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Abstract. Well known Banach space results (eg. due to J. Koliha and to Y.
Katznelson/L. Tzafriri), which relate conditions on the spectrum of a bounded
operator T to the operator norm convergence of certain sequences of operators
generated by T , are extended to the class of quojection Fréchet spaces. These
results are then applied to establish various mean ergodic theorems for con-
tinuous operators acting in such Fréchet spaces and which belong to certain
operator ideals, eg. compact, weakly compact, Montel.

1. Introduction

Given a Banach space X and a continuous linear operator T on X, there
are various classical results which relate conditions on the spectrum σ(T ) of T
with the operator norm convergence of certain sequences of operators generated

by T . For instance, if limn→∞
‖Tn‖op

n = 0, with ‖ ‖op denoting the operator

norm, (even Tn

n → 0 in the weak operator topology su�ces), then necessar-

ily σ(T ) ⊆ D, where D := {z ∈ C : |z| < 1}, [22, p.709, Lemma 1]. The
stronger condition limn→∞ ‖Tn‖op = 0 is equivalent to the requirement that both

σ(T ) ⊆ D and limn→∞
‖Tn‖op

n = 0 hold, [29]. An alternate condition, namely
that {Tn}∞n=1 is a convergent sequence relative to the operator norm, is equiva-

lent to the requirement that the three conditions limn→∞
‖Tn‖op

n = 0, the range
(I − T )m(X) is closed in X for some m ∈ N and Γ(T ) ⊆ {1} are satis�ed, [33].
Here Γ(T ) := σ(T )∩T with T := {z ∈ C : |z| = 1} being the boundary of D. Such
results as above are often related to the uniform mean ergodicity of T , meaning
that the sequence of averages

{
1
n

∑n
m=1 T

m
}
of T is operator norm convergent.

For instance, if limn→∞
‖Tn‖op

n = 0 and 1 ∈ ρ(T ) := C \ σ(T ), then T is uni-

formly mean ergodic, [31, p.90, Theorem 2.7]. Or, if limn→∞
‖Tn‖op

n = 0, then T
is uniformly mean ergodic if and only if (I − T )(X) is closed, [32].

Our �rst aim is to extend results of the above kind to the class of all Fréchet
spaces referred to as prequojections; this is achieved in Section 3. The extension
to the class of all Fréchet spaces is not possible; see Proposition 3.10 below and [7,
Example 3.11], for instance. We point out that a classical result of Katznelson and
Tzafriri stating, for any Banach-space-operator T satisfying supn∈N ‖Tn‖op <∞,
that limn→∞ ‖Tn+1 − Tn‖op = 0 if and only if Γ(T ) ⊆ {1}, [28], is also extended
to prequojection Fréchet spaces; see Theorem 3.13.
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Our second aim is inspired by well known applications of the above mentioned
Banach space results to determine the uniform mean ergodicity of operators T

which satisfy limn→∞
‖Tn‖op

n = 0 and belong to certain operator ideals, such as the
compact or weakly compact operators; see, for example, [22, Ch. VIII, �8], [31,
Ch. 2, �2.2], [23, Theorem 6.1],where T can even be quasi�compact. An extension
of such a mean ergodic result to the class of quasi�precompact operators acting
in various locally convex Hausdor� spaces is presented in [40]. For prequojection
Fréchet spaces, this result is further extended to the (genuinely) larger class of
quasi�Montel operators; see Proposition 4.10, Remark 4.11 and Theorem 4.13. A
mean ergodic theorem for Cesàro bounded, weakly compact operators (and also
re�exive operators) in a certain class of locally convex spaces (which includes all
Fréchet spaces) is also presented; see Proposition 4.1 and Remark 4.2(ii).

2. Preliminaries and spectra of operators

Let X be a lcHs and ΓX a system of continuous seminorms determining the
topology of X. The strong operator topology τs in the space L(X) of all contin-
uous linear operators from X into itself (from X into another lcHs Y we write
L(X,Y )) is determined by the family of seminorms qx(S) := q(Sx), for S ∈ L(X),
for each x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is de�ned in L(X) via the seminorms qB(S) := supx∈B q(Sx),
for S ∈ L(X), for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For
X a Banach space, τb is the operator norm topology in L(X). If ΓX is countable
and X is complete, then X is called a Fréchet space. The identity operator on a
lcHs X is denoted by I.

By Xσ we denote X equipped with its weak topology σ(X,X ′), where X ′ is
the topological dual space of X. The strong topology in X (resp. X ′) is denoted
by β(X,X ′) (resp. β(X ′, X)) and we write Xβ (resp. X ′β); see [34, IV, Ch.

23] for the de�nition. The strong dual space (X ′β)′β of X ′β is denoted simply by

X ′′. By X ′σ we denote X ′ equipped with its weak�star topology σ(X ′, X). Given
T ∈ L(X), its dual operator T ′ : X ′ → X ′ is de�ned by 〈x, T ′x′〉 = 〈Tx, x′〉 for
all x ∈ X, x′ ∈ X ′. It is known that T ′ ∈ L(X ′σ) and T ′ ∈ L(X ′β), [30, p.134].

For a Fréchet space X and T ∈ L(X), the resolvent set ρ(T ) of T consists of
all λ ∈ C such that R(λ, T ) := (λI−T )−1 exists in L(X). Then σ(T ) := C\ρ(T )
is called the spectrum of T . The point spectrum σp(T ) consists of all λ ∈ C such
that (λI − T ) is not injective. Unlike for Banach spaces, it may happen that
ρ(T ) = ∅. For example, let ω = CN be the Fréchet space equipped with the lc�
topology determined via the seminorms {qn}∞n=1, where qn(x) := max1≤j≤n |xj |,
for x = (xj)

∞
j=1 ∈ ω. Then the unit left shift operator T : x 7→ (x2, x3, x4, . . .), for

x ∈ ω, belongs to L(ω) and, for every λ ∈ C, the element (1, λ, λ2, λ3, . . .) ∈ ω is
an eigenvector corresponding to λ.

For a Fréchet space X, the natural imbedding Φ: X → X ′′ is an isomorphism
of X onto the closed subspace Φ(X) of X ′′. Moreover, we always have

S′′ ◦ Φ = Φ ◦ S, S ∈ L(X), (2.1)

that is, S′′ is an extension of S.
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The following result will be required in the sequel. Since the proof is standard
we omit it. The polar of a set U ⊆ X is denoted by U◦ ⊆ X ′.

Lemma 2.1. Let X be a Fréchet space.

(i) Let {pj}∞j=1 ⊆ ΓX′′ be a fundamental, increasing sequence which de-

termines the lc�topology of X ′′. For each j ∈ N de�ne qj on X via
qj := pj ◦ Φ. Then {qj}∞j=1 ⊆ ΓX is a fundamental, increasing sequence
which determines the lc�topology of X.

(ii) Let {rj}∞j=1 ⊆ ΓX be a fundamental, increasing sequence which determines

the lc�topology of X. For each j ∈ N, let r′′j denote the Minkowski func-

tional (in X ′′) of the bipolar of Uj := r−1j ([0, 1]) ⊆ X. Then {r′′j }∞j=1 ⊆
ΓX′′ is a fundamental, increasing sequence which determines the lc�topology
of X ′′. Moreover, for each j ∈ N, we have

rj(x) = sup
x′∈U◦j

|〈x, x′〉| and r′′j (x′′) = sup
x′∈U◦j

|〈x′′, x′〉| (2.2)

for each x ∈ X and x′′ ∈ X ′′. In particular, r′′j ◦Φ = rj, i.e., the restriction

of r′′j to X ' Φ(X) coincides with rj, for each j ∈ N.

For Banach spaces the following fact is well known.

Lemma 2.2. Let X be a lcHs and {Tn}∞n=1 ⊆ L(X) be an equicontinuous se-
quence. Then also {T ′′n}∞n=1 ⊆ L(X ′′) is equicontinuous.

Proof. Let B ∈ B(X). Then C := ∪∞n=1Tn(B) ∈ B(X) as {Tn}∞n=1 is equicontin-
uous. So, for all x′ ∈ X ′ and n ∈ N, we have T ′nx′ ∈ X ′β with

pB(T ′nx
′) := sup

x∈B
|〈x, T ′nx′〉| = sup

x∈B
|〈Tnx, x′〉| ≤ sup

y∈C
|〈y, x′〉| = pC(x′).

As the seminorms {pB : B ∈ B(X)} generate the lc�topology of X ′β , the previous

inequality shows that {T ′n}∞n=1 ⊆ L(X ′β) is equicontinuous.

Since {T ′n}∞n=1 ⊆ L(X ′β) is equicontinuous and the lc�topology of X ′′ is gener-

ated by the polars of bounded subsets of X ′β , the same argument as above yields

that {T ′′n}∞n=1 ⊆ L(X ′′) is equicontinuous. �

Lemma 2.3. Let X be a Fréchet space and T ∈ L(X). Then T is an isomorphism
of X onto itself if and only if T ′′ is an isomorphism of X ′′ onto itself.

Proof. If T is an isomorphism of X onto itself, then there exists T−1 ∈ L(X)
with TT−1 = T−1T = I. It follows that T ′, (T−1)′ ∈ L(X ′β) and so T ′′, (T−1)′′ ∈
L(X ′′). Accordingly, I = (TT−1)′′ = T ′′(T−1)′′ and I = (T−1T )′′ = (T−1)′′T ′′.
Thus, (T ′′)−1 exists in L(X ′′) and (T ′′)−1 = (T−1)′′, i.e., T ′′ is an isomorphism
of X ′′ onto itself.

