exist in £(X) whenever the semigroup (7'(¢))¢>o is strongly
continuous (via Remark 2.2(ii)). Since the interval [0, c0) is a directed set relative to the
usual order > induced from R, it is meaningful to speak about convergence of the net
{C(r)}r>0 in Ls(X) or Lp(X) as r — .

Lemma 2.10. Let X be a sequentially complete lcHs and (T'(t))i>0 C L(X) be a lo-
cally equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) and satisfying
T(t)

Tp-limy oo > = 0. If A: D(A) — X s bijective with A~': X — D(A) continuous, then

Tp-lim, o0 C(r) = 0.

Proof. Let y € X. As A is surjective there is x € D(A) such that y = Az, namely
r = A~'y. According to (2.5), for every r > 0, we have that

(T(r)— 1z = /OT T(s)Axds = /OT T(s)yds

and so, C(r)y = w Now, fix any p € I'x and B € B(X). Then

1
supp(C(r)y) = = sup p((T'(r) —I)x)
yEB T zeA-1(B)
< sup p <T(r)x> —1—1 sup  p(x), r>0,
z€A-1(B) r T ¢eA-1(B)

where the set A~}(B) € B(X) and is contained in D(A) as A~!: X — D(A) is continuous.
Since @ — 01in Ly(X) as 7 — oo, the previous inequality implies that sup,c 5 p(C(r)y) —

0 as r — 0o. By the arbitrariness of p and B the desired claim follows. 0

Let X be a sequentially complete IcHs and (T'(t))s>0 € £(X) be alocally equicontinuous
Co—semigroup. Then (T'(t))¢>0 is called mean ergodic if P := lim,_,, C(r) exists in L4(X).
T(t

By [6, Remarks 4(ii) & 5(iii)] if 7y-limy 00 “\ = 0, then P is a projection with

ImP = Fix(T(-)) = Ker A

and

Ker P =span{z — T(t)z : t >0, ,x € X} = ImA,
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where (A, D(A)) is the infinitesimal generator of (T'(t)):>0. In particular,
X =Ker A® ImA. (2.18)

If lim, oo C(r) exists in L£4(X), then (T(t))i>0 is called uniformly mean ergodic. An
alternate notion is that (7°(¢)):>0 is called Abel mean ergodic (resp. uniformly Abel mean
ergodic) if the interval (0,00) C p(A) and, for some Ag > 0, the net {AR(A, A)}ocr<y, is
convergent in L£4(X) (resp. in Ly(X)) for A\ = 01, where the interval (0, \o] is a directed set
for the usual order < induced from R. Without mentioning Ay explicitly we also write (for
the sake of simplicity) 7s-limy_,q+ AR(A, A) (resp. 7p-limy_,o+ AR(A, A)) for the respective
limits in £4(X) and in £4(X).

Remark 2.11. (i) Let X be a barrelled, sequentially complete lcHs and (T'(t))i>0 C
L(X) be a locally equicontinuous Cp—semigroup with infinitesimal generator (A, D(A))
such that 7g-limy o y =0 and (T'(t))t>0 is Abel mean ergodic. Then {AR(X, A) }o<a<i,
is necessarily equicontinuous for some A9 > 0. Indeed, choose any Ag > 0 such that
the net {AR(X\, A)}o<r<n, converges in L4(X) for A — 0, say to P € L£(X). By the
barrelledness of X it suffices to show that {AR(\, A)z}ocr<y, € B(X) for every z € X.
So, fix z € X and p € I'x. Then there exists X' € (0, \g] such that p(AR(\, A)z — Px) <1
for all A € (0,)) and hence, supy_ oy P(AR(X, A)x) < oo. Since [N, \g] is compact
and A\ — AR(X, A)z is continuous from [N, Ao] into X (cf. Corollary 2.5), it follows that
SUpy<x<r, P(AR(A, A)x) < 0o. Consequently, {AR(A, A)x}ocr<n, € B(X).

If X is a Banach space, then the Abel mean ergodicity of (T'(t)):>0 by itself suffices
to ensure that supg. <y, [[AMR(A, A)|| < oo, i.e., the condition 7-limg o0 @ = 0 can be
omitted. To see this fix u € (0,Ao]. Since p € p(A), with p(A) open in C, and the
function z — R(z, A) (hence, also z — zR(z, A)) is holomorphic, for the operator norm
in £(X), in a neighbourhood of x (in C), [23, Ch. IV, Proposition 1.3|, it follows that
limy—,,, rer AR(A, A) exists relative to || - || and equals pR(u, A). Hence, A — AR(\, A) is
operator norm continuous in any interval [a, A\g] with 0 < a < Ag. The argument of the
previous paragraph then applies to show that {AR(), A)}o<r<), is bounded in £4(X) and
hence, by the Principle of Uniform Boundedness, that supy. <y, [AR(), 4)|| < oco.

(ii) Let X be alcHs and (7'(t))¢>0 be a semigroup as in part (i). Then the equicontinuity

of {AR(X, A)}ocr<r, (by part (i)) and [7, Lemma 3.8(ii)] imply that
ImA={zeX: lim AR\ A)z =0}. (2.19)
A—=0t

Moreover, since R(\, A)(X) C D(A) for each A € p(A), it follows from |7, Lemma 3.6] that
KerA={x € D(A): ARNA)z=z}={x e X: AR\, A)z =z}, (2.20)
for each A € p(A) \ {0}. In particular, via (2.19) and (2.20) we have
ImA N Ker A = {0}.

Proposition 2.12. Let X be a barrelled, sequentially complete lcHs and (T'(t))i>0 C L(X)

be a locally equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) such that

Ts-limy 00 @ = 0 and (T(t))e>0 is Abel mean ergodic. Then P := 74-limy_,o+ AR(\, A)
is a projection with InP = Ker A = Fix(T'(+)) and Ker P = ImA, i.e., P is a projection of

X onto Ker A along ImA.

Proof. Let A\g > 0 be as in Remark 2.11. Let 2 € X. Then Px = lim,_,o+ uR(u, A)z. Fix
any A € (0, \]. For each 0 < 1 < A the resolvent equation yields

A

MR, A)R(p, Az = 25—
pR(A, A)R(p, A)x o

R\, A)x + /\iu(uR(u,A):v).
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Let © — 0% to deduce that AR(A\,A)Px = 0 + Pz = Pz. Tt follows from (2.20) that
Px e Ker A, ie., ImP C Ker A. In the proof of Lemma 2.9 it was noted that

R(ANA)Ax = AR(N, A)z —z, x € D(A), A€ p(A)\{0}. (2.21)
Since ImP C Ker A C D(A), we conclude that
0= R(\ A)AP = AR(\, A)P — P,

i.e., AR(\,A)P = P for all A\ > 0. Let A — 0% yields P? = P and so P is a projection.
Moreover, (2.21) implies if z € Ker A, then AR(\, A)x = x for all A € p(A)\ {0} and so, for
A — 0T, we can conclude that Px = z, i.e., € ImP. This establishes that ImP = Ker A.
The definition of P and (2.19) imply that Ker P = ImA.
Finally, that Ker A = Fix(7T'(+)) is known, [6, Remark 5(iii)]. O

We point out that the formulation of condition (4) in Theorem 1.1 (as given in [33,
Theorem|) is not optimal. One merely needs to assume that P := limy_,g+ ARy =
limy_,g+ AR(X, A) exists in the operator norm topology. The limit P is then automati-
cally a projection onto ImP = Fix(7'(+)); see Proposition 2.12.

Lemma 2.13. Let X be a sequentially complete lcHs and (T(t))i>0 € L(X) be a lo-
cally equicontinuous Co—semigroup with infinitesimal generator (A, D(A)) satisfying Ts-
lim; 00 y =0. Set Y :=ImA and define A1z := Az for each x € D(A;) :== D(A)NY.
If (T(t))e>0 is mean ergodic, then Y = ImA;.

Proof. Let y € ImA. Then there is x € D(A) with y = Az. Via (2.18) z = x1 + xo
with ;1 € Ker A and zp € Y (hence, 2 = x — 21 € D(A) and so o € D(A;)). So,
y = Ax = A(x1 + x2) = Axe = A1y € ImA;. Thus, ImA C ImA; which implies that
Y = ImA C ImA; C Y. On the other hand if y € ImA;, then there is € D(A;) with
y=A1x=Ax € ImA CY. So, ImA; C Y. Therefore, ImA; =Y. O

Remark 2.14. The space Y defined in Lemma 2.13 is T'(-)-invariant. Indeed, if x €
D(A), then for each t > 0 we have AT (t)x = T(t)Az from which T'(¢)(Y) C Y follows.
Consequently, the restriction maps S(t) := T'(t)]y, for t > 0, define a Cp—semigroup on Y.
Since {p|y : p € I'x} is a system of continuous seminorms determining the topology of Y,
it follows that (S(t))i>0 C L(Y') is locally equicontinuous. Moreover, it is routine to check
that (A;, D(A1)) is the infinitesimal generator of (S(¢)):>0 and that R(\, A1) = R(\, A)
for each A € p(A). In particular, p(A) C p(A;) after noting that Y is R(-, A)—invariant.

Lemma 2.15. Let X be a sequentially complete, barrelled lcHs. Let (T(t))>0 € L(X)
be a uniformly continuous Co—semigroup with infinitesimal generator (A, D(A)) satisfy-
T(t)

ing Ty-limg oo == = 0. Then (T(t)')i>0 is a locally equicontinuous, uniformly continuous

Co—semigroup on Xj satisfying Tp-lim¢— o T(tt)/ = 0. Moreover, if (A', D(A")) is the infini-
tesimal generator of (T'(t))i>0, then X € p(A’) and R(\, A") = R(\, A)' for every A € Cy+.

Proof. As already noted, (T'(t))i>0 C L(X}). Moreover, it is routine to check that
(T'(t))i>0 is a semigroup. Since (T'(t)):>0 is necessarily locally equicontinuous (cf. Remark
2.2(i1)) and X is barrelled, (T'(t)")i>0 is also locally equicontinuous, [30, §39.3 Theorem
(6)]. On the other hand, as (7(¢)):>0 is a uniformly continuous Cp-semigroup and 7,-

lim; 00 @ = 0, we can apply [3, Lemma 2.1] to conclude that (T'(t)"):>¢ is a uniformly

continuous Cy—semigroup on X é satisfying 7m,-limy— oo T(tt)/ =0.