Conversely, suppose that T ′′ is an isomorphism of X ′′ onto itself. Since T ′′ is
an extension of T (i.e., T = T ′′|X), we see that T is one�to�one. Moreover, since
X is a closed subspace of X ′′ (as X is a complete, barrelled lcHs), it follows that
T (X) = T ′′(X) is closed. It remains to show that T (X) = X. But, if T (X) 6= X,
then there is f ∈ X ′ \ {0} such that 〈Tx, f〉 = 〈x, T ′f〉 = 0 for all x ∈ X. Hence,
T ′f = 0; this is a contradiction because the surjectivity of T ′′ implies that T ′ is
necessarily one�to�one. �
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We remark that Lemma 2.3 remains valid for X a complete barrelled lcHs.
The next result is an immediate consequence of (2.1) and Lemma 2.3.

Corollary 2.4. Let X be a Fréchet space and T ∈ L(X). Then ρ(T ) = ρ(T ′′)
and σ(T ) = σ(T ′′). Moreover,

Φ ◦R(λ, T ) = R(λ, T ′′) ◦ Φ, λ ∈ ρ(T ) = ρ(T ′′),

that is, the restriction of R(λ, T ′′) to the closed subspace X ' Φ(X) of X ′′ coin-
cides with R(λ, T ). Brie�y, R(λ, T ′′)|X = R(λ, T ).

A Fréchet space X is always a projective limit of continuous linear operators
Rk : Xk+1 → Xk, for k ∈ N, with each Xk a Banach space. If Xk and Rk
can be chosen such that each Rk is surjective and X is isomorphic to the projec-
tive limit proj j(Xj , Rj), then X is called a quojection, [11, Section 5]. Banach
spaces and countable products of Banach spaces are quojections. Actually, ev-
ery quojection is the quotient of a countable product of Banach spaces, [13]. In
[37] Moscatelli gave the �rst examples of quojections which are not isomorphic to
countable products of Banach spaces. Concrete examples of quojection Fréchet
spaces are ω = CN, the spaces Lploc(Ω), with 1 ≤ p ≤ ∞, and C(m)(Ω) for m ∈ N0,

with Ω ⊆ RN any open set, all of which are isomorphic to countable products of
Banach spaces. The spaces of continuous functions C(Λ), with Λ a σ�compact,
completely regular topological space, endowed with the compact open topology
are also quojections. Doma«ski exhibited a completely regular topological space
Λ such that the Fréchet space C(Λ) is a quojection which is not isomorphic to a
complemented subspace of a product of Banach spaces, [20, Theorem]. A Fréchet
space X admits a continuous norm if and only if X contains no isomorphic copy
of ω, [27, Theorem 7.2.7]. On the other hand, a quojection X admits a continuous
norm if and only if it is a Banach space, [11, Proposition 3]. So, a quojection is
either a Banach space or contains an isomorphic copy of ω, necessarily comple-
mented, [27, Theorem 7.2.7]. Also [19] is relevant.

Lemma 2.5. Let X be a quojection Fréchet space and S ∈ L(X). Suppose that
X = proj j(Xj , Qj,j+1), with Xj a Banach space (having norm ‖ ‖j) and linking
maps Qj,j+1 ∈ L(Xj+1, Xj) which are surjective for all j ∈ N, and suppose, for
each j ∈ N, that there exists Sj ∈ L(Xj) satisfying

SjQj = QjS, (2.3)

where Qj ∈ L(X,Xj), j ∈ N, denotes the canonical projection of X onto Xj (i.e.,
Qj,j+1 ◦Qj+1 = Qj). Then

σ(S) ⊆ ∪∞j=1σ(Sj) ⊆ σ(S) ∪ ∪∞j=1σp(Sj). (2.4)

Moreover,

σp(S) ⊆ ∪∞j=1σp(Sj). (2.5)

If, in addition, for every λ ∈ ρ(S), the resolvent operator R(λ, S) satis�es

R(λ, S)(KerQj) ⊆ KerQj , j ∈ N, (2.6)

then σ(S) = ∪∞j=1σ(Sj).
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Proof. For the containments (2.4) and (2.5) we refer to [9, Lemma 6.1].
Suppose now that (2.6) holds for each λ ∈ ρ(S). To establish the desired

equality, let λ ∈ ρ(S). Then λI − S is surjective. Fix j ∈ N. Since Qj : X → Xj

is surjective, it is routine to check from the identity (λIj − Sj)Qj = Qj(λI − S)
that also λIj −Sj is surjective (with Ij ∈ L(Xj) the identity operator). To verify
λIj −Sj is injective suppose that (λIj −Sj)y = 0 for some y ∈ Xj , in which case
y = Qjx for some x ∈ X. Accordingly,

Qj(λI − S)x = (λIj − Sj)Qjx = (λIj − Sj)y = 0

shows that (λI −S)x ∈ KerQj . It then follows from (2.6) that x = R(λ, S)(λI −
S)x ∈ KerQj , i.e., Qjx = 0. Since y = Qjx, we have y = 0. Hence, λIj − Sj
is injective. This establishes that λ ∈ ρ(Sj). Accordingly, ρ(S) = ∩∞j=1ρ(Sj) as
desired. �

The following result occurs in [9, Lemma 6.2].

Lemma 2.6. Let X be a quojection Fréchet space and {Sn}∞n=1 ∈ L(X). Suppose
that X = proj j(Xj , Qj,j+1), with Xj a Banach space (having norm ‖ ‖j) and
linking maps Qj,j+1 ∈ L(Xj+1, Xj) which are surjective for all j ∈ N, and suppose,

for each j, n ∈ N, that there exists S
(j)
n ∈ L(Xj) satisfying

S(j)
n Qj = QjSn, (2.7)

where Qj ∈ L(X,Xj), j ∈ N, denotes the canonical projection of X onto Xj (i.e.,
Qj,j+1 ◦Qj+1 = Qj). Then the following statements are equivalent.

(i) The limit τb-limn→∞ Sn =: S exists in Lb(X).

(ii) For each j ∈ N, the limit τb-limn→∞ S
(j)
n =: S(j) exists in Lb(Xj).

In this case, the operators S ∈ L(X) and S(j) ∈ L(Xj), for j ∈ N, satisfy

Sx = (S(j)xj)j , x = (xj)j ∈ X. (2.8)

Moreover, (i) and (ii) remain equivalent if τb is replaced by τs.

Given any lcHs X and T ∈ L(X), let us introduce the notation

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (2.9)

for the Cesàro means of T . Then T is calledmean ergodic precisely when {T[n]}∞n=1

is a convergent sequence in Ls(X). If {T[n]}∞n=0 happens to be convergent in
Lb(X), then T will be called uniformly mean ergodic.

We always have the identities

(I − T )T[n] = T[n](I − T ) =
1

n
(T − Tn+1), n ∈ N, (2.10)

and also (setting T[0] := I) that

1

n
Tn = T[n] −

(n− 1)

n
T[n−1], n ∈ N. (2.11)

Some authors prefer to use 1
n

∑n−1
m=0 T

m in place of T[n]; since

T[n] = T
( 1

n

n−1∑
m=0

Tm
)

=
1

n
(Tn − I) +

1

n

n−1∑
m=0

Tm, n ∈ N,
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this leads to identical results.
Recall that T ∈ L(X) is called power bounded if {Tn}∞n=1 is an equicontinuous

subset of L(X).
The �nal result that we require (i.e., [9, Lemma 6.4]) is as follows.

Lemma 2.7. Let X = proj j(Xj , Qj.j+1) be a quojection Fréchet space and opera-
tors S ∈ L(X) and Sj ∈ L(Xj), for j ∈ N, be given which satisfy the assumptions
of Lemma 2.5 (with Qj ∈ L(X,Xj), j ∈ N, denoting the canonical projection of
X onto Xj and ‖ ‖j being the norm in the Banach space Xj).

(i) S ∈ L(X) is power bounded if and only if each Sj ∈ L(Xj), j ∈ N, is
power bounded.

(ii) S ∈ L(X) is mean ergodic (resp., uniformly mean ergodic) if and only if
each Sj ∈ L(Xj), j ∈ N, is mean ergodic (resp., uniformly mean ergodic).

3. Spectrum, uniform convergence and mean ergodicity

A prequojection is a Fréchet space X such that X ′′ is a quojection. Every
quojection is a prequojection. A prequojection is called non�trivial if it is not
itself a quojection. It is known that X is a prequojection if and only if X ′β is a

strict (LB)�space. An alternative characterization is that X is a prequojecton if
and only if X has no Köthe nuclear quotient which admits a continuous norm;
see [11, 18, 39, 41]. This implies that a quotient of a prequojection is again a
prequojection. In particular, every complemented subspace of a prequojection
is again a prequojection. The problem of the existence of non�trivial prequo-
jections arose in a natural way in [11]; it has been solved, in the positive sense,
in various papers, [12], [18], [38]. All of these papers employ the same method,
which consists in the construction of the dual of a prequojection, rather than the
prequojection itself, which is often di�cult to describe (see the survey paper [35]
for further information). However, in [36] an alternative method for construct-
ing prequojections is presented which has the advantage of being direct. For an
example of a concrete space (i.e., a space of continuous functions on a suitable
topological space), which is a non�trivial prequojection, see [1].

In this section we extend to prequojection Fréchet spaces some well known
results from the Banach setting which connect various conditions on the spectrum
σ(T ), of a continuous linear operator T , to the operator norm convergence of
certain sequences of operators generated by T . Such results have well known
consequences for the uniform mean ergodicity of T .

We begin with a construction for quojection Fréchet spaces which is needed in
the sequel.