Let (A, D(A)) be the infinitesimal generator of (T'(t)")¢>0. Since X is barrelled, Xj is

quasicomplete, [30, §39.6 Theorem (5)]. Moreover, Remark 2.4(i) implies that {%t) Dt > tg}




12 A. A. Albanese, J. Bonet and W.J. Ricker

is equicontinuous, for every tg > 0, and hence, also {%t), > to} C ﬁ(Xé) is equicon-

tinuous (as X is barrelled), [30, §39.3 Theorem (6)]. Then, by Proposition 2.3 applied to
both (T'(t))e>0 and (T(t)")t>0, we can conclude that Co+ C p(A) N p(A’) and, for each
A € Cy+, that

R(\ A)x :/ e MT(t)xdt, =€ X,
0

R\ ANz = / e NT(t) 2 dt, o' € X/,
0

So, for every z € X, 2’ € X' and X € Cy+, we have
o0 o0
<:r:,/ e NT ()2 dt) = / e Mz, T(t) 2’y dt
0 0

= /OO e M(T(t)x, 2') dt = (/OO e MT () dt, 2
0 0
= (R(\, A)z,2") = (x, R(\, A)'2').

This implies that R(\, A")z’ = R(\, A)'z for every 2’ € X" and A € Cy+, i.e., RI\, A') =
R(\, A) for every A € Cy+. O

(x, R(\, A")a')

In Lemma 2.15, the necessity of the requirement that the Co—semigroup (T'(t))¢>0 is
uniformly continuous, rather than merely strongly continuous, is due to the fact that the
dual semigroup (7'(¢)")¢>0 may fail to be strongly continuous in Xj, even for X a Banach
space, |23, p.43|.

3. UNIFORM MEAN ERGODICITY OF Cp—SEMIGROUPS OF OPERATORS

The purpose of this section is to extend Theorem 1.1 from Banach spaces to the class of
prequojection Fréchet spaces; see Theorem 3.2 and Proposition 3.4. Moreover, in Example
3.7 it is shown that this extension really is confined to this class of Fréchet spaces. First
some preliminaries are required.

A Fréchet space X is always a projective limit of continuous linear operators Sy :
Xgr1 — Xg, for £k € N, with each Xj; a Banach space. If it is possible to choose
X and Sg such that each Sy is surjective and X is isomorphic to the projective limit
proj ;(Xj, Sj), then X is called a quojection, [12, Section 5]. Banach spaces and countable
products of Banach spaces are quojections. Actually, every quojection is the quotient of
a countable product of Banach spaces, [14]. In [38] Moscatelli gave the first examples of
quojections which are not isomorphic to countable products of Banach spaces. As already

mentioned in Section 1, concrete examples of quojections are w = CN, the spaces Lf e (82),

with 1 < p < oo, and C™(Q), for all m € Ny. Indeed, the above function spaces are
isomorphic to countable products of Banach spaces. Moreover, the spaces of continuous
functions C'(A), with A a o—compact completely regular topological space, endowed with
the compact open topology are also examples of quojections. Domaiiski constructed a
completely regular topological space A such that the Fréchet space C(A) is a quojection
which is not isomorphic to a complemented subspace of a product of Banach spaces, [19,
Theorem]. It is known that a Fréchet space X admits a continuous norm if and only if X
contains no isomorphic copy of w, [26, Theorem 7.2.7]. On the other hand, a quojection X
admits a continuous norm if and only if it is a Banach space, [12, Proposition 3]. Hence,
a quojection is either a Banach space or contains an isomorphic copy of w, necessarily
complemented, |26, Theorem 7.2.7|. For further information on quojections we refer to the
survey paper |36] and the references therein; see also [12], [18].
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Let X be a quojection Fréchet space and {qj};-";l be any fundamental, increasing
sequence of seminorms generating the lc-topology of X. For each j € N, set X; :=
X/qj_l({O}) and endow X; with the quotient lc-topology. Denote by @;: X — X, the
corresponding canonical (surjective) quotient map and define the increasing sequence of
seminorms {(¢;)x}3>, on X; by

(4;)k(Qjz) == inf{qr(y) : y € X and Q;y = Qjz}, =z € X, (3.1)
for each k € N. Then

(G)r(Qjz) < au(z), z€X, k, jeN; (3.2)
see (2.4) in [|5]. Moreover,

((j])j(Qj{E) = qj(x), T € X, j S N, (33)

which implies that (¢;); is a norm on Xj;. Since X is a quojection Fréchet space and
since every quotient space (of such a Fréchet space) with a continuous norm is necessarily
Banach, [12, Proposition 3|, it follows that for each j € N there exists k(j) > j such that
the norm ((jj)k(j) generates the lc-topology of X;. Thus, X is isomorphic to the projective
limit of the sequence {(Xj, (¢;)x(j))}721 of Banach spaces with respect to the continuous,
surjective linking maps @ j+1: Xj+1 — X defined by

QRjjr10Qj+1=0Q; JeN (3.4)
This particular construction will be used on various occasions in the sequel.
For any sequence {z,}°2 in a IcHs X, its sequence of arithmetic means is given by
n 3 T, for n € N. Given S € £(X) we can form its sequence of iterates S™ :=
So...08, for m € N. Then the arithmetic means

IR
S["]:ZEZS’ n €N,
m=1

of {S™}>_; are called the Cesaro means of S. If 74-lim, o0 Sn) (resp. Tp-limy, 0o S[n])
exists, then S is called mean ergodic (resp. uniformly mean ergodic).

Various aspects concerning the mean ergodicity of individual operators in non—-normable
lcHs can be found in (2], [4], [15], [42], [43] and the references therein.

Remark 3.1. If {x,}°2, is any sequence in a lcHs X for which x = lim,_,~ x, exists,
then also its sequence of arithmetic means {n=1>"" | 2,,}5, converges to the same limit
z. Indeed, by considering each p € I'x, this can be verified by adapting the standard
argument used for scalar sequences; see the proof of Theorem 6b in [25, Ch.5, §6], for
example. In particular, if S € £(X) and P := limy, 00 5™ exists in Ls(X) (resp. Ly(X)),
then also limy, ;0 Spp) = P in Ls(X) (resp. Lp(X)).

We are now able to formulate the main result of the paper. It should be compared with
Theorem 1.1.

Theorem 3.2. Let X be a quojection Fréchet space and (T(t))i>0 be a locally equicontinu-

ous, Co—semigroup on X satisfying mp-limy_, o LW — 0. Then the following assertions are

equivalent. '

(1) The semigroup (T(t))e>0 is uniformly mean ergodic.
(2) The infinitesimal generator (A, D(A)) of (T(t))e>0 has closed range.
(3) The operator AR(X\, A) is uniformly mean ergodic for every A > 0.
(4) The operator AR(X, A) is uniformly mean ergodic for some A > 0.
(5) The semigroup (T(t))e>0 s uniformly Abel mean ergodic.
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(6) The sequence of iterates {(AR(\, A))"}o2, converges in Ly(X) for every (some)
A>0.
(7) ImA is a quojection and there exists N\g > 0 such that

(RO Ay y e (0,0]) € B(X), yeTImA.

Proof. Since p-limy_ o0 y =0, the set {y > to} is equicontinuous for some ty > 0;

see Remark 2.4(i). Then Proposition 2.3 implies that Cyp+ C p(A) and, via Proposition
2.6, we can conclude that

RRAAN o\ s, (3.5)

7 — lim
n—00 n

(2)=-(3). Let A > 0 be arbitrary. By Lemma 2.9 (AR(\,A) — I)(X) is closed in X.
As X is a quojection Fréchet space, Theorem 3.4 in [8] applied to AR(A, A) yields that
{(AR(A, A)) ) pozq converges in L£,(X). Thus, (3) holds.

(3)=-(4). This is obvious.

(4)=-(2). Suppose that (4) holds for some A > 0. For this A, since (3.5) holds and X
is a quojection Fréchet space, we can apply Theorem 3.4 of [8] to the operator AR(A, A)
to conclude that (I — AR(X, A))(X) is closed. On the other hand, Lemma 2.9 yields that
(I —AR(M\ A))(X) =ImA. Hence, ImA is closed in X which is precisely (2).

(1)=-(5). This follows from |7, Theorem 5.5(i) and Remark 5.6(i)].

(2)=(1). Consider the closed subspace Y := ImA of X. Remark 2.14 ensures that Y is
T(-)-invariant and the restrictions (T'(t)|y )¢>0 form a locally equicontinuous Cp—semigroup
on Y with infinitesimal generator (A, D(A1)) given by

D(A)):=YND(A) and Ajzx:= Az, xz€ D(A)).

It is routine to check that 7p-lim;_ s % = 0. By Lemma 2.9, for any fixed A > 0, we
have that Y = (AR(X, A) — I)(X). So, (AR(A, A) — I)(X) is closed in X. According to
(3.5) and the fact that X is a quojection, Theorem 3.4 and Remark 3.6(1) of [8] can be
applied to the operator AR(\, A) to conclude that it is uniformly mean ergodic and that
the continuous linear operator I — AR(A\, A): Y — Y is bijective (hence, invertible with a
continuous inverse).

If Ay = 0for somey € D(A;), theny = R\, A)(M —A)y = AR\, A)y—R(\, A) Ay =
AR(XN, A)y and so (I — AR(\, A))y = 0, which implies that y = 0. Thus, Ay is one-to—
one. On the other hand, if we apply Lemma 2.9 to (T'(¢)|y)t>0, then we deduce that
ImA; = (I — AR\ A1))(Y) = (I — AR(NA))(Y) =Y. Therefore, Ay: D(A1) — Y is
bijective and so the inverse operator (A;)71: Y — D(A;) exists. Since A; is closed, also
(A7)~1 is closed. By the Closed Graph Theorem it follows that (A;)~! is continuous.
According to Lemma 2.10 we have that 75-lim, o, C(r) = 0.

Via (3.5) and the fact that (AR(A\, A) —I)(X) =Y is closed in X (with X a quojection
Fréchet space), we can apply [8, Theorem 3.4] to conclude that X =Y @&Ker(I —AR(A, A)).
Then Lemma 2.7 yields that X =Y & Fix(7T'(-)). Since C(r) — 0in Lp(Y) as r — oo
and C(r) = I on Fix(T(-)) for all » > 0, it follows from the previous identity that 7,-
lim, o C(r) exists, i.e., part (1) holds.

(5)=(2). Let P := m-limy_,o+ AR(X, A). It follows from (2.19), (2.20) and Proposition
2.12 that P is a projection (hence, X = ImP & Ker P) with

ImP =Fix(T(-)) =KerA={z € D(A): AR(\,A)x ==z}, Ve p(4),

KerP=ImA={zr e X: lim AR\, A)z =0}.
A—0F
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Moreover, Y := ImA is invariant for each operator in {AR(\, A) : X € p(A)}, [7, Lemma
3.6], and each operator in {T'(¢) : t > 0}; see Remark 2.14. So, if we define

D(A;) =Y ND(A) and Ajz:= Az, z € D(A)),

then (A, D(A1)) is the infinitesimal generator of {T'(¢)|y }+>0 with R(\, A1) = R(\, A)|y
for A € p(A); see Remark 2.14. In particular, as X = Ker A @ ImA we can proceed as in
the proof of Lemma 2.13 to deduce that Y = ImA;. Accordingly, Y is a complemented
subspace of the quojection Fréchet space X and so is itself a quojection Fréchet space.
Hence, we may assume that Y = X and that AR(\, A) — 0 in £,(X) as A — 0.

Fix a fundamental, increasing sequence {r; };)0:1 of seminorms generating the le—topology

of X. Since 7p-limy_00 y = 0 and X is barrelled, {T'(¢)/t : t > 1} is equicontinuous.

Moreover, the local equicontinuity of {T'(¢) }+>0 ensures that {T'(t) : ¢ € [0, 1]} is equicon-
tinuous. So, for each j € N, there is M; > 0 such that

ri(T(t)z) < Mjtripzi(z), t>1,z€X, (3.6)
ri(T(t)zr) < Mrju(z), tel0,1], z€ X, (3.7)

where there is no loss of generality in assuming that (3.6) and (3.7) hold for ;4 as we
can pass to a subsequence of {r;}5%, if necessary.
Fix j € N and define ¢g; on X by setting

qj(z) := max{ sup r;(T(t)z),supr;(t'T(t)z)}, =z¢€ X.
t€[0,1] t>1

Then ¢; is a seminorm on X and, via (3.6) and (3.7), we have
rj(z) < ¢j(x) < Mjrja(z), zeX.

Thus, {g; 521 is also a fundamental increasing sequence of seminorms generating the le—
topology of X and satisfies

¢;(T(t)x) 2¢j(z), te|0,1],z€ X, (3.8)
q;(T(t)x) (1+1t)gi(x), t>1,zeX. (3.9)
Indeed, if ¢t € [0,1] (hence, also 1 — ¢ € [0, 1]), then (3.8) follows from
¢;(T(t)r) = max { sup 7;(T(s+t)x),supr; <<1 + Z) T(s—!—t):n) }

s€[0,1] s>1 s+t

<
<

=max{ sup r;(T(s+t)x), sup r;((s+t)(s+1)"'T(s+t)z),supr; <<1 * t> W)
s€[0,1—1] s€[1-t,1] s>1 S s+t

< 2max{ sup 7j(T(uv)z),suprj(u ' T(u)r)} = 2¢;(x), =€ X.
u€(0,1] u>1

On the other hand, if ¢ > 1, then (3.9) follows from
t\ T t
¢;(T(t)x) = max { sup 7j((s+t)(s + ) 'T(s+t)zx),supr; ((1 + ) (3"‘)»77)
s€(0,1] s>1 s s+t

<(1+41) 81;11) ri(u ' T(w)z) < (1 +t)gj(z), z€ X.

Moreover, Remark 2.4(i) and Proposition 2.3 imply that Cy+ C p(A) and

R\ A)x = / e MT(t)xdt, =€ X, \eCor.
0
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So, via (3.8) and (3.9) we conclude, for each j € N, A > 0 and z € X, that

a (/01 e NT(t)x dt) +q; (/100 e MT(t)x dt)

1 [e§)
2¢;(x) /0 e Mdt + qj(x) / e M1 +t)dt

1

qj(R(A, A)z)

IN

IN

— e X oA
- 5w+ (2/\ ’ v) %(7)

oA
— (i + )\2> qj(z) =: dyrg;(z). (3.10)

We now apply the construction (3.1)-(3.4) to the sequence of seminorms {g;}32; to yield
the corresponding sequence {(Xj, (¢j)r(j))}52; of Banach spaces and the quotient maps
Qj € L(X, X;), for j € N.

Fix j € N. Define a family of operators {R;(A)} x>0 on X; by setting

Rj()\)Qj{L’ = QjR()\,A)x, rze X, A>0. (3.11)

Proceeding as in the proof of Theorems 3.3 and 3.5 in [5] (for the operators T}(t), t >
0, there) one shows via (3.11) that each R;(\) is a well defined linear operator on Xj.
Moreover, by (3.2), (3.10) and (3.11) we obtain, for each A > 0, that

(@) (Bi(N)E) = (4)r() (B (N Qj%) = (45)i() (@5 (A, A))
< @) (BN, A)z) < dagp) (o)
forall £ € X; and z € X with Q;x = . Taking the infimum with respect to x € Qj_l({:i"})
it follows that
(@5)k() (R (M) < da(@i)ng(2), &€ X5, A>0,

and hence, R;(\) € L(X;) for every A > 0. Moreover, relative to the directed set (0, \o)
for some A9 > 0, we have 7-limy g+ AR(\, A) = 0 which implies that AR;(\) — 0 in
Ly(X;) as A 0%, Indeed, since X is a quojection, if Bj denotes the closed unit ball of the

Banach space X, then by [18, Proposition 1| there is B; € B(X) such that Bj C Q,(By).
It follows from (3.11), for the operator norm in £(Xj), that

[IAR; (N[ == sup (Gj)rj)(AR;(N)E) < sup  (G)r(j)(AR;(N)2)

&€B; 2€Q;(B;)
= sup (G;)x(j)(AR; (A)Qjz) = sup (§;)r) (QiAR(A, A)x)
IEB]' IEBj
< sup gu(j) (AR(A, A)z),
IGB]'

where sup,cp. qi(j)(AR(A, A)z) — 0 for A | 0% as (T(t))¢>o is uniformly Abel mean
ergodic. So, limy g+ [[AR;(A)|| = 0 for each j € N. Thus, for each j € N, there is
Aj € (0, Ao] which can be chosen with A; < A;_1 such that [[A;R;(\;)|| < 4. This ensures
that each operator I — \;R;()\;) € L(X}), for j € N, is bijective, hence invertible, |20, Ch.
VII, Corollary 6.2], with

1 3,. . R
5 §(Qj)k(j)($)v z e Xj. (3.12)

5 @)k (&) < (4)r (L = X R;())2] <
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We can now show that ImA is closed in X. By (3.2), (3.11) and (3.12) and the fact that
Jj < k(j) we have, for each j € N, that

S@5@) < L@ (@) < @) (= MR )]
(@)k() Qi1 = AjR(Aj, A))x] < gy (T — A R(Az, A))]
= Qk(j)(AR()\jaA)fU)

for all 2 € X; and x € X with Q;x = 2. Since (§;);(Z) = ¢;(z) for all x € X with Qjz = &
(cf. (3.3)), the above inequality yields

1 .
§q]~(x) < @) (AR(N;, A)x), ze€ X, jeN. (3.13)

Fix j € N. Let y € D(A). Since R(\;, A)(X) = D(A), there is a unique x € X with
y = R(\j,A)z and so (\;1 — A)y = (A\;I — A)R(\j, A)x = x. Thus, by (3.13) we obtain
that £¢;((\I — A)y) < Qr(j)(Ay) and, since j < k(j), that

g(y) < AG (T = A)y) + ¢ (Ay)] < A 2410 (Ay) + g5(Ay)]
< 3N g (Ay), y € D(A). (3.14)

Recall we are supposing that X =Y =ImA. As X = Ker A @ ImA, we have Ker A = {0}
and so A is injective. Thus, from (3.14) it follows that

gj(A712) < 3)\;1qk(j)(2), z€ImA, j eN. (3.15)

The inequalities (3.15) ensure that A=': ImA — D(A) is a continuous linear operator.
We claim that the closedness of ImA follows. Indeed, let y € X = ImA. Then there is a
sequence {y;}72; € ImA such that y, — y in X as k& — oo. It then follows from (3.15)
that the sequence xj := A~ 'y, for k € N, is Cauchy and so converges to some z € X. On
the other hand, each z € D(A) and Axy = yr — y in X as k — oo by assumption. Since
A is a closed operator, it follows that z € D(A) and A(z) =y, i.e., y € ImA. This implies
that X = ImA and so ImA is closed.

(1)=(6). Let P := 7-lim, ,o, C(r). According to (2.18) we have X = Ker A ® ImA
with

ImP = Fix(T(-)) = Ker A,

Ker P =span{z —T(t)r: t >0, z € X} = ImA.

Moreover, since (1)=>(5)=-(2), ImA is closed and so ImA = ImA.

Note that Y := ImA is a quojection Fréchet space as it is a complemented subspace of
X. By (216) we have ()\R()\,A)NFIX(T()) = IFiX(T(')) = P‘FIX(T()) and Lemma 3.6 of [7]
implies that ImA is R(\, A)—invariant for any A > 0. So, we may assume that ¥ = X and,
correspondingly, that C'(r) — 0 in £(X) as 7 — oo. Therefore, we need to prove that
(AR(X,A))" — 0in Lp(X) as n — oo for (some) every A > 0.

Let {Tj}?il be any fundamental, increasing sequence of seminorms generating the lc-
topology of X. Fix a > 0. Then Remark 2.4(i) and Proposition 2.3 ensure that (7'(t)):>0
is a-exponentially equicontinuous. So, for each j € N, there is ¢; > 0 such that

ri(T(t)z) < cje™rjii(z), t>0, z € X, (3.16)

where there is no loss of generality in taking ;11 as we can pass to a subsequence of
{rj}52, if necessary.
Fix j € N and define a seminorm ¢; on X by setting

gj(z) :=suprj(e T (t)z), x€ X. (3.17)
>0
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Then (3.16) implies that g; satisfies
ri(z) < gj(z) < c¢rjpi(z), zeX.