Let X be a quojection Fréchet space and {qj}∞j=1 be any fundamental, increas-
ing sequence of seminorms generating the lc�topology of X. For each j ∈ N,
set Xj := X/q−1j ({0}) and endow Xj with the quotient lc�topology. Denote by

Qj : X → Xj the corresponding canonical (surjective) quotient map and de�ne
the quotient topology on Xj via the increasing sequence of seminorms {(q̂j)k}∞k=1
on Xj by

(q̂j)k(Qjx) := inf{qk(y) : y ∈ X and Qjy = Qjx}, x ∈ X, (3.1)

for each k ∈ N. Then
(q̂j)k(Qjx) ≤ qk(x), x ∈ X, k, j ∈ N; (3.2)
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see (2.4) in [5]. Moreover,

(q̂j)j(Qjx) = qj(x), x ∈ X, j ∈ N, (3.3)

which implies that (q̂j)j is a norm on Xj . As noted above, since X is a quojection
Fréchet space and every quotient space (of such a Fréchet space) with a continuous
norm is necessarily Banach, [11, Proposition 3], it follows that for each j ∈ N
there exists k(j) ≥ j such that the norm (q̂j)k(j) generates the lc�topology of
Xj . Moreover, it is possible to choose k(j + 1) ≥ k(j) for all j ∈ N. Thus, X is
isomorphic to the projective limit of the sequence {(Xj , (q̂j)k(j))}∞j=1 of Banach
spaces with respect to the continuous, surjective linking maps Qj,j+1 : Xj+1 → Xj

de�ned by

Qj,j+1 ◦Qj+1 = Qj , j ∈ N. (3.4)

This particular construction will be used on various occasions in the sequel, where
B̂j will always denote the closed unit ball of Xj , for j ∈ N. The so constructed
Banach space norm (q̂j)k(j) of Xj will always be denoted by q̃j , for j ∈ N.

The following result is classical in Banach spaces, [22, p.709 Lemma 1].

Proposition 3.1. Let X be a quojection Fréchet space and T ∈ L(X) satisfy
τs-limn→∞

Tn

n = 0. Then σ(T ) ⊆ D.
In case X is a prequojection Fréchet space and τb-limn→∞

Tn

n = 0, the inclusion

σ(T ) ⊆ D is again valid.

Proof. Case (I). X is a quojection.
Let {rj}∞j=1 be a fundamental, increasing sequence of seminorms generating

the lc�topology of X. Since Tn

n → 0 in Ls(X) as n → ∞ and X is a Fréchet

space, the sequence
{
Tn

n

}∞
n=1

is equicontinuous. So, for each j ∈ N there exists
cj > 0 such that

rj

(
Tnx

n

)
≤ cjrj+1(x), x ∈ X, n ∈ N; (3.5)

there is no loss in generality by assuming that rj+1 can be chosen.

De�ne qj on X by qj(x) := max
{
rj(x), supn∈N rj

(
Tnx
n

)}
, for x ∈ X. Then

(3.5) ensures that {qj}∞j=1 is also a fundamental, increasing sequence of seminorms
generating the lc-topology of X. Moreover,

qj(Tx) ≤ 2qj(x), x ∈ X, j ∈ N. (3.6)

We now apply the construction (3.1)�(3.4) to the sequence of seminorms {qj}∞j=1

to yield the corresponding sequence {(Xj , q̃j)}∞j=1 of Banach spaces and the quo-

tient maps Qj ∈ L(X,Xj), for j ∈ N; recall that q̃j := (q̂j)k(j), for j ∈ N.
Fix j ∈ N. De�ne the operator Tj : Xj → Xj via

TjQjx := QjTx, x ∈ X. (3.7)

Then Tj is a well de�ned, continuous linear operator from Xj into Xj . Indeed,
suppose Qjx = Qjy for some x, y ∈ X, i.e., (x−y) ∈ KerQj , so that qj(x−y) = 0.
This, together with (3.6), yields 0 ≤ qj((T (x − y)) ≤ 2qj(x − y) = 0. Since

KerQj = q−1j ({0}), it follows that QjT (x − y) = 0 and hence, by (3.7) that

TjQj(x− y) = QjT (x− y) = 0. Therefore, TjQjx = TjQjy. This means that Tj
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is well de�ned. Clearly, Tj is also linear. Moreover, (3.2), (3.6) and (3.7) imply
that

q̃j(Tj x̂) = q̃j(TjQjx) = q̃j(QjTx) ≤ qk(j)(Tx) ≤ 2qk(j)(x),

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the in�mum with respect to

x ∈ Q−1j ({x̂}), it follows that

q̃j(Tj x̂) ≤ 2q̃j(x̂), x̂ ∈ Xj . (3.8)

Since q̃j generates the quotient topology of Xj , (3.8) ensures the continuity of Tj .
Moreover, it follows from (3.7) that

(Tj)
nQjx := QjT

nx, x ∈ X, n ∈ N. (3.9)

The surjectivity and the continuity of Qj together with (3.9) imply that τs-

limn→∞
(Tj)

n

n = 0. Indeed, �x any x̂ ∈ Xj . By the surjectivity of Qj there

exists x ∈ X such that Qjx = x̂. By (3.9) it follows that
(Tj)

nx̂
n = Qj

(
Tnx
n

)
,

for n ∈ N. Moreover, T
nx
n → 0 as n → ∞ by assumption. So, the continuity of

Qj yields that limn→∞
(Tj)

nx̂
n = 0 in the Banach space Xj . We can then apply

Lemma 1 in [22, p.709] to obtain that σ(Tj) ⊆ D.
We have just shown that that (C \ D) ⊆ ∩∞j=1ρ(Tj). Moreover, the operators

T and Tj satisfy (3.7). So, we can apply Lemma 2.5 which yields (C \D) ⊆ ρ(T ),

i.e., σ(T ) ⊆ D.
Case (II). X is a prequojection and τb-limn→∞

Tn

n = 0.
Observe that X and X ′β are barrelled and hence, quasi-barrelled as X is a

Fréchet space and X ′β is the strong dual of a prequojection Fréchet space. Since

T ′ ∈ L(X ′β) and T ′′ ∈ L(X ′′), the condition τb-limn→∞
Tn

n = 0 implies that τb-

limn→∞
(T ′′)n

n = 0 (see [3, Lemma 2.6] or [4, Lemma 2.1]). On the other hand,

X ′′ is a quojection Fréchet space. So, it follows from Case (I) that σ(T ′′) ⊆ D.
Finally, Corollary 2.4 ensures that σ(T ) = σ(T ′′) and so σ(T ) ⊆ D. �

Remark 3.2. For a power bounded operator T ∈ L(X) it is always the case
that τb-limn→∞

Tn

n = 0 and so, whenever X is a prequojection Fréchet space, it

follows from Proposition 3.1 that σ(T ) ⊆ D.

For operators in Banach spaces, the following result is due to J.J. Koliha, [29].

Theorem 3.3. Let X be a prequojection Fréchet space and T ∈ L(X). The
following assertions are equivalent.

(i) τb-limn→∞ T
n = 0.

(ii) The series
∑∞

n=0 T
n converges in Lb(X).

(iii) τb-limn→∞
Tn

n = 0 and σ(T ) ⊆ D.
Moreover, if one (hence, all) of the above conditions holds, then I − T is an
isomorphism of X onto X with inverse (I − T )−1 =

∑∞
n=0 T

n and the series
converging in Lb(X).

Proof. Case (I). X is a quojection.
(i)⇒(ii). The assumption τb-limn→∞ T

n = 0 implies that τb-limn→∞
Tn

n =
0. So, we can proceed as in the proof of Proposition 3.1 to obtain that X =
proj j(Xj , Qj,,j+1) in such a way that, for every j ∈ N, there exists Tj in L(Xj)
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satisfying TjQj = QjT . Then also Tnj Qj = QjT
n, for every j, n ∈ N. So, Lemma

2.6 implies that τb-limn→∞ T
n
j = 0 for all j ∈ N. Thus, by [29, Theorem 2.1] the

series
∑∞

n=0 T
n
j converges in Lb(Xj), for each j ∈ N. With Sn :=

∑n
k=0 T

k, for

n ∈ N, it follows again from Lemma 2.6 that the series
∑∞

n=0 T
n converges in

Lb(X).
(ii)⇒(iii). The assumption clearly implies τb-limn→∞

Tn

n = 0. So, as in the
proof of (i)⇒(ii), we may assume that X = proj j(Xj , Qj,j+1) in such a way that,
for every j ∈ N, there exists Tj in L(Xj) satisfying TjQj = QjT . Then also
Tnj Qj = QjT

n, for every j, n ∈ N. Since
∑∞

n=0 T
n converges in Lb(X) and X is a

quojection, the series
∑∞

n=0 T
n
j also converges in Lb(Xj) for all j ∈ N; see Lemma

2.6. By [29, Theorem 2.1] we have that σ(Tj) ⊂ D and so Λ := (C \ D) ⊆ ρ(Tj),
for all j ∈ N. Accordingly, since TjQj = QjT for all j ∈ N, Lemma 2.5 yields
Λ ⊆ ∩∞j=1ρ(Tj) ⊆ ρ(T ), i.e., σ(T ) ⊂ D.