Therefore, {g; }j’il is also a fundamental, increasing sequence of seminorms generating the
le-topology of X and (via (3.17)) satisfies, for each j € N,

gj(e”T(t)z) = SglgTj(efasT(S)(e*atT(t)x))
= sup rj(e*“(SH)T(s +t)x) < gj(x),
s>0
for x € X, t > 0. Accordingly, for each j € N, we have
qj(T(t)z) < e™qj(z), z€ X, t>0. (3.18)

We again apply the construction (3.1)-(3.4), now to the seminorms {g;}32; given by (3.17),
to yield the corresponding sequence of Banach spaces {(Xj, (¢;)x(j))}j21 and the quotient
maps Q; € L(X, X), for j € N.
Fix j € N. Define a family of operators (T}(t)):>0 on X; via
T;(t)Qjx == Q;T(t)x, xze€ X, t>0. (3.19)

By (3.18) and (3.19) we can proceed as in the proof of [5, Theorem 3.3] to show that each
T;(t) is a well defined linear operator on X; with 7;(0) = I. Moreover, by (3.2) and (3.18)
we also obtain, for each ¢ > 0, that

(@) (T5(0)2) = (4))(Ti(O)Q5) = (4j)r)(Q;T(t))
< e (T(t)w) < e i (@),
for all & € X; and € X with Qo = 2. Taking the infimum with respect to z € Q;l(.%)
it follows that
(@)k() (T(0)E) < e™()ni(2), 2 € X, (3.20)
and hence, since (§;)x(;) is the norm of X, that T;(¢) € £L(X;). In particular, (Tj(t))i>0 €

L(X;) is a—exponentially equicontinuous. Moreover, for each ¢ > 0 and & € X; with
Z = Qjz, we have via (3.2) and (3.19) that

@)k (T3 (D)2 = &) = (4)a) (T3 (D) Q52 — Q)

= (4)r()(Q;(T(t)x — x)) < gy (T(t)r — ),
and so0, (qj)r)(T;(t)E — ) — 0 as t — 07 as (T'(t))i>0 is a Co-semigroup. Since &
is arbitrary, (7}(t))i>0 is also a Cp—semigroup. According to [6, Remark 1(iii)] the Cp—
Tjt(t) — 0 for

the operator norm in £,(X;) as t — oo. Indeed, since X is a quojection, if Bj denotes the
closed unit ball of the Banach space X, then by [18, Proposition 1] there is B; € B(X) so

that B; C Q;(B;). Tt follows from (3.19), for the operator norm in £y(X;), that for each
t > 0 we have

' fEBj
1 1

< sup ;(Qj)k(j)(Tj(t)@) = sup E(‘jj)k(j)(Tj(t)ij)
{i’EQ]'(Bj) IEGB]'

1 1
= sup ;(QJ)k(j)(QjT(t)x) < sup EQk(j)(T(t)x)-
J’,‘EB]' J?EB]'

semigroup (75(t))s>0 is strongly continuous at every point ¢t > 0. Moreover,

B = sup S @ (100

Since sup,ep, %qk(]-)(T(t)x) — 0 as t — oo, this implies that ‘

TjT(t)HﬁOast%oo.
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Denote by (Aj, D(A;)) the infinitesimal generator of (Tj(t))i>0. It follows from (3.19)
that the family {R(\, 4;)}acc,re(n)>0 € £(X;) of resolvent operators of (A;, D(A;)) exists
and satisfies

R()\,Aj)Qj = QjR(A, A), A eC, Re()\) >0 (3.21)
in £(X, X;). Next, for each r > 0, define
1 T
(1) = r/ Ti(s)ids, &€ X,
0

and observe that by (3.19), the continuity of @;: X — X, and [6, Proposition 11(vi)|, we
have

Cij(r)Qjz = 71’/0 Tj(s)Qjx ds = :’/0 Q;T(s)xds
= Q <i /T T(s)x ds> =Q;C(r)z, zelX. (3.22)
0

To see that C;(r) — 0 in Ly(X;) as r — oo, choose Bj € B(X) such that B; € Q;(B;).
For each r > 0, it follows via (3.2) and (3.22) that

sup (4;)k(j) (Cj(r)2) < sup  (Gj)r(j)(C5(r)2) = sup (G;)r(;) (Cj(r)Q;z)

i€B; 2€Q;(Bj) z€B;
= sup () (Q;C(r)z) < sup gu(;)(C(r)z).
Iij .TEB]'

But, sup,ep, qr(j)(C(r)z) — 0 as r — oo by assumption. So, it follows that
1C5(r) |l = sup (4)r(;) (C;(r)E) = O
zeB;
as r — 00, i.e., Cj(r) — 0 in L£4(X;) as » — oo. According to |34, Theorem 12| we have
that ||[(AR(X, 4;))"|| — 0 in £4(X;) as n — oo for (some) every A > 0. Since j € N is
arbitrary, it follows that (AR(A, A))" — 0 in Ly(X) as n — oo for (some) every A > 0.
Indeed, by (3.21) we have (in £(X, X;)) that

Qi(AR(N, A)" = AR(A, A))Q;(AR(N, A))" ! = ... = (AR(N, 4;))"Q;,

for j,n € N and (some) all A\ > 0. Fix any j € N and B € B(X). The previuos identity
and (3.3) yield

sup ¢j(AR(X, A))"z) = sup(q;);(Q;(AR(A, A))"x) = sup(q;);(AR(A, 4;))" Q)

z€B z€EB z€B
< sup () (AR(A, 45))"%), neN,
iEQj(B)

for (some) all A > 0, where supzcq. (B)(4j)r(j) (AR(A, A4;5))"E) — 0 as n — oo for (some)
every A >0 as Q;(B) C ijj for some d; > 0 by the continuity of Q;: X — Xj.

As j € N and B € B(X) are arbitrary, we obtain that (AR(A, 4))” — 0 in £(X) as
n — oo for (some) every A >0 .

(6)=(3). Let A > 0 be such that P := 7-lim, oo (AR(A, A))" exists. By Remark 3.1
also P = 7-limy, 00 (R(A, A))f). This is precisely condition (3).

(1)=(7). Because of (1)=(2) we have ImA = ImA. Then (2.18) implies that ImA is
a complemented subspace of X and hence, ImA is a quojection Fréchet space (as X is a
quojection Fréchet space).

Fix y € ImA. Then, for each A > 0, we can write R(A\, A)y = —z + AR(\, A)x for some
x € D(A) satistying Az = y. Since (1)=-(5), the limit of the net {AR(X, A)}o<r<), exists
in Ly(X) as A} 0T (for some \g > 0). In particular, z := limy_,o+ AR(\, A)z exists in X.
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So, for a given p € TI'x, there is X = X (z,p) € (0, \g] such that p(AR(A\, A)x — z) < 1 for
all 0 < A < X. Tt follows that

(RN A)y) = p(—z+ AR\, A)z) < p(x) + p(AR(X, A)x — 2) + p(2)
< p@)+p(z)+1, 0<A<N. (3.23)

On the other hand, by the equicontinuity of {R(\, 4) : A > X'} (¢f. Remark 2.4(i) and
Proposition 2.3) there exist M, > 0 and ¢ € I'x such that p(R(\, A)u) < Myq(u), for
u € X and A > ). In particular,

P(R(A, A)y) < Mpg(y), X' < X < Xo. (3.24)

By (3.23) and (3.24) we see that supyc(o ., P(R(A, A)y) < oo. As p is arbitrary, this
implies that {R(\, A)y : X € (0, \o]} € B(X).

(7)=>(2). By assumption Y := ImA is a quojection Fréchet space and {R(\, A)y: X €
(0, Mo]} € B(X) for every y € Y and some fixed Ao > 0. Then (T'(t)]y)i>0 is a locally
equicontinuous Co-semigroup on Y whose infinitesimal generator (A, D(A;)) is given by
Az == Az for x € D(A;) := D(A)NY and with the resolvent operator R(\, A1) =
R(\, A)|y for every X\ € p(A); see Remark 2.14. Moreover, 7-limy_, o % =0.

Since {R(\, A1) : A > Ao} is equicontinuous (apply Remark 2.4(i) and Proposition 2.3
to (T(t)|y )e>0), it follows that {R(\, A)y : A >0} = {R(\, A1)y : A > 0}, being the union
of two bounded sets, belongs to B(Y) C B(X) for every y € Y. This implies that the net
{AR(\, A1) }oca<n, converges to 0 in L£p(Y) for A | 0F. Indeed, fix B € B(Y) and p € I'y..
Then pp is a continuous seminorm in £,(Y) and C := UysoR(\, A1)(B) is bounded in Y.
Set M := sup.cc p(c) < oo. Given any € > 0, select X' > 0 such that A < min{Xg,e/M}.
Then, for any A € (0, \) it follows that

pe(AR(X, A1) = sup p(AR(A, A1)z) < Asupp(c) < AM <e.
z€B ceC
The arbitrariness of B, p and e implies that 7,-lim) o+ )\R()\,fll) = 0 in Lp(Y), i.e.,
(T'(t)]y )e>0 is uniformly Abel mean ergodic in Y.

Since Y is a quojection Fréchet space, we can apply (5)=(2) to (T'(t)|y )¢>0 to conclude
that Imfll is closed in Y and so, Imfh =Y. Thus, we have Y = Imfll CImACY,ie.,
Y = ImA. This means that ImA is closed in X, which is precisely condition (2). U

Remark 3.3. In the proof of (1)=(6) in Theorem 3.2, with P := 7-lim,_,o C(r), it
was shown, for each A > 0, that (AR(X, A))"|pix(r(.)) = Plrix(r()), for all n € N, and so
(AR(X, A))™ — P for n — oo (relative to 1) on Fix(7'(-)) = ImP. It was also proved that
(AR(X, A))™ — 0 for n — oo (relative to 7)) on ImA = ImA = Ker P. Hence, for each
A > 0, the limit of {(AR(X, A))"}5° in Ly(X) is actually the projection P € L(X).

n=1

A prequojection is a Fréchet space X such that X” is a quojection. Every quojection is
a prequojection. A prequojection is called non—trivial if it is not itself a quojection. It is
known that X is a prequojection if and only if X [/3 is a strict (LB)-space. An alternative
characterization is that X is a prequojecton if and only if X has no K&éthe nuclear quotient
which admits a continuous norm; see [12, 17, 40, 45]. This implies that a quotient of a
prequojection is again a prequojection. In particular, every complemented subspace of
a prequojection is again a prequojection. The problem of the existence of non-trivial
prequojections arose in a natural way in [12]; it has been solved, in the positive sense,
in various papers, [13], [17], [39]. All of these papers employ the same method, which
consists in the construction of the dual of a prequojection, rather than the prequojection
itself, which is often difficult to describe (see the survey paper [36| for further information).
However, in |37] an alternative method for constructing prequojections is presented which
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has the advantage of being direct. For an example of a concrete space (i.e., a space of
continuous functions on a suitable topological space), which is a non—trivial prequojection,
see [1].