(iii)⇒(i). Since Λ ⊆ ρ(T ), for every λ ∈ Λ, the operator I − λ−1T = λ−1(λI −
T ) ∈ L(X) is invertible, i.e., bijective with (I − λ−1T )−1 ∈ L(X). On the other

hand, τb-limn→∞
(λ−1T )n

n = 0 for every λ ∈ Λ as τb-limn→∞
Tn

n = 0 and |λ−1| ≤ 1.
So, by Theorem 4.1 in [5] (see also Theorem 3.5 of [7]) we can conclude that

τb − lim
n→∞

(λ−1T )[n] = 0, λ ∈ Λ. (3.10)

Let {rj}∞j=1 be a fundamental, increasing sequence of seminorms generating

the lc�topology of X. Arguing as in the proof of Proposition 3.1 (and adopting
the notation from there) we conclude that (3.5) is satis�ed. De�ne qj on X by

qj(x) := max
{
rj(x), supn∈N rj

(
Tnx
n

)}
, for x ∈ X. Then again (3.6) is satis�ed

and, for each j ∈ N, there exists a continuous linear operator Tj : Xj → Xj

satisfying both (3.7) and (3.8). Moreover, it follows from (3.7) that

(λ−1Tj)
nQjx := Qj(λ

−1T )nx, x ∈ X, n ∈ N, λ ∈ Λ. (3.11)

Fix λ ∈ Λ and consider the sequences {Rn}∞n=1 and {Hn}∞n=1 in L(X) given

by Rn := 1
n

∑n−1
m=0

∑m
h=0(λ

−1T )h and Hn := I − (λ−1T )[n], for n ∈ N. Then the

operator A := I − λ−1T satis�es Hn = ARn = RnA for all n ∈ N. Moreover,
(3.10) implies that Hn → R := I in Lb(X). Since all the assumptions of Lemma
3.4 in [7] are satis�ed with F = E = X, R = I ∈ L(X,X) and A = I −λ−1T , we
can proceed as in the proof of that result to conclude, for every j ∈ N, that the
operator I − λ−1Tj is invertible in L(Xj) (hence, also λI − Tj is invertible), i.e.,
λ ∈ ρ(Tj).

By the arbitrariness of λ ∈ Λ, we have that Λ ⊆ ρ(Tj), for all j ∈ N. So, there
exists δj ∈ (0, 1) such that ρ(Tj) ⊃ {λ ∈ C : |λ| ≥ 1− δj}. It follows that

r(Tj) := max{|λ| : λ ∈ σ(Tj)} = lim
n→∞

n

√
‖Tnj ‖op ≤ (1− δj) < 1, j ∈ N,

and hence, that limn→∞ ‖Tnj ‖op = 0. Because of (3.11), with λ = 1 ∈ Λ, it follows

from Lemma 2.6 (with Sn := Tn) that τb-limn→∞ T
n = 0.

Case (II). X is a prequojection.
As noted before X and X ′β are barrelled with T ′ ∈ L(X ′β) and T ′′ ∈ L(X ′′).

(i)⇒(ii). If Tn → 0 in Lb(X) for n → ∞, then an argument as for Case (II)
in the proof of Proposition 3.1 shows that (T ′′)n = (Tn)′′ → 0 in Lb(X ′′) for
n → ∞. Since X ′′ is a quojection Fréchet space, we can apply (i)⇒(ii) of Case
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(I) above to conclude that the series
∑∞

n=0(T
′′)n converges in Lb(X ′′). Then also∑∞

n=0 T
n converges in Lb(X) as T ′′|X = T and X is a closed subspace of X ′′.

(ii)⇒(iii). If
∑∞

n=0 T
n converges in Lb(X), then

∑∞
n=0(T

′′)n converges in
Lb(X ′′); see [3, Lemma 2.6] or [4, Lemma 2.1]. Since X ′′ is a quojection Fréchet
space, we can apply (ii)⇒(iii) of Case (I) above to conclude that σ(T ′′) ⊂ D (the
condition τb-limn→∞

Tn

n = 0 clearly follows from the assumption). So, σ(T ) ⊆ D
by Corollary 2.4.

(iii)⇒(i). As already noted (cf. proof of Case (II) in Proposition 3.1) X and

X ′β are barrelled (hence, quasi-barrelled) and τb-limn→∞
(T ′′)n

n = 0. By Corollary

2.4, ρ(T ′′) = ρ(T ) and so Λ ⊆ ρ(T ′′) by assumption. Since X ′′ is a quojection
Fréchet space, we can apply Case (I) to conclude that τb-limn→∞(T ′′)n = 0. So,
also τb-limn→∞ T

n = 0 as T ′′|X = T and X is a closed subspace of X ′′.
Finally, suppose that one (hence, all) of the above conditions hold. Then the

series
∑∞

n=0 T
n converges in Lb(X) and so Tn → 0 in Lb(X) for n → ∞. But,

for every n ∈ N we have

(I − T )

n∑
m=0

Tm =

n∑
m=0

(Tm − Tm+1) = (I − Tn+1)

and so, for n→∞, we can conclude that (I − T )
∑∞

n=0 T
n = I with convergence

of the series in Lb(X). In a similar way one shows that (
∑∞

n=0 T
n) (I − T ) = I,

with the series again converging in Lb(X). �

Remark 3.4. In the proof of (iii)⇒(i) in Case (I) above, if infj∈N δj =: δ > 0,
then it follows that ρ(T ) ⊃ {λ ∈ C : |λ| ≥ (1 − δ)}. But, this is not the case in
general as the following example shows.

Let X be a Banach space and {λn}∞n=1 ∈ (0, 1) be an increasing sequence with
supn∈N λn = 1. Consider the quojection Fréchet space XN (endowed with the
product topology) and the operator T on XN de�ned by T (xn)n := (λnxn)n,
for (xn)n ∈ XN. It is easy to show that T ∈ L(X) and that T is even power
bounded. Moreover, Λ ⊆ ρ(T ). Indeed, for a �xed λ ∈ Λ, if x ∈ Ker(λI − T ),
then λx − Tx = 0, i.e., (λ − λn)xn = 0 for all n ∈ N. Since λ 6∈ {λn}∞n=1, it
follows that xn = 0 for all n ∈ N and so x = 0. On the other hand, if y ∈ XN,
then x := (yn/(λ− λn))n belongs to XN and Tx = y. Hence, λI − T is bijective
and so λ ∈ ρ(T ). Moreover, �x any x ∈ X \ {0} and set en := (δnmx)m for every
n ∈ N. Then Ten = λnen for every n ∈ N. Thus, each λn is an eigenvalue of T .

Now, suppose that ρ(T ) ⊃ {λ ∈ C : |λ| ≥ 1 − δ} for some δ ∈ (0, 1). Then
B(1, δ/2) := {µ ∈ C : |µ− 1| < δ/2} ⊂ ρ(T ). But λn → 1 for n→∞ and hence,
there is n0 ∈ N such that λn0 ∈ B(1, δ/2) ⊂ ρ(T ). This a contradiction as λn0 is
an eigenvalue for T .

If T is uniformly mean ergodic, then (2.11) implies that τb-limn→∞
Tn

n = 0.
With an extra condition the converse is also valid.

Corollary 3.5. Let X be a prequojection Fréchet space and T ∈ L(X). If τb-
limn→∞

Tn

n = 0 and 1 ∈ ρ(T ), then T is uniformly mean ergodic.

Proof. Since 1 ∈ ρ(T ), the operator I − T is bijective and so (I − T )(X) = X is
closed in X. By [7, Theorem 3.5], T is uniformly mean ergodic. In particular, as
Ker(I − T ) = {0}, we have that T[n] → 0 in Lb(X) for n→∞. �
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Remark 3.6. Let X be a prequojection Fréchet space and T ∈ L(X) satisfy
τb-limn→∞

Tn

n = 0. If 1 ∈ ρ(T ), then the proof of Corollary 3.5(i) shows that
T is uniformly mean ergodic with τb-limn→∞ T[n] = 0. On the other hand, if
σ(T ) ⊆ D (a stronger condition than 1 ∈ ρ(T )), then Theorem 3.3 implies that
τb-limn→∞ T

n = 0 and hence, again τb-limn→∞ T[n] = 0 follows, [8, Remark 3.1].
However, the stronger conclusion that τb-limn→∞ T

n = 0 does not follow from
Corollary 3.5(i) in general. Indeed, let X 6= {0} be any Banach space (even �nite
dimensional). Then every power of T := iI belongs to the set {−I, I,−iI, iI} and
so T is power bounded. This implies that τb-limn→∞

Tn

n = 0. Since σ(T ) = {i},
surely 1 ∈ ρ(T ) and so, by Corollary 3.5(i), it follows that τb-limn→∞ T[n] = 0.
However, for every n ∈ N we have ‖Tn‖op = 1 and so {‖Tn‖op}∞n=1 does not
converge to zero. This does not contradict Theorem 3.3 as σ(T ) is not included
in D.

Remark 3.7. LetX be a prequojection Fréchet space and T ∈ L(X). We observe
that:

(i) Corollary 3.5(ii) and Proposition 3.1 yield that if T is uniformly mean
ergodic, then τb-limn→∞

Tn

n = 0 and σ(T ) ⊆ D.
(ii) Suppose that τb-limn→∞

Tn

n = 0. If σ(T ) ⊆ D, then T is uniformly mean
ergodic and τb-limn→∞ T[n] = 0 (cf. Remark 3.6).

For Banach spaces the next result is due to M. Mbekhta and J. Zemànek, [33].
Recall that Γ(T ) := σ(T ) ∩ T.

Theorem 3.8. Let X be a prequojection Fréchet space and T ∈ L(X). The
following statements are equivalent.

(i) {Tn}∞n=1 is convergent in Lb(X).

(ii) τb-limn→∞
Tn

n = 0, the linear space (I − T )m(X) is closed in X for some
m ∈ N and Γ(T ) ⊆ {1}.

(iii) τb-limn→∞(Tn − Tn+1) = 0 and (I − T )m(X) is closed for some m ∈ N.

Proof. (i)⇒(ii). If {Tn}∞n=1 converges in Lb(X) to P say, then T is uniformly
mean ergodic with ergodic projection equal to P , [8, Remark 3.1]. Moreover, as
{Tn}∞n=1 is necessarily equicontinuous, it follows that τb-limn→∞

Tn

n = 0. Hence,
by Theorem 3.5 and Remark 3.6 of [7] the space (I − T )m(X) is closed for every
m ∈ N. Moreover, by Proposition 3.1 we have σ(T ) ⊆ D. To establish the
remaining condition Γ(T ) ⊆ {1} we distinguish two cases.

(a) X is a quojection.
Let {rj}∞j=1 be any fundamental, increasing sequence of seminorms generating

the lc-topology of X. By equicontinuity of {Tn}∞n=1, for each j ∈ N there exists
cj > 0 such that

rj(T
nx) ≤ cjrj+1(x), x ∈ X, n ∈ N. (3.12)

De�ne qj , for each j ∈ N, by qj(x) := supn≥0 rj(T
nx), for x ∈ X. Then (3.12)

ensures that {qj}∞j=1 is also a fundamental, increasing sequence of seminorms

generating the lc-topology of X. Moreover, it is routine to check (using also that
Tnx→ Px for each x ∈ X) that

qj(Tx) ≤ qj(x) and qj(Px) ≤ qj(x), x ∈ X, j ∈ N. (3.13)
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With (3.13) in place of (3.6), we can argue as in the proof of Proposition 3.1
to deduce that X = proj j(Xj , Qj,j+1) and that, for every j ∈ N there exist
operators Tj and Pj in L(Xj) satisfying TjQj = QjT and PjQj = QjP . Hence,
Tnj Qj = QjT

n for every j, n ∈ N. Since also τb-limn→∞ T
n = P , it follows from

Lemma 2.6 (with Sn := Tn and S := P ) that τb-limn→∞ T
n
j = Pj , for each j ∈ N.

By [33, Corollaire 3] we have that Γ(Tj) ⊆ {1} for every j ∈ N. This implies that
Γ(T ) ⊆ {1}. Indeed, if λ ∈ T \ {1}, then for every j ∈ N we have λ 6∈ Γ(Tj) and
so λ ∈ ρ(Tj), i.e., λ ∈ ∩∞j=1ρ(Tj). As TjQj = QjT for every j ∈ N, an appeal to

Lemma 2.5 yields that λ ∈ ρ(T ).
(b) X is a prequojection.
As noted before, X and X ′β are barrelled (hence, quasi-barrelled) with T ′, P ′ ∈

L(X ′β) and T ′′, P ′′ ∈ L(X ′′). Hence, τb-limn→∞ T
n = P implies that τb-limn→∞(T ′′)n =

P ′′; see [3, Lemma 2.6] or [4, Lemma 2.1]. Since X ′′ is a quojection Fréchet
space, we can apply the result from case (a) to conclude that Γ(T ′′) ⊆ {1} and
so Γ(T ) ⊆ {1}; see Corollary 2.4.

(ii)⇒(i). The assumptions τb-limn→∞
Tn

n = 0 and (I−T )m(X) closed for some
m ∈ N imply that T is uniformly mean ergodic, [7, Theorem 3.4 and Remark
3.6]. In particular, (I − T )(X) is closed and

X = Ker(I − T )⊕ (I − T )(X), (3.14)

[7, Theorem 3.4]. Moreover, Proposition 3.1 implies that σ(T ) ⊆ D. It then
follows from the assumption Γ(T ) ⊆ {1} that either Γ(T ) = ∅ or Γ(T ) = {1}.

If Γ(T ) = ∅, then necessarily σ(T ) ⊆ D and so, by (iii)⇒(i) of Theorem 3.3 we
have τb-limn→∞ T

n = 0.
In the event that Γ(T ) = {1} we have that 1 ∈ σ(T ) and so Ker(I − T ) 6= {0}

(otherwise, (I−T ) is injective and fromX = Ker(I−T )⊕(I−T )(X) = (I−T )(X)
also surjective, i.e., 1 ∈ ρ(T )). De�ne Y := (I − T )(X) and T1 := T |Y . Then Y
is a prequojection Fréchet space (being a quotient space of the prequojection X)
which is T -invariant and so T1 ∈ L(Y ). The claim is that

ρ(T1) = ρ(T ) ∪ {1}. (3.15)

It follows from (3.14) that 1 ∈ ρ(T1). Fix λ ∈ ρ(T ) (so that λ 6= 1). If (λI−T1)x =
0 for some x ∈ Y (i.e., (λI − T )x = 0), then x = 0 as λ ∈ ρ(T ). Hence, (λI − T1)
is injective. Next, let y ∈ Y . Then there exists x ∈ X such that (λI − T )x = y.
Since x = x1 + x2 with x1 ∈ Ker(I − T ) and x2 ∈ Y (cf. (3.14)), it follows
that (λ − 1)x1 + (λI − T1)x2 = y, i.e., (λ − 1)x1 = y − (λI − T1)x2, with
(λ − 1)x1 ∈ Ker(I − T ) and (y − (λI − T1)x2) ∈ Y . As Ker(I − T ) ∩ Y = {0}
and λ 6= 1, this implies that x1 = 0 and so (λI − T1)x2 = y with x2 ∈ Y ,
i.e., (λI − T1) is surjective. These facts show that λ ∈ ρ(T1). This establishes
ρ(T ) ∪ {1} ⊆ ρ(T1).

Fix λ ∈ ρ(T1) \ {1}. Suppose that (λI − T )x = 0 for some x ∈ X. Then
x = x1 + x2 with x1 ∈ Ker(I − T ) and x2 ∈ Y (cf. (3.14)). It follows that
(λ− 1)x1 + (λI − T1)x2 = 0 with (λ− 1)x1 ∈ Ker(I − T ) and (λI − T1)x2 ∈ Y .
Arguing as in the previous paragraph, this implies that x1 = 0 and (λI−T1)x2 =
0. Since x2 ∈ Y and λ ∈ ρ(T1), we can conclude that x = 0, i.e., (λI − T )
is injective. Next, let y ∈ X. Then y = y1 + y2 with y1 ∈ Ker(I − T ) and
y2 ∈ Y (cf. (3.14)). Since λ 6= 1, the element x1 := y1

λ−1 ∈ Ker(I − T ) exists.

Moreover, λ ∈ ρ(T1) with y2 ∈ Y implies the existence of x2 ∈ Y such that
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y2 = (λI − T1)x2 = (λI − T )x2. It follows that x := (x1 + x2) ∈ X satis�es
(λI − T )x = y. Hence, (λI − T ) is also surjective and so λ ∈ ρ(T ). Accordingly,
ρ(T1) ⊆ ρ(T ) ∪ {1} is proved. This establishes (3.15).

Since σ(T ) ⊆ D∪ {1} and (3.15) is equivalent to σ(T1) = σ(T ) \ {1}, it follows
that σ(T1) ⊆ D. Moreover, Y is a prequojection Fréchet space and (T1)n

n → 0 in

Lb(Y ) as n → ∞ (because τb-limn→∞
Tn

n = 0 and T1 = T on Y ). So, we can
apply Theorem 3.3 to conclude that Tn1 → 0 in Lb(Y ) as n → ∞. On the other
hand, T = I on Ker(I − T ). These facts ensure that Tn = I ⊕ (T1)

n → I ⊕ 0 in
Lb(X) because X = Ker(I − T )⊕ Y and T1 = T on Y .

(i)⇒(iii). If {Tn}∞n=1 converges to some P in Lb(X), then T is uniformly
mean ergodic with ergodic projection equal to P , [8, Remark 3.1]. Hence, by [7,
Theorem 3.5 and Remark 3.6] the space (I − T )m(X) is closed for every m ∈ N.
Moreover, (Tn − Tn+1)→ P − P = 0 in Lb(X) as n→∞.

(iii)⇒(i). We �rst observe that

1

n

n∑
m=1

(Tm − Tm+1) =
1

n
(T − Tn+1), n ∈ N

This identity (together with the fact that τb-limn→∞(Tn − Tn+1) = 0 implies for
the averages that τb-limn→∞

1
n

∑n
m=1(T

m − Tm+1) = 0, [8, Remark 3.1]) yields

τb-limn→∞
1
n(T −Tn+1) = 0. But, τb-limn→∞

T
n = 0 and so we can conclude that

τb-limn→∞
Tn

n = 0. As also (I − T )m(X) is closed for some m ∈ N, we can apply
[7, Theorem 3.4 and Remark 3.6] to conclude that T is uniformly mean ergodic
and, in particular, that (3.14) is valid with (I−T )(X) being closed. We claim that
this fact, together with the assumption that τb-limn→∞(Tn − Tn+1) = 0, imply
that {Tn}∞n=1 converges in Lb(X). To see this, note that T = I on Ker(I − T )
and so Tn = I → I in Lb(Ker(I − T )) as n → ∞. On the other hand, the
surjective operator (I − T ) : X → (I − T )(X) lifts bounded sets via [34, Lemma
26.13] because X and Ker(I − T ), both being prequojections, are quasinormable
Fréchet spaces [35, Proposition 2.1], [41], i.e., for every C ∈ B((I − T )(X)) there
exists B ∈ B(X) such that C ⊆ (I−T )(B). So, for �xed C ∈ B((I−T )(X)) (with
corresponding set B ∈ B(X)) and p ∈ ΓX (every q ∈ Γ(I−T )X is the restriction of
some p ∈ ΓX), we have

sup
y∈C

p(Tny) ≤ sup
x∈B

p(Tn(I − T )x) = sup
x∈B

p((Tn − Tn+1)x), n ∈ N,

where supx∈B p((T
n − Tn+1)x) → 0 as n → ∞ by assumption. Set T1 :=

T |(I−T )(X). The arbitrariness of C and p show that (T1)
n → 0 in Lb((I − T )(X))

(after observing that (I − T )(X) is T�invariant and so T1 = T |(I−T )(X) ∈ L((I −
T )(X))). These facts ensure that Tn = I ⊕ (T1)

n → I ⊕ 0 in Lb(X) as X =
Ker(I − T )⊕ Y . �

Remark 3.9. In assertion (ii) of Theorem 3.8 the condition that �(I − T )m(X)
is closed in X for some m ∈ N� can be replaced with the condition that �T is
uniformly mean ergodic�; see [7, Theorem 3.5 and Remark 3.6].

Theorems 3.3 and 3.8 do not necessarily hold for operators acting in general
Fréchet spaces.
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Proposition 3.10. Let p ∈ [1,∞) or p = 0 and let A be a Köthe matrix on N
such that λp(A) is a Montel space with λp(A) 6= CN. Then there exists an operator
T ∈ L(λp(A)) such that Tn → 0 in Lb(λp(A)) as n → ∞ and Γ(T ) = {1} but,
(I − T )m(λp(A)) is not closed for every m ∈ N.

Proof. By the proof of Proposition 3.1 in [7] there exists d := (di)i ∈ RN with
0 < di < 1 for all i ∈ N such that the diagonal operator T : λp(A)→ λp(A) given
by T ((xi)i) := (dixi)i, for x = (xi)i ∈ λp(A), is power bounded, uniformly mean
ergodic and (I−T )(λp(A)) is dense but, not closed in λp(A). So, for everym ∈ N,
also (I − T )m(λp(A)) is dense but not closed in λp(A). To see this, note that
the arguments in the proof of [7, Remark 3.6, (5)⇒(4)] are valid for any operator
T satisfying τs-limn→∞

Tn

n = 0 and acting in any Fréchet space. So, in the case
that (I − T )m(λp(A)) was closed for some m ∈ N, we could apply [7, Remark
3.6, (5)⇒(4)] to conclude that (I − T )(λp(A)) is also closed; a contradiction. So
1 ∈ Γ(T ).

We claim that Tn → 0 in Lb(λp(A)) as n → ∞. Indeed, since {Tn}∞n=1 is
equicontinuous and convergence of a sequence in Lb(λp(A)) is equivalent to its
convergence in Ls(λp(A)) (as λp(A) is Montel), it su�ces to show that limn→∞ T

nej =
0 in λp(A) for each j ∈ N, where ej := (δij)i ∈ λp(A). But, this is immediate
because Tnej = dnj ej , for all j, n ∈ N.

It remains to show that Γ(T ) ⊆ {1}. Set D := {di : i ∈ N}. Then D ⊆ [0, 1].
Let λ ∈ T \ {1}. Then infi∈N |λ − di| =: δ > 0. It is routine to check that, for

a �xed y ∈ λp(A), the element x :=
(

1
λ−di yi

)
i
belongs to λp(A) and satis�es

(λI−T )x = y. This means that the operator (λI−T ) is surjective. On the other

hand Ker(λI−T ) = {0} which follows from λ 6∈ {di : i ∈ N}. Therefore, as λp(A)
is a Fréchet space, λ ∈ ρ(T ), i.e., T \ {1} ⊆ ρ(T ). Since 1 ∈ Γ(T ), it follows that
Γ(T ) = {1}. �

Concerning the example in Proposition 3.10 we note that (i) of Theorem 3.3
holds but, (iii) of Theorem 3.3 fails (as Γ(T ) = {1} implies that σ(T ) 6⊆ D).
Moreover, (i) of Theorem 3.8 holds (as τb-limn→∞ T

n = 0) but, (ii) and (iii)
of Theorem 3.8 fail (because (I − T )m(λp(A)) is not closed in λp(A) for every
m ∈ N). Of course, λp(A) is not a prequojection.

A well known result of Katznelson and Tzafriri states that a power bounded
operator T on a Banach space satis�es limn→∞ ‖Tn+1 − Tn‖op = 0 if and only if
Γ(T ) ⊆ {1}, [28, Theorem 1 and p. 317 Remark]. In order to extend this result to
prequojection Fréchet spaces (see Theorem 3.13 below) we require the following
notion.

Let X be a Fréchet space and T ∈ L(X). A fundamental, increasing sequence
{qj}∞j=1 ⊆ ΓX which generates the lc�topology of X is called T -contractively
admissible if, for each j ∈ N, we have

qj(Tx) ≤ qj(x), x ∈ X. (3.16)

Lemma 3.11. Let X be a Fréchet space and T ∈ L(X). Then there exists a
T -contractively admissible sequence of seminorms which generates the lc�topology
of X if and only if T is power bounded.
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Proof. If {qj}∞j=1 ⊆ ΓX is T -contractively admissible, then it is clear from (3.16)

that qj(T
nx) ≤ qj(x), for x ∈ X and every n ∈ N0, j ∈ N. This means precisely

that {Tn}∞n=1 is equicontinuous in L(X), i.e., T is power bounded.
Conversely, suppose that T is power bounded. Let {rj}∞j=1 be a fundamen-

tal, increasing sequence in ΓX which generates the lc�topology of X. Via the
equicontinuity of {Tn}∞n=1 for every j ∈ N there exist k(j) ≥ j and αj > 0 such
that

rj(T
nx) ≤ αjrk(j)(x), x ∈ X, n ∈ N.

De�ne qj(x) := supn∈N0
rj(T

nx), for x ∈ X and each j ∈ N. Then the previous
inequality implies that

rj(x) ≤ qj(x) ≤ αjrk(j)(x), x ∈ X, j ∈ N,
and so {qj}∞j=1 ⊆ ΓX is a fundamental, increasing sequence determining the lc�

topology of X, which clearly satis�es (3.16). That is, {qj}∞j=1 is T -contractively
admissible. �

Remark 3.12. (i) For a Banach space X, Lemma 3.11 simply states that T is
power bounded if and only if it is a contraction for some equivalent norm in X.

(ii) Let X be a Fréchet space and T ∈ L(X) be an isomorphism which is bi-
power bounded, i.e., {Tn : n ∈ Z} is equicontinuous in L(X). An examination
of the proof of Lemma 3.11 shows that there exists a sequence {qj}∞j=1 ⊆ ΓX ,
again called T -contractively admissible, which generates the lc�topology of X and
satis�es, for each j ∈ N,

qj(T
nx) ≤ qj(x), x ∈ X, n ∈ Z. (3.17)

Theorem 3.13. Let X be a prequojection Fréchet space and T ∈ L(X) be power
bounded. The following assertions are equivalent.

(i) τb-limn→∞(Tn+1 − Tn) = 0.
(ii) Γ(T ) ⊆ {1} and there exists a T -contractively admissible sequence {pj}∞j=1 ⊆

ΓX such that, for each λ ∈ T \ {1} and j ∈ N, there exists Mλ,j > 0 sat-
isfying

pj(R(λ, T )x) ≤Mλ,jpj(x), x ∈ X. (3.18)

.

Remark 3.14. (i) If Γ(T ) ⊆ {1}, then necessarily T \ {1} ⊆ ρ(T ) and so the
resolvent family {R(λ, T ) : λ ∈ T \ {1}} is de�ned.

(ii) If Γ(T ) = ∅, then (i) of Theorem 3.13 follows without any further conditions.
Indeed, by Remark 3.2 we actually have σ(T ) ⊆ D. Then Theorem 3.3 implies
that τb-limn→∞ T

n = 0 and hence, also τb-limn→∞(Tn+1 − Tn) = 0.
(iii) If X is a Banach space and ‖ · ‖ is any norm in X for which T is a

contraction (i.e., ‖ · ‖ is T -contractively admissible), then the requirement (3.18)
automatically holds with Mλ := ‖R(λ, T )‖op. That is, condition (ii) in Theorem
3.13 simply reduces to Γ(T ) ⊆ {1} and we recover the result of Katznelson and
Tzafriri.

Proof. (of Theorem 3.13) (i)⇒(ii). As usual we distinguish two cases.
Case (I). X is a quojection.
According to Lemma 3.11 there is a T -contractively admissible sequence {qj}∞j=1 ⊆

ΓX satisfying (3.16) and hence, also qj(T
nx) ≤ qj(x), for x ∈ X and all j, n ∈ N.
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We proceed as in the proof of Proposition 3.1 (now using (3.16) in place of (3.6)
so that (3.8) becomes q̃j(Tj x̂) ≤ q̃j(x̂), for x̂ ∈ Xj and j ∈ N) to obtain that
X = proj j(Xj , Qj,j+1) in such a way that, for every j ∈ N, there exists a con-
traction Tj ∈ L(Xj) satisfying TjQj = QjT . Then also Tnj Qj = QjT

n for all

j, n ∈ N. For each j ∈ N, de�ne pj(x) := q̃j(Qjx) for x ∈ X. By the proper-
ties of projective limits {pj}∞j=1 ⊆ ΓX is a fundamental sequence generating the
lc-topology of X. Moreover,

pj(Tx) = q̃j(QjTx) = q̃j(TjQjx) ≤ q̃j(Qjx) = pj(x), x ∈ X,
shows that {qj}∞j=1 is also T -contractively admissible. According to Lemma 2.6

(applied to the norms ‖ ‖j := q̃j and with Sn := (Tn+1 − Tn), n ∈ N, and
S
(j)
n = (Tn+1

j − Tnj ), for j, n ∈ N), the assumption τb-limn→∞(Tn+1 − Tn) = 0

implies that limn→∞ ‖Tn+1
j − Tnj ‖op = 0, for each j ∈ N. By [28, Theorem 1]

we can conclude that Γ(Tj) ⊆ {1}. On the other hand, σ(Tj) ⊆ D as Tj is a
contraction and so σ(Tj) ⊆ D ∪ {1}, i.e., ρ(Tj) ⊇ C \ (D ∪ {1}), for j ∈ N.
According to Lemma 2.5 also ρ(T ) ⊇ C \ (D ∪ {1}), i.e., Γ(T ) ⊆ {1}.