The following extension of Theorem 3.2 is relevant for non—trivial prequojection Fréchet
spaces.

Proposition 3.4. Let X be a prequojection Fréchet space and (T'(t))i>0 € L(X) be a

uniformly continuous Cy—semigroup satisfying Tp-lim; oo @ = 0. Then the infinitesimal
generator A of (T'(t))i>0 belongs to L(X). Moreover, the following assertions are equiva-

lent.

(1) The semigroup (T'(t))i>0 is uniformly mean ergodic.

(2) ImA s a closed subspace of X.

(3) The operator AR(\, A) is uniformly mean ergodic for every A > 0.

(4) The operator AR(\, A) is uniformly mean ergodic for some A > 0.

(5) The semigroup (T'(t))i>0 is uniformly Abel mean ergodic.

(6) The sequence of iterates {(AR(X, A))"}>2, converges in Ly(X) for (some) every
A>0.

(7) TmA is a prequojection and there exists g > 0 such that

(RO Ay ye (0,0]) € B(X), yeTImA.

Proof. According to Remark 2.2(ii) the semigroup (7'(t))+>0 is locally equicontinuous. Fur-
thermore, Remark 2.4(ii) implies that (7°(¢));>0 is exponentially equicontinuous. Then [5,
Proposition 3.4] yields that A € £(X).

The proofs of (2)<(3)<(4), (1)=(5), (2)=(1) and (6)=-(3) are exactly the same as in
Theorem 3.2 after taking into account that Theorem 3.4 of [8] is also valid in prequojection
Fréchet spaces.

In order to establish (5)=-(2) and (1)=-(6) we first observe, since X is a prequojection
Fréchet space, that X is a barrelled strict (LB)-space (being the strong dual of a quasi-
normable Fréchet space) and X" is a quojection Fréchet space. Moreover, X is complete,
[29, §28, 5(1), p.385]. Applying twice Lemma 2.15, we conclude that (T'(t)");>0 C L(X")
is a uniformly continuous Cy-semigroup satisfying 7-limg—,c0 %)N = 0. It follows from
Lemma 2.15 (which ensures that (7'(t)"):>0 is a locally equicontinuous, uniformly continu-
ous Co-semigroup on X satistying 7,-lim;— oo %ﬂl = 0), the formula (2.17) and a standard
duality argument (based on properties of the Riemann integral, [5, Proposition 11]|) that
the Cesaro means of (T'(t)")i>0 are precisely the dual operators {C(r)'},>0 of {C(r)}r>0.
Repeating the argument it follows that the bidual operators {C(r)”},>¢ form the family
of Cesaro means of (T'(t)");>0. Of course, A” € L(X") is the infinitesimal generator of
(T(t)")i>0. Applying Proposition 2.3, Remark 2.4(i) and Lemma 2.15 to (T'(t))¢>o and
(T(t)" )0 yields Co+ C p(A) N p(A”) and R(\, A)” = R(\, A”) for every X € Cy+. Now
we can proceed with the proof of further equivalences.

(5)=(2). Let P := 7mp-limy o+ AR(A, A). Since X is barrelled, it follows by applying
Lemma 2.1 of [3] twice that AR(\, A”) = AR(\, A)” — P" in L,(X”) as A — 0T. Hence,
(T'(t)")i>0 is uniformly Abel mean ergodic. Proposition 2.12 applied to (T'(t)");>0 shows
that P” is the projection of X" onto Ker A” = ImP” = Fix(T(-)").

Since X" is a quojection Fréchet space, we can apply Theorem 3.2 to conclude that
the Cesaro means {(R(1, A"))j,}n2; converge in £,(X5). As X is an invariant subspace
for R(1,A)” = R(1,A”) and bounded subsets of X are bounded in X", it follows that
{(R(1, A)) ) 1oy converges in Ly(X), i.e., condition (4) holds. But, (4)<(2) and so (2)
holds.
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(1)=(6). Let Q := 1p-lim,_,o0 C(r). Again by Lemma 2.1 of 3], applied twice, it follows
that C(r)" — Q”, in L(X") as r — o0, i.e., (T'(t)")t>0 is uniformly mean ergodic. Since
X" is a quojection Fréchet space, we can apply Theorem 3.2 and so Remark 3.3 to conclude
that (AR(\, A”))" — Q" in Ly(X") as n — oo for every A > 0. As X is an invariant sub-
space of R(\, A)" = R(A\, A"), for every A > 0, it follows that {(AR(X, A))"}72; converges
in £,(X) to Q, i.e., condition (6) holds.

So, we have established that all equivalences (1)<(2)< ... <(6) are available for
()0

(1)=-(7). Using the availability of all equivalences just mentioned for (7'(¢));>0 and the
fact that a complemented subspace of a prequojection Fréchet space is again a prequojec-
tion Fréchet space (in place of the same fact for quojection Fréchet spaces), the same proof
as for (1)=-(7) in Theorem 3.2 applies again.

(7)=(2). By assumption Y = ImA is a prequojection Fréchet space. The same proof
as for (7)=(2) in Theorem 3.2 shows that (7'(t)|y)¢>0 is uniformly Abel mean ergodic in
Y. Now, apply (5)=-(2), which is available in the prequojection Fréchet space setting, to
conclude that (2) holds (as in the proof of (7)=-(2) in Theorem 3.2). O

Remark 3.5. The assumption that (7'(t)):>0 is a uniformly continuous Cp—semigroup is
needed to guarantee that the dual and bidual semigroups (T'(t)");>0 and (T'(¢)")i>0 are
also (uniformly continuous) Cp—semigroups on X é and X" resp. Recall that in general the
dual semigroup of a strongly continuous Cyp—semigroup need not be a Chy—semigroup, even
in Banach spaces.

A lcHs X is a Grothendieck space if sequences in X’ which are convergent for o(X’, X)
also converge for o(X’, X”). Reflexive lcHs’ are Grothendieck spaces. A lcHs X has the
Dunford—Pettis property (briefly, DP) if every element of £(X,Y), for Y any quasicomplete
lcHs, which transforms elements of B(X) into relatively o(Y,Y’)—compact subsets of Y,
also transforms o (X, X')—compact subsets of X into relatively compact subsets of Y, [22,
pp.633-634|. It suffices if Y runs through all Banach spaces, [16, p.79]. A reflexive lcHs
has the DP property if and only if it is Montel, |22, p.634|. A Grothendieck lcHs X with
the DP property is called a GDP-space. Every Montel IcHs is a GDP-space, [16, Remark
2.2], |3, Corollary 3.8]. For further information on non—normable GDP-spaces we refer to
[3], [10], [16].

Corollary 3.6. Let X be a prequojection GDP-Fréchet space and (T(t))i>0 C L(X) be a

locally equicontinuous Co—semigroup satisfying p-limy_ oo @ = 0. Then its infinitesimal

generator A € L(X). Moreover, all seven assertions in Proposition 3.4 are equivalent.

Proof. Since X is a GDP-Fréchet space, the semigroup (T'(t))>0 is necessarily uniformly
continuous, [6, Theorem 7]. So, the result follows from Proposition 3.4. O

Example 3.7. The validity of Theorem 3.2 and Proposition 3.4 remains confined to the
setting of prequojection Fréchet spaces. Indeed, consider the semigroup (T'(t))i>0 con-
structed in [5, Example 3.1| and acting in the nuclear Fréchet space A;(B). More precisely,
let B = (an(7))inen be a Kéthe matrix, i.e., 1 < an(i) < any1(2) for all ,n € N. Then the
space

M (B) = {x = (2i)ien € CV: pp(z) = Zan(z)]mz\ < o0, Vn € N}
1€N
is Fréchet relative to the le-topology generated by the sequence of norms {p,}>> ;. Choose

B such that A\1(B) is nuclear, i.e., (aai(li()i)> N € (! for all n € N (pass to a subsequence
n i€

if necessary), in which case A\1(B) is not a prequojection. Let u = (p;);en be a sequence
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of real numbers with each p; > 0 and lim;_,o 1; = 0. For each t > 0 let T'(t) € L(A1(B))
defined by T(t)z = (e Mi'z;)jen for x € A\ (B). Then (T(t))i>0 is an equicontinuous
(in particular, 7p-limy_ oo y = 0), uniformly continuous Cp—semigroup on Ai(B) with
infinitesimal generator (A, D(A)) given by Az := (—pu;z;)ien for x € D(A) = {xz € \(B) :
ez = (ii)ien € A1(B)}. Moreover, A is clearly injective and ImA is a dense subspace of
A1(B). Indeed, {e;}32; C ImA where e; denotes the element of A1(B) with a 1 in the j-th
coordinate and 0’s elsewhere and so span{e;}72, is dense in A1(B). So, there exists the

closed, densely defined linear operator A~': ImA — D(A) given by A~ 'z = (—}%:Q) N
i /)ie

for x € ImA. In particular, if u grows fast enough (eg., u; = z;zl ap (i) for i € N), then
D(A) is a proper dense subspace of A\i(B) because (1/p)ieny € M1 (B) \ D(A).

The semigroup (7'(t))s>0 is mean ergodic (hence, uniformly mean ergodic as A(B) is
nuclear and thus Montel) because 7s-lim,_,o, C(r) = 0 via equicontinuity of {C(r)},>0 (as
(T'(t))e>0 is equicontinuous), [6, Remark 4(ii), Remark 5(i), (iii), (v)]. So, condition (1) of
Theorem 3.2 holds. By [7, Theorem 5.5(i)] also condition (5) of Theorem 3.2 holds.

We claim that 7p-lim, 00 (AR(A, A))™ = 0 for every A > 0, i.e., condition (6) of Theorem

3.2 holds. Indeed, fix any A\ > 0. Then AR(\, A)x = (ﬁxJ . for x € A\i(B), and
NVATS

so [AR(N, A)|"x = <<ﬁ>nmz> . for each € A\;(B) and n € N. Now, fix z € \{(B).
i ic

Given k € N and ¢ > 0, there exists i9 € N such that >, ax(i)|zi| < ¢/2 and so also

D isiy @k(1) ‘(ﬁ)nxl < g/2 for every n € N as 0 < ﬁ

. no
the other hand, there exists ng € N such that > :° ax(7) ’( A ) T

< 1 for each 7 € N. On

e < £/2 because

oo

n n
lim,,— o0 (ﬁ) =0 for all 1 < i <. Since the sequence {(ﬁ) } is decreasing,

n=1

for ecach 1 < i < ip, it follows that Y29 ay(4) (ﬁ)nxz < ¢/2 for all n > ng. So,
pr((AR(A, A))"x) < e for all n > ng. The arbitrariness of k and € > 0 yields that 75-
limy, 00 (AR(A, A))™ = 0 and hence, that 7-lim,, o0 (AR(A, A))™" = 0 as A\1(B) is Montel.

On the other hand, ImA is dense in A;(B) but not closed, i.e., condition (2) of Theorem
3.2 fails to hold. Indeed, in case ImA is closed, we have ImA = A1 (B) and so A™1: \{(B) —
D(A) (with A=t continuous by the Closed Graph Theorem). Thus, A= (1/u) = (—1)en €
D(A) C A\ (B) which is not the case.

4. APPLICATIONS

The purpose of this section is to present some relevant examples of semigroups act-
ing in quojection Fréchet spaces and to determine whether or not they are mean er-
godic/uniformly mean ergodic.

4.1. A semigroup of multiplication operators in C(R). Let X = C(R) be the space
of all C-valued continuous functions on R with the compact open topology. Then X is
a quojection Fréchet space and its lc—topology is generated by the increasing sequence of
seminorms defined by

a(f) = sup |f(z)], fe€X,
je|<k

for k € N. Let ¢ € X\{0} be R-valued and consider the multiplication operator A: X — X
defined by
Af =of, [eX.
Recall that S € L£(X), with X any lcHs, is power bounded if {S"}peny C L(X) is

equicontinuous.
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Proposition 4.1. The following properties hold for A.
(1) Ae L(X).
(2) A"f =¢"f foralln € N and f € X.
(3) A is power bounded if and only if p(R) C [—1,1].
(4) If o(z) # 0 for every x € R, then A is surjective.
(5) The resolvent operator R(\, A) exists in L(X) if and only if X & p(R). Equivalently,

p(A) = C\ p(R).
(6) (A, X) is the infinitesimal generator of the uniformly continuous Co—semigroup
(T(t)>0 on X given by T(t)f = e f for allt >0 and f € X.
(7) (T'(t))e=0 is equicontinuous if and only if p(R) C (—o0,0].
(8) (T'(t))e>0 is exponentially equicontinuous if and only if there exists L > 0 such that

o(x) < L for every x € R.

Proof. 1t is routine to verify that (1) and (2) are valid.
(3) Suppose that |p| < 1. By part (2) we have
qe(A"f) = sup |(p(x))" f(z)| < sup |f(z)| = q(f), [feX, neN,
|z|<k || <k
for each k € N. Hence, {A"},cn is equicontinuous, i.e., A is power bounded.

On the other hand, suppose there is some xg € R such that |p(zg)| > 1. Choose kg € N
such that xg € [—ko, ko] and let fo =1 € X. Then |(¢(x0))"| < g, (A" fo) for all n € N
and so sup,, ¢k, (A" fo) = o0, i.e., {A"fo : n € N} & B(X). Accordingly, {A"},en is not
equicontinuous, i.e., A is not power bounded.

(4) Fix any g € X. Since ¢(z) # 0 for every x € R, we can define f := g/¢ pointwise
on R. Then f € X and satisfies Af = g.

(5) Let A € C. Suppose that A € p(R). Then the operator of multiplication by 1/(A—¢),
namely

S
RN A)f e feXx, (4.1)
is clearly linear and satisfies R(A\, A)(A — A) = (A] — A)R(\, A) = I on X. Continuity
follows from gqr(R(A, A)f) < Mp(A, A)ge(f), for f € X and k € N, with Mi(\ A) =
max|z| <k 1/|)\ — (p(:I))’ < 00.

On the other hand, if R(\, A) € L(X) exists, i.e., R\, A)(AM[—A) = (AM—-A)R(\, A) =
on X, then for the constant function fy = 1 on R we have (A — A)fo = (A — ¢) and so
(A= @)R(X\, A) fo = fo. Consequently, A & ¢(R).

(6) We first show that (T7'(t)):>0 is a locally equicontinuous, uniformly continuous Cp—
semigroup on X. Clearly, it is a semigroup.

Fix k € Nand B € B(X). Then T(t)f — f = (¢ — 1)f, for t > 0 and f € B, and
ag(B) = supsep qr(f) < co. Moreover, for ¢t > 0 we have

sup g (T(8) f — f) = sup sup [e"?) — 1] - |f(x)|
feB feB |z|<k
< a(B)gr(e"¥ — 1) < ay(B) - (e"*¥) — 1),
Since lim; g+ (€'%(?) — 1) = 0, this ensures that supcp qp(T(t)f — f) — 0 as t — 0. By

the arbitrariness of k and B we conclude that 7-lim;_,o+ 7(t) = 1.
Fix R > 0. Then, for every k € N, f € X and all ¢t € [0, R], we have

ae(T(t)f) = sup |°@ f(2)] < gr(f) sup ™) < Ful@lg, (f).

z|<k z|<k

This implies that the semigroup (7°(¢))+>0 is locally equicontinuous. Since 7,-lim; g+ T'(t) =
I, it follows from the discussion prior to Remark 2.2 that (7°(¢))¢>0 is uniformly continuous.
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Now if f € X, then T(t)tf_f = ewtflf for all t > 0 and so,
Tt)f— o—1-—1t
r@A)f—f Af = (630
t t
Let k € N. Then, for every f € X and ¢ > 0, we have

_ @) _ 1 — to(x
o (L ) = o () g

x| <k t

>f, t> 0.

et?@) — 1 — to(z)
t

< qi(f) sup < tlar ()2 qp (f).

|z|<k

This implies that g (% — Af) — 0 as t — 07. Hence, (A4, X) is the infinitesimal
generator of (T'(t))¢>o.

(7) Let p(z) < 0 for all z € R. Then () < 1 for all ¢t > 0 and = € R. It follows, for
every k € Nand f € X, that

ar(T()f) = sup [ f(z)] < g (f) sup ) < gi(f).
|| <k |z|<k
So, (T'(t))+>0 is equicontinuous.

Conversely, suppose that (T'(t)):>0 is equicontinuous. Then {T'(¢)f : ¢t > 0} € B(X) for
every f € X and hence, sup;> [(T(t)f)(z)| < oo for every f € X and z € R. If p(xg) >0
for some ¢ € R, then the choice fy =1 € X yields

sup e"?(*0) = sup |(T(t) fo) (z0)| < o0
>0 >0
which is not the case. Therefore, p < 0 for all z € R.
(8) Let ¢(x) < L for all x € R and some L > 0. Then et?(@) < oLt for all t > 0 and
x € R. It follows, for every k € N and f € X, that
ar(T(1)f) = sup [ f(2)] < qi(f) sup ) < ePgy(f).
|z|<k |z| <k
So, (T'(t))e>0 is exponentially equicontinuous; see Definition 2.1.

Suppose now that (7'(t))¢>0 is exponentially equicontinuous in which case there is a > 0
such that, for each h € N there exist £ € N with k¥ > h and M}, > 0 for which

an(T(t) f) < Mpe™qi(f), feX, t>0.

Suppose that ¢ is not bounded from above, i.e., there is a sequence (zy,)neny C R such that
o(xy) >n for all n € N. Let ng := [a] + 1, ho := [|zn,|] +1 and fo =1 € X. Then

Gho (T'(t) fo) = ‘S|u12 |et“"(m)| < Mhoeatqko(fo) = Mhoe“t, t>0.
z|<hg

Since |zn,| < ho, we would have e*?(#n0) < My, e, for t > 0, which is not the case as

©(Tny) > no > a. So, ¢ must be bounded from above. O
Remark 4.2. In the setting of Proposition 4.1 the semigroup (7'(¢)):>0 is equicontinuous
if and only if 7y-limy—ye0 T = 0 if and only if 7e-limye0 o =

Indeed, if (T'(t))¢>0 is equicontinuous, then it is routine to verify that 7,-lim;— o M _

t
(hence, also in Ls(X)).

On the other hand, assume that 74-lim o @ = 0, in which case limy_,o —3— =

in X (with fo = 1 € X) and hence, also pointwise on R. That is, limy_,o eti(z) = 0 for

Tt)fo _




26 A. A. Albanese, J. Bonet and W.J. Ricker

each x € R. This implies that ¢(z) < 0 for every € R and hence, that (T'(t))>0 is
equicontinuous; see Proposition 4.1(7).

Since the point evaluations f — f(u), f € X belong to X’ for each u € R, it follows

that the vector valued Riemann integral 1 fo (t)f dt in X is precisely the function x —
1 fo x)dt = f(z )1 OT to(@) dt, for = € R, i.e., the Cesaro means of the semigroup

(T(t))tzo are glven by

I By s f@) 5t o) #
C(r)f)(z) = fz)- w0 d )
(C(nN)() = fl2) /0 = { f(z), ) =

0,
4.2

o u)

for each f € X and r > 0.

Proposition 4.3. If ¢(xo) > 0 for some ¢ € R, then (T'(t)):>0 is not mean ergodic.

Proof. Suppose that (T'(t))t>0 is mean ergodic. Then for fo = 1 € X, the limit g :=
lim, o C(r) f exists in X. In particular, (4.2) implies that

i (O i ere(zo) _ 1 1 i ere(zo) _ 1
g(xU) = TLI&( (T')f)(.ivo) = rggo 7“(,0(1’0) - ()0(1,0) rggo f = 00,
which is a contradiction. So, (T'(t))+>0 cannot be mean ergodic. O

Proposition 4.4. Suppose that o(x) < 0 for all x € R, i.e., (T'(t))t>0 is equicontinuous.
Then the following conditions are equivalent.

(1) o(A) C (—o0,0).

(

I .
ImA is closed.
(T'(t))t>0 is uniformly Abel mean ergodic.

(T'(t))t>0 is Abel mean ergodic.

Proof. (1)<(2). This follows from the assumption ¢ < 0, i.e., p(R) C (—o00,0], and the
identity o(A) = ¢(R); see Proposition 4.1(5).

(2)=-(5). This is immediate from Proposition 4.1(4).

(5)=-(6). This is obvious.

(6)=(3). Since p(x) < 0 for all z € R, by Proposition 4.1(6) (T'(t))¢>0 is an equicon-
tinuous Cp—semigroup on X with infinitesimal generator (A, X). Remark 4.2 ensures that
Tp-limy_s oo @ = 0. Hence, Theorem 3.2 implies that (7'(¢))¢>0 is uniformly mean ergodic.