Concerning (3.18), �x λ ∈ T \ {1} and j ∈ N. By the previous paragraph
λ ∈ ρ(T ) ∩ ρ(Tj). It follows from TjQj = QjT that QjR(λ, T ) = R(λ, Tj)Qj .
Hence, for x ∈ X, we have

pj(R(λ, T )x) = q̃j(QjR(λ, T )x) = q̃j(R(λ, Tj)Qjx)

≤ ‖R(λ, Tj)‖opq̃j(Qjx) = ‖R(λ, Tj)‖oppj(x)

which establishes (3.18).
Case (II). X is a prequojection.
As noted before, X and X ′β are barrelled (hence, quasi�barrelled) with T ′ ∈

L(X ′β) and T ′′ ∈ L(X ′′). So, the assumption τb-limn→∞(Tn+1 − Tn) = 0 implies

that τb-limn→∞((T ′′)n+1 − (T ′′)n) = 0. Moreover, X ′′ is a quojection Fréchet
space and T ′′ is power bounded; see Lemma 2.2. So, the result of Case (I) yields
Γ(T ′′) ⊆ {1}. But, Γ(T ) = Γ(T ′′) (see Corollary 2.4) and so Γ(T ) ⊆ {1} .

By (i)⇒(ii) for quojections there exists a T ′′-contractively admissible sequence
{p′′j }∞j=1 ⊆ ΓX′′ such that, for every λ ∈ T \ {1} and j ∈ N, there exists Mλ,j > 0
satisfying

p′′j (R(λ, T ′′)x′′) ≤Mλ,jp
′′
j (x
′′), x′′ ∈ X ′′.

By Lemma 2.1 and Corollary 2.4 the seminorms pj := p′′j ◦Φ, j ∈ N, satisfy (3.18).

(ii)⇒(i). Case (I): X is a quojection.
Let {pj}∞j=1 ⊆ ΓX be as in the statement of (ii), in which case (3.16) holds. Pro-

ceed as in Case (I) of the proof of (i)⇒(ii) to obtain that X = proj j(Xj , Qj,j+1) in
such a way that, for every j ∈ N, there exists a contraction Tj ∈ L(Xj), satisfying
TjQj = QjT .

Claim 1. Γ(Tj) ⊆ {1}, for every j ∈ N.
To establish this, let λ ∈ T \ {1}. Since Γ(T ) ⊆ {1}, it follows that λ ∈ ρ(T )

and hence, λI − T is surjective. But, also Qj : X → Xj is surjective. It is then
routine to check from the identity (λIj − Tj)Qj = Qj(λI − T ) that λIj − Tj is
surjective. To verify that λIj − Tj is injective suppose that (λIj − Tj)y = 0 for
some y ∈ Xj , in which case y = Qjx for some x ∈ X. Accordingly,

Qj(λI − T )x = (λIj − Tj)Qjx = (λIj − Tj)y = 0
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shows that (λI − T )x ∈ KerQj = Ker pj . It then follows from (3.18) that
x = R(λ, T )(λI − T )x ∈ Ker pj , i.e., Qjx = 0. Since y = Qjx, we have y = 0.
Hence, λIj − Tj is injective. This establishes that λ ∈ ρ(Tj) and hence, Claim 1
follows as λ ∈ T \ {1} was arbitrary.

Fix j ∈ N. From Claim 1 and the fact that Tj is a contraction, it follows from

[28, Theorem 1] that limn→∞ ‖Tnj −T
n+1
j ‖op = 0. According to Lemma 2.6 (with

Sn := (Tn+1 − Tn), n ∈ N) we can conclude that τb-limn→∞(Tn+1 − Tn) = 0.
Case (II): X is a prequojection.
By Corollary 2.4 we have from Γ(T ) ⊆ {1} that Γ(T ′′) ⊆ {1}. Moreover,

Lemma 2.2 implies that T ′′ ∈ L(X ′′) is power bounded.
Let {pj}∞j=1 ⊆ ΓX be as stated in part (ii). Apply Lemma 2.1 to construct

the seminorms {p′′j }∞j=1 ⊆ ΓX′′ given there. We �rst verify that {p′′j }∞j=1 ⊆ ΓX′′ is

T ′′-contractively admissible. Since {pj}∞j=1 is T -contractively admissible, we have

T (Uj) ⊆ Uj with Uj the closed unit ball of pj , i.e., Uj = p−1j ([0, 1]), for j ∈ N. By
the Bi-polar Theorem, [34, Theorem 22.13] applied twice we have

T ′′(U◦◦j ) = T ′′(Uσj ) ⊆ T (Uj)
σ ⊆ Uσj = U◦◦j , (3.19)

where V
σ
denotes the closure for the weak topology σ(X ′′, X ′) of a subset V ⊆ X ′′

(or, of V ⊆ X ⊆ X ′′). Then (3.19) implies that p′′j (T
′′x′′) ≤ p′′j (x

′′) for each

x′′ ∈ X ′′ and j ∈ N, i.e., {p′′j }∞j=1 is T ′′-contractively admissible.

It follows from (3.18) that R(λ, T )(Uj) ⊆ Uj , for all λ ∈ T \ {1} and j ∈ N.
Using R(λ, T ′′)|X = R(λ, T ) (c.f. Corollary 2.4) one can repeat the argument
via the Bi-polar Theorem to conclude that R(λ, T ′′)(U◦◦j ) ⊆Mλ,jU◦◦j , which then
implies that

p′′j (R(λ, T ′′)x′′) ≤Mλ,jp
′′
j (x
′′), x′′ ∈ X ′′.

So, the conditions in part (ii) are satis�ed for the power bounded operator T ′′ ∈
L(X ′′) with respect to {p′′j }∞j=1. Applying (ii)⇒(i) for the quojection Fréchet

space X ′′ we conclude that τb-limn→∞((T ′′)n+1 − (T ′′)n) = 0. But, T ′′|X = T
with X closed in X ′′. So, τb-limn→∞(Tn+1 − Tn) = 0, i.e., (i) holds. �

Let X be a prequojection Fréchet space and T ∈ L(X) be power bounded. By
Remark 3.2 we have σ(T ) ⊆ D. Suppose that T is actually bi-power bounded.
Then also σ(T−1) ⊆ D. Clearly, 0 ∈ ρ(T ). Moreover, if µ ∈ D \ {0}, then
1
µ ∈ C \ D and so 1

µ ∈ ρ(T−1), i.e.,
(

1
µI − T

−1
)
∈ L(X). It is routine to check

that Rµ := − 1
µT
−1
(

1
µI − T

−1
)
∈ L(X) satis�es (µI − T )Rµ = I = Rµ(µI − T )

and hence, (µI−T ) is invertible in L(X) with (µI−T )−1 = Rµ. This shows that
D ⊆ ρ(T ). Accordingly, σ(T ) ⊆ T; for X a Banach space, see [21, Proposition
1.31], for example. Suppose now, in addition, that σ(T ) = {1} in which case
σ(T − I) = {0}, i.e., T is quasinilpotent. For X a Banach space, a classical result
of Gelfand�Hille then states that necessarily T = I; see the survey article [42]
for a complete discussion of this topic. The following fact is an extension of this
result.

Corollary 3.15. Let X be a prequojection Fréchet space and T ∈ L(X) be an
isomorphism which is bi-power bounded. Suppose that Γ(T ) = {1} and there
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exists a T -contractively admissible sequence {pj}∞j=1 ⊆ ΓX such that, for each

λ ∈ T \ {1}, the inequalities (3.18) are satis�ed. Then T = I.

Proof. According to Theorem 3.13 we can conclude that τb-limn→∞(Tn+1−Tn) =
0. Fix x ∈ X. For each j ∈ N, it follows that

pj((T − I)x) = pj(T
−nTn(T − I)x) ≤ pj(Tn(T − I)x) = pj((T

n+1 − Tn)x)

for every n ∈ N. Since limn→∞(Tn+1−Tn)x = 0, it follows that pj((T −I)x) = 0
with j ∈ N arbitrary, i.e., Tx = x. So, T = I. �

4. Operator ideals and uniform mean ergodicity

Let X, Y be lcHs'. An operator T ∈ L(X,Y ) is called Montel (resp. re�exive)
if T maps bounded subsets of X into relatively compact (resp. relatively weakly
compact subsets) subsets of Y , [17] (resp., [16]). According to Grothendieck, [26,
Chapter 5, Part 2], T is called compact (resp., weakly compact) if there exists a
0�neighbourhood U ⊆ X such that T (U) is relatively compact (resp., relatively
weakly compact) in Y . Clearly, the 2�sided idealM(X,Y ) (resp., R(X,Y )) of all
Montel (resp., re�exive) operators coincides with the 2�sided ideal K(X,Y ) (resp.,
WK(X,Y )) of all compact (resp., weakly compact) operators whenever X, Y are
Banach spaces. For general lcHs' we always have K(X,Y ) ⊆ M(X,Y ) but, the
containment may be proper; consider the identity operator on an in�nite dimen-
sional Montel lcHs. Clearly, M(X,Y ) ⊆ R(X,Y ) and WK(X,Y ) ⊆ K(X,Y ).
Criteria for membership of M(X,Y ) (resp. R(X,Y )) occur in Theorem 9.2.1
(resp. Corollary 9.3.2) of [24], for example.

In this section we present various connections between the uniform convergence
of sequences of operators generated by an operator T ∈ H(X) and the uniform
mean ergodicity of T , where H stands for one of the operator ideals K,M, WK,
R.

Every compact operator T acting in a Banach space has the property that

(I−T ) has closed range. Hence, if limn→∞
‖Tn‖op

n = 0, then T is uniformly mean
ergodic, [22, p.711, Corollary 4], [31, p.87, Theorem 2.1]. For any lcHs X and
T ∈ K(X), it is also the case that (I − T )(X) is a closed subspace of X, [24,
Theorem 9.10.1]. Hence, if X is a prequojection Fréchet space, then Theorem
3.5 of [7] implies that T is uniformly mean ergodic whenever τb-limn→∞

Tn

n = 0

(equivalently, τs-limn→∞
Tn

n = 0 because K ∈ K(X); see Remark 4.4(ii)). Since
K(X) ⊆ M(X), the question arises of whether the same is true for T ∈ M(X)?
This is indeed so; see Theorem 4.5 below.