(3)=(4). This is obvious.

(4)=(2). Suppose that there is 9 € R with ¢(xzp) = 0. Since ¢ Z 0 on R, we may
assume that z is a boundary point of ¢~1({0}). Hence, there exists (zj)ren C R such
that limy_, oo x = 2o in R and ¢(z) < 0 for all k € N.

Since (T'(t))>0 is mean ergodic and fo = 1 € X thereis g € X such that lim,_,. C(r) fo
g exists in X and hence, also pointwise on R. Thus, by (4.2) it follows that

erel@e) 1 1 o ervl@r) 1

o) = Jim (C(r)fo)(ax) = Jim 5 = s lim S =0

for k € N, and that

g(zo) = lim (C(r) fo)(xo) = fo(wo) = 1.
This is a contradiction as ¢ is a continuous function on R and limy_,. xx = 2o in R. So,
p(x) <0 for all x € R.
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(6)<(7). This follows from (2)<(4) in Theorem 3.2.
(7)=(8). This is obvious.
(8)=-(4). See [7, Theorem 5.13]. O

Corollary 4.5. If p(z) <0 for all x € R and ¢(x0) = 0 for some xg € R, then ImA is
not closed in X.

Proof. This is a consequence of (2)<(6) in Proposition 4.4. O

4.2. The translation (semi)group on C(R). We now consider, in the quojection Fréchet

space X = C(R), the 1-parameter group of translation operators (T'(t))icr defined by
Tt)f(z):=f(z+t), feX, zeR tekR

Proposition 4.6. The following properties hold for (T'(t))icr-

(1) (T(t))ier is a strongly continuous Co—group on X.
(2) (T(t))ier is not exponentially equicontinuous. In particular, @ 4 0in Ls(X) as

t — oo.

(3) For each f € C*(R) set Af := f'. Then (A, C(R)) is the infinitesimal generator
of (T(t))ser-

(4) The operator A : D(A) — C(R) is surjective, but not injective (with D(A) =
CH(R)).

(5) o(A) = C with every point of 0(A) an eigenvalue of A.

Proof. (1) Clearly (T'(t))ier € L£(X) is a group. Moreover, for each R > 0 and k£ € N we
have

w(T()f) = sup |[fz+ D) < sup  [f(Y)] = qeira(f), [ X, [t <R,
jal <k [yl <k-+[RI+1

which shows that (T'(t)):cr is locally equicontinuous.
Fix f € X and k € N. Then

aw(TH)f =)= ‘STlfk!f(Jert) —f@)l, teR.

Since f is uniformly continuous in [~k — 1,k + 1] we have supj, < |f(z +t) — f(z)| = 0
as t — 0, from which it follows that ¢x(T(t)f — f) — 0 as t — 0. The arbitrariness of k
and f now imply that (T'(¢))ier is a Co—group on X. The strong continuity of (T'(t)):er
follows from the discussion prior to Remark 2.2.
(2) Let fo(z) = *” for all # € R. Then fy € X and
Q(T(t)fo) = sup ™" = 07 ¢ > 0,
lz|<1

—at6(1+t)2

with sup;>ge = oo for every a > 0. So, (T(t))ier is not exponentially equicon-

tinuous. In particular, y 4 0in L4(X) as t — oo via Remark 2.4(ii).

(3) Let f € CY(R). By the mean value theorem, for each k € N, t # 0 and z € [k, k]
there exists x; € R between with « and x + ¢ such that

T (T(t)]tc — f _ f/> _ ISI‘l<pk f($+t) — f(SL’) _ f’(x)

t
with supj, <y [f'(z¢) — f'()] — 0 for t — 0 as f’ is uniformly continuous on compact
subsets of R. It follows that g (% — f’) — 0 ast — 0. Thus, f' € D(A) and
Af = f

= sup |f'(x) — f(2)],

|lz|<k
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Conversely, let f € D(A). Then, for a fixed zp € R and with ko := [z9] + 1 we have

f(zo+1t) — f(zo)
t

—Af(»’l?o)‘ < iy (T(t){_f —Af> .0 <|t] < ko — .

Since g, (% —Af) - 0ast — 0, it follows that w — Af(xg) — 0 as

t —0,1i.e., f'(zg) = (Af)(xo) exists. By the arbitrariness of xg we conclude that f’ exists
and f' = Af € X, ie., f € CY(R).
(4) The operator A is not injective because Ker A = {f € X : f constant function on R}.
Let g € X. Then the function f € C(R) defined by

f(zx) ::/ g(t)dt, xz€eR,
0
belongs to C'(R) and f’ = g on R. So, f € D(A) and Af = g. Hence, ImA = X ie., A

is surjective.
(5) Let A € C. Then the function fy(z) := e, for x € R, belongs to D(A) and
Af = fy = Afa. So, fy is an eigenvector of A. Thus, o(A) = C. O

Since the evaluation functionals at points of R belong to X', it follows that the Cesaro
means of the group (T'(t));er are given by

(C(r)f)(z) = i/orf(as—i—t)dt, feX, r>0, zeR. (4.3)

As noted in Proposition 4.6(2) the translation group (T(t))er fails to satisfy the con-
dition 7-lim;—se y = 0 and so Theorem 3.2 is not applicable to (T'(¢))ier. According
to Proposition 4.6(5) we have p(A) = () and so the notion of Abel mean ergodicity is not
available at all! Nevertheless Proposition 4.6(4) shows that ImA = X is closed and from
Af = f' for f € CY(R), we see (from the proof of (4)) that Ker A consists of the constant
functions. In particular, ImA N Ker A # {0} and so X # ImA @ Ker 4, i.e., (2.18) fails
to hold. On the other hand, Ker A = Fix(T'(-)) is valid. In view of these observations the

following result is expected.

Proposition 4.7. The group (T(t))ier is not mean ergodic.

Proof. Let f € X be given by f(x) = e*, x € R. Tt follows from (4.3) that (C(r)f)(z) =
w for z € Rand r > 0 and hence, that ¢:(C(r)f) = @ Since sup,~qq1(C(r)f) =
00, the set {C'(n)f : n € N} € B(X). It follows that {C(r)},>0 cannot be convergent in
Ls(X) ar r — o0, i.e., (T'(t))icr is not mean ergodic. O
4.3. A semigroup of multiplication operators in L! (R). Let X = L (R), 1 <

p < oo. Then X is a reflexive quojection Fréchet space with respect to the le—topology
generated by the increasing sequence of seminorms

ar(f) == </k If(x)l”dx>1/p, feX, keN.

—k
Let ¢: R — (—o0, 0] be a continuous function and consider the linear operator A: D(A) —
X defined by
Af :=¢f, feDA):={feX: of € X}.

Proposition 4.8. The following properties hold for (A, D(A)).

(1) D(A) =X and A € L(X).

(2) A" f = "f foralln e N and f € X.

(3) A is power bounded if and only if p(R) C [—1,0].
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(4) If o(R) C (—00,0), then A is a bijection of X onto itself. In particular, A™1 €
L(X).
(5) (A, X) generates the equicontinuous, uniformly continuous Co—semigroup (T'(t))i>0
given by
T(t)f =€¥f, t>0, feX.

(6) The semigroup (T'(t))i>0 is mean ergodic.

Proof. 1t is routine to check (1); simply use gx(Af) < (sup|y < [¢(2)])gr(f) for each f € X
and k£ € N.

Property (2) is clear.

(3) Suppose that ¢(R) C [-1,0]. Then, for each k € N, we have

aw(A"f) < qu(f), feX,neN,

and hence, A is power bounded.

Conversely, suppose that ¢(xg) < —1 for some g € R. As ¢ is continuous there exist
a < —1 and an open interval J(xg) containing xg such that ¢(x) < « for all x € J(xo).
Choose k € N such that J(xo) C [k, k] and let fo =1 € X. Then

1/p
ar(A" fo) > (/J( )|<p(:c)|"l’|f0(:c)yp> > [a|"[u(J (20))]'/?, n €N,

with g denoting the Lebesgue measure. Since |a| > 1, it follows that sup,,cy gk (A" fo) = oo,
ie., {A" fo}nen € B(X). Hence, {A"},,en is not power bounded.

(4) Fix g € X. Since p(z) # 0 for all x € R, the function 1/¢ € C(R). Then
f = g/p € X and satisfies Af = g. So, A is surjective. Let f € X \ {0}. Then
there is a measurable subset B C R with p(B) > 0 such that f(z) # 0 for all z € B.
Hence, also p(z)f(x) # 0 for all z € B, i.e., Af # 0in X and so A is also injective.
Since A~': X — X is a closed operator (because of part (1)), the Closed Graph Theorem
ensures that A~! € £(X).

(5) We first show that (7'(¢));>0 is a Cp—semigroup on X. It is clearly a semigroup. Fix
f € X and k € N. Then, with aj(¢) := max, < |¢(z)| < oo, we have for each t > 0 that

k 1/p
w(TWOf ) = ( / kl(et“”(z)—l)f(fﬂ)lpdw) < (sup %) — 1)gu(/)

|z|<k
< tag(p)e Py (f). (4.4)
This implies that qx(T(t)f — f) — 0 as t — 07. By the arbitrariness of k, it follows that
limy 04 T'(t) f = f. So, (T'(t))e>0 is a Co—semigroup on X.
Moreover, p(R) C (—o0,0] implies that e?#(®) <1 for all z € R, t > 0 and so
a(T(t)f) < (sup [P )agr(f) < qr(f), feEX, t>0,
z|<k

i.e., the Cp—semigroup (7'(t))s>0 is equicontinuous. Since its infinitesimal generator A €
L(X), it follows from |7, Proposition 2.3] that (7'(¢))+>0 is uniformly continuous.

Now, for a fixed f € X and k € N, we have
T f — etP®) — 1 — to(x
(001 ) ola)

t

IN

ax(f)

sup
|lz|<k

< tlan(p)Pe* @), t>0.

This implies that g (% — Af) — 0ast— 0". Since f and k are arbitrary, it follows

that (A, X) is the infinitesimal generator of (7'(¢))>0.
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(6) Since X is reflexive and the Cpo—semigroup (T'(t))¢>0 is equicontinuous, the desired
conclusion follows from [6, Corollary 2. O

If A € C\ (—00,0], then 1/(A—¢) € C(R); recall that ¢(R) C (—o0,0]. Accordingly, the
resolvent operators R(\, A) € L(X) exist for A € C\ (—o0,0] and are the multlipication

operators given by
1

RO\ A)f = T

[ feX (4.5)
In particular, C\ (—o0,0] C p(A).