In a lcHs X all relatively σ(X,X ′)�compact sets and all relatively sequentially
σ(X,X ′)�compact sets are necessarily relatively countably σ(X,X ′)�compact.
These are the only implications between these three notions which hold in general.
All three notions coincides whenever Xσ is angelic, [25, p.31]. Such spaces X
include all Fréchet spaces (actually, all (LF)�spaces), all (DF)�spaces and many
more, [25, Section 3.10], [14, Theorem 11, Examples 1.2].

Operators T ∈ L(X) for which {T[n]}∞n=1 ⊆ L(X) is equicontinuous will be
called Cesàro bounded ; see [31, p.72] for X a Banach space.

Proposition 4.1. Let X be a lcHs such that Xσ is angelic and T ∈ L(X).
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(i) If T ∈ R(X) is Cesàro bounded and satis�es τs-limn→∞
Tn

n = 0, then T
is mean ergodic.

(ii) If T ∈ M(X) is Cesàro bounded and satis�es τb-limn→∞
Tn

n = 0, then T
is uniformly mean ergodic.

Proof. (i) Fix x ∈ X. It follows from (2.10) that

T[n]x = T[n](I − T )x+ T[n]Tx =
1

n
(T − Tn+1)x+ TT[n]x, n ∈ N. (4.1)

The equicontinuity of {T[n]}∞n=1 ensures that {T[n]x}∞n=1 ∈ B(X). Since T ∈
R(X), the set {T (T[n]x)}∞n=1 is relatively weakly compact in X. Moreover,

limn→∞
1
n(T − Tn+1)x = 0 in X because of τs-limn→∞

Tn

n = 0. These facts, to-
gether with Xσ being angelic and(4.1), show that {T[n]x}∞n=1 is relatively weakly
(hence, relatively weakly sequentially) compact in X. Since x is arbitrary, we can
apply Theorem 2.4 of [2] (an examination of its proof shows that it is not neces-
sary to assume the barrelledness of X stated there because of the equicontinuity
of {T[n]}∞n=1 assumed here) to conclude that T is mean ergodic.

(ii) By part (i) the operator T is mean ergodic, i.e., τs-limn→∞ T[n] =: P exists
in Ls(X). In particular, P = TP = PT (which follows from (2.10)) and so
P = T[n]P = PT[n], for n ∈ N.

To establish the uniform mean ergodicity of T , �x p ∈ ΓX , ε > 0 and B ∈ B(X).
By the equicontinuity of {T[n]}∞n=1 there exist M > 0 and q ∈ ΓX such that

p((T[n] − P )x) ≤Mq(x), x ∈ X, n ∈ N. (4.2)

On the other hand, T (B) is a relatively compact subset of X and so there exist
z1, . . . , zh ∈ T (B) such that, for every y ∈ T (B), we have q(y− zi) < ε/(2M) for
some i ∈ {1, . . . , h}. Hence, via (4.2) we obtain, for every x ∈ B and n ∈ N, that

p(T[n]Tx− Px) = p((T[n] − P )Tx) ≤ p((T[n] − P )(Tx− zi)) + p((T[n] − P )zi)

≤Mq(Tx− zi) + p((T[n] − P )zi) <
ε

2
+ p((T[n] − P )zi).

It follows that

sup
x∈B

p(T[n]Tx− Px) ≤ ε

2
+ max
i=1,...,h

p((T[n] − P )zi), n ∈ N,

with limn→∞maxi=1,...,h p((T[n] − P )zi) = 0. The arbitrariness of ε > 0 implies
that limn→∞ supx∈B p(T[n]Tx− Px) = 0. So, τb-limn→∞ T[n]T = P .

Finally, the arbitrariness of p ∈ ΓX and of B ∈ B(X) together with the assump-
tion τb-limn→∞

Tn

n = 0 imply, via (4.1), that T is uniformly mean ergodic. �

Remark 4.2. (i) Let X be a lcHs and T ∈ L(X) be mean ergodic with P := τs-
limn→∞ T[n]. Then it follows from P = PT that P ∈ H(X) whenever T ∈ H(X)
(here, H stands for the operator ideal K, M, WK or R). In particular, if T ∈
K(X), then the space Fix(T ) := {x ∈ X : Tx = x} = Ker(I − T ) = P (X) is
�nite�dimensional, [24, Theorem 9.10.1(1)].

(ii) Let X be a lcHs such that Xσ is angelic. Then the class of all weakly
completely continuous operators in L(X) in the sense of De�nition 2 in [10] is
precisely WK(X). Moreover, if X is additionally barrelled then, for any T ∈
L(X), the boundedness of the set {Tn}∞n=1 in Ls(X) is equivalent to T being
power bounded. In particular, T is necessarily Cesàro bounded and satis�es
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τs-limn→∞
Tn

n = 0. Accordingly, the containment WK(X) ⊆ R(X) shows that
Proposition 4.1(i) is an extension of the following result of Altman, [10, Theorem].
Fact 1. Let X be a barrelled lcHs with Xσ being angelic. Then every power

bounded operator T ∈ WK(X) is mean ergodic.

The following technical result should be compared with [17, Proposition 3.1].

Lemma 4.3. Let X be a quojection Fréchet space, Y be a Fréchet space and
T ∈ M(X,Y ) (resp. T ∈ R(X,Y )). Suppose that X = proj j(Xj , Qj,j+1), with
Xj a Banach space (having norm ‖ ‖j) and surjective linking maps Qj,j+1 ∈
L(Xj+1, Xj), for all j ∈ N, and that Y = proj j(Yj , Rj,j+1), with Yj a Banach
space (having norm ||| |||j) and linking maps Rj,j+1 ∈ L(Yj+1, Yj) for all j ∈ N.
Then, for every j ∈ N, there exist k(j) ≥ j and Tj ∈ K(Xk(j), Yj) (resp. Tj ∈
WK(Xk(j), Yj)) such that

RjT = TjQk(j), (4.3)

where Rj ∈ L(Y, Yj), j ∈ N, is the canonical projection of Y into Yj (i.e., Rj,j+1 ◦
Rj+1 = Rj).

Proof. If we de�ne qj(x) := ‖Qjx‖j for x ∈ X and j ∈ N and rj(y) := |||Rjy|||j
for y ∈ Y and j ∈ N, then {qj}∞j=1 and {rj}∞j=1 are fundamental sequences of
seminorms generating the lc�topology of X and of Y , respectively.

Fix j ∈ N. The continuity of T implies that there exist k(j) ≥ j and Cj > 0
satisfying

rj(Tx) ≤ Cjqk(j)(x), x ∈ X,
or equivalently, that

|||RjTx|||j ≤ Cj‖Qk(j)x‖j , x ∈ X.
As noted before such an inequality ensures that there exists Tj ∈ L(Xk(j), Yj)
de�ned via RjT = TjQk(j).

Denote by Uk(j) the closed unit ball of Xk(j). Since X is a quojection Fréchet
space, there exists B ∈ B(X) such that Uk(j) ⊆ Qk(j)(B), [19, Proposition
1]. Since T is Montel (resp. re�exive) and Rj is continuous, it follows from
Tj(Uk(j)) ⊆ Tj(Qk(j)(B)) = Rj(T (B)), withRj(T (B)) a relatively compact subset
(resp. relatively weakly compact subset) of Yj , that Tj(Uk(j)) is a relatively com-
pact (resp. relatively weakly compact) subset of Yj . That is, Tj ∈ K(Xk(j), Yj)
(resp. Tj ∈ WK(Xk(j), Yj)). �

Remark 4.4. (i) Let X = proj j(Xj , Qj,j+1) be a quojection Fréchet space and
T ∈ L(X). Suppose, for every j ∈ N, that there exists Cj > 0 such that qj(Tx) ≤
Cjqj(x) for x ∈ X (here, the notation is according to Lemma 4.3 and its proof with
Y := X). Then, for every j ∈ N, there exists Tj ∈ L(Xj) satisfying QjT = TjQj .
So, if T ∈M(X) (resp., T ∈ R(X)), then each Tj ∈ K(Xj) (resp., Tj ∈ WK(Xj)).

(ii) Let X be a Fréchet space and T ∈ M(X). Then τs-limn→∞
Tn

n = 0 if and

only if τb-limn→∞
Tn

n = 0.

As τs ⊆ τb, it su�ces to show τs-limn→∞
Tn

n = 0 implies τb-limn→∞
Tn

n = 0.

Since X is a Fréchet space and τs-limn→∞
Tn

n = 0, the set
{
Tn

n

}∞
n=1

is equicon-
tinuous in L(X), i.e., for every p ∈ ΓX there exist q ∈ ΓX and M > 0 such
that

p

(
Tnx

n

)
≤Mq(x), x ∈ X, n ∈ N. (4.4)
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Now, �x p ∈ ΓX , B ∈ B(X) and ε > 0. Choose q ∈ ΓX and M > 0 according
to (4.4). Since T is a Montel operator, T (B) is a relatively compact subset of X
and so there exist x1, . . . , xk ∈ X such that

T (B) ⊆ ∪ki=1

(
xi +

ε

2M
Uq
)
, (4.5)

with Uq := {x ∈ X : q(x) ≤ 1}. Let x ∈ B. By (4.5) there exist i ∈ {1, . . . , k}
and z ∈ Uq such that T (x) = xi + ε

2M z. Then, by (4.4), we have for every n > 1
that

p

(
Tnx

n

)
= p

(
Tn−1

n
T (x)

)
≤ p