Proposition 4.9. If ¢(R) C (—00,0), then m,-limy_,o+ AR(A\, A) = 0. In particular, the
equicontinuous Co—semigroup (T (t))i>0 is uniformly Abel mean ergodic and hence, also
uniformly mean ergodic.

Proof. Since ¢ is continuous and ¢ is strictly negative on R, for every k € N we have that
Br(p) := max|y<j p(z) < 0. Hence, Af;(x) < ()\*/Blk(ﬂo)) for every A > 0 and z € [k, k.
For a fixed k € N and B € B(X), it follows via (4.5) that

woro AN = (a(220)) = [ Z (=) P s

- /_k (A—go(x))Pd S()\—/Bk(so)> a(f)",

for all f € X and A > 0. This inequality ensures that

A
sup qp(AR(A, A)f) < ~————< sup i (f),
feB (>\ - 51c(90)) feB
Accordingly, limy_,o+ gx(AR(X, A)f) = 0. By the arbitrariness of k£ and B it follows that
Tp-limy o+ AR(A, A) = 0, i.e., the semigroup (T'(t))s>0 is uniformly Abel mean ergodic.
That (T'(t))e>0 is also uniformly mean ergodic follows from Theorem 3.2 above; see also
[7, Theorem 5.5(ii)]. O

A> 0.

In view of Proposition 4.9 all the equivalences of Theorem 3.2 apply to (T'(t))¢>0-

Remark 4.10. An alternate proof of Proposition 4.9 is as follows. By parts (1) and (4) of
Proposition 4.8 we have A: D(A) = X — X is bijective with A=1: X — D(A) continuous.

It is routine to check that the equicontinuity of (T'(¢))s>0 (cf. Propostion 4.8(5)) implies
that 7-limy—ye0 @ = 0. Then Lemma 2.10 yields that 7,-lim, o, C(7) = 0, i.e., (T'(t))t>0
is uniformly mean ergodic. The uniform Abel mean ergodicity of (T'(t));>o is then a

consequence of Theorem 5.5(i) and Remark 5.6(i) in [7].
Proposition 4.11. If ¢~ 1({0}) is a Lebesque null set, then 7s-limy_,g+ AR(A, A) = 0, i.e.,

(T'(t))e=0 is Abel mean ergodic and hence, also mean ergodic.
Proof. Since ¢~1({0}) is a Lebesgue null set and ¢ < 0 on R, we have 0 < ﬁ <1la.e. on
R and for all A > 0. On the other hand, limy_,q+ ﬁ = 0 pointwise a.e. on R. Fix f € X

and k € N. Given any sequence )\, — 07, we can apply the Dominated Convergence
p 00
b )17} € LNk, K) to obtain that
n—=

n
n—¢

Theorem to the sequence {( X

k P
A
MR, A P _ __mm Pd
@O NP = [ (2 ) P de 0
as n — 00, i.e, limy oo gp(AnR(An, A)f) = 0. Since k is arbitrary, it follows that
limy, 00 ApR(An, A)f = 0 in X. On the other hand, the arbitrariness of f € X and
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the sequence A, — 07 ensures that 7,-limy_,o+ AR(X, A) = 0, i.e., (T'(t))¢>0 is Abel mean
ergodic.
The mean ergodicity of (T'(t));>o follows from [7, Theorem 5.5(ii)]. O

Lemma 4.12. Let k € N and g € C([—k, k]). Then the multiplication operator
Mg: Lp([_kv k]) — Lp([_kvk])’ given by f = gfv
is continuous in the Banach space LP([—k, k]) with operator norm || Mg||, ;. = max, <y |g(z)|.

Proof. 1t is routine to check that M, is continuous with || My||,x < max, < |g(x)|. On the
other hand, o(M,) = g([—Fk, k]) and so r(My) = max, < |g(z)| < || My]|px by the Spectral
Radius Theorem (here r(M,) denotes the spectral radius of M), [23, Ch. IV, Corollary
1.4]. O

Proposition 4.13. If ¢=1({0}) is a non—empty Lebesgue null set, then (T(t))i>0 is not
uniformly mean ergodic.

Proof. Suppose that (T'(t))+>0 is uniformly mean ergodic. By Theorem 3.2 the limit 7,
limy g+ AR(A, A) exists. Then Proposition 4.11 yields that 7-limy_,q+ AR(X, A) = 0. Fix
any k € N. Since \/(A — ¢) € L>®([—k,k]) and the unit ball B(k) of the Banach space
LP([~k, k]) is (in the natural sense) a subset of U(k) := ¢; ' ([0,1]) € B(X), it follows from

(4.5) that
k A P 1/p
My n— k = sup (/ ———F h(zx dw)
130 o heB(k) \J—k | (A — ¢(2)) (@)
< sup g(AR(\,A)f) =0 as A — 0T,

feu(k)
But, A/(A — ¢) € C([—k, k]) and so Lemma 4.12 implies that

lim sup
A—0+ |z|<k

A
=@~ - 4.
O‘_SO(@)‘ /\lg{)h 1M/ (x-g)llpk =0 (4.6)

On the other hand, there exists kg € N and xg € [—ko, ko] such that ¢(xp) = 0. Then
SUP )<k ‘)\72(@ > Afé\(xo) = 1 for every A > 0. This contradicts (4.6) for k = ky. Hence,

(T'(t))e>0 is not uniformly mean ergodic. O

4.4. A semigroup on w = CV. Let X = CN be the Fréchet space of all sequences with
the increasing seminorms g5: X — [0,00), for k € N, where g(z) = max;<;<y|z;|, for
x = (xp)n € X, in which case X is Montel and a quojection. Define A € L(X) by
Az = (upTp)n, for © € X, where the real numbers u,, < 0 for every n € N are arbitrary
and, for each t > 0, define T'(t) € £(X) by T'(t)x := (et'xy,),, for v € X. Then A € L(X)
is a topological isomorphism on X and (7'(t))¢>0 is semigroup on X.

Proposition 4.14. The following properties hold for (T (t))¢>o.

(1) A is power bounded if and only if —1 < p, <0 for all n € N.
(2) For every X & {pn : n € N} the resolvent operator R(\, A) exists with

1
R\ Az =
( ) <)‘ — Hn
Moreover, 0(A) = {pin}nen and each point of o(A) is an eigenvalue of A.
(3) (T'(t))e=0 is an equicontinuous, uniformly continuous Co—semigroup on X. In par-
ticular, the operator (A, X) defined above is its infinitesimal generator.
(4) (T'(t))e=0 is uniformly mean ergodic.

xn) , xeX.
n
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Proof. Most of the details are straightforward to verify. We only point out that the uniform
mean ergodicity of (T'(t))s>0 is a consequence of the fact that 7-limy oo @ = 0 follows
from the equicontinuity of (T'(¢))¢>0 and so Lemma 2.10 can be applied. Moreover, the
uniform continuity of (T'(t))i>0 follows from its strong continuity (which is routine to

verify), [7, Proposition 2.3]. O

4.5. Another semigroup on w = CY. Let X = CN be as in the previous example
and consider the unit right shift A € L£(X) given by A(z) := (0,2z1,22,...), for x =
(z1,22,...) € X. Clearly, A is power bounded. Moreover, A is injective but not surjective
and p(A) = C\ {0} with the resolvent operators R(\, A) € L(X), for A # 0, given by

1 1 1 1 1 1
R\ A)(x) = ()\:cl, L + 24 378 + 2 %2 + B > , reX. (4.7)
The semigroup T'(t) := e'4, for t > 0, is given by
t2 t2 t3
T(t)x = <x1,x2+m1,x3+tm2+2 :cl,:zr4+tx3+—:1:2+3 ) , (4.8)

for z € X, and is exponentially (hence, also locally) equicontinuous. These facts can be
found in |7, Remark 3.5(v)].
Let {en}>°; be the standard (absolute) unit basis of X. Via (4.8) we have T'(t)e; =

<1 t, t;,,) for t > 0 and so {T'(t)e1}+>0 & B(X), i.e., (T(t))t>0 is not equicontinuous.

Again from (4.8) we have
2 2 t3

Tt)x —x = <0,t:v1,t:r2 + 2% txs + 5172 + — T > , ze€X,t>0,
which implies that (T'(t));>0 is a Cpo—semigroup and hence, is also strongly continuous by
the discussion prior to Remark 2.2. Since its infinitesimal generator A € £(X), it follows
that (7'(t))¢>0 is also uniformly continuous, [7, Proposition 2.3]. Of course, the uniform
continuity of (T'(t))s>0 also follows from its strong continuity and the fact that X is Montel,

[30, §39.5 Theorem (1)|. For each ¢ > 0 and x € X it follows from (4.8) that
T(t)x (xl T t2 >

e +$2+2l +$3+ $2+3'

In particular, T(tt)el = <%, 1, %, 3—2!, .. .), for t > 0, shows that {%}DO ¢ B(X) which
implies that @ # 0in L4(X) (hence, also in £,(X)) as t — oco. So, again Theorem 3.2
is unavailable.

It is routine to verify that Ker A = Fix(T'(-)) = {0} and that ImA = Span{e, }°°, is a
proper closed subspace of X. In particular, X # ImA @ Ker A4, i.e., (2.18) fails to hold.

Proposition 4.15. The exponentially equicontinuous, uniformly continuous Co—semigroup
(T'(t))t>0 is neither mean ergodic nor is it Abel mean ergodic.

Proof. Direct calculation from (4.8) shows that

1 /" r r2
C(r)x = - T(t)xdt = | x1, z2 + xl, T3+ =9 + — o,
0 2! 2! 31"

r

2

for each x € X and r > 0. In particular, C(r)e; = (1, 30> 37> ) for r > 0 shows that

the sequence {C(n)e;}5°; & B(X) and so the net {C(r)},>0 is not convergent in L4(X)
for r — oo, i.e., (T'(t))¢>0 is not mean ergodic.
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Direct calculation from (4.7) yields, for each A # 0 and x € X, that

1 1 1 1 1 1
AR\, A)x =z + <O, 1L 32 + Fxl’ X:cg + 22 + le’ .. ) .

In particular, AR(\, A)e; = e1+ (0, %, %7 ...), for A # 0, shows that {%R (%’ A) 61}2021 ¢
B(X) and so the net {A\R(\, A) }o<a<1 is not convergent in Ls(X) for A — 07, i.e., (T'(£))i>0

is not Abel mean ergodic. O
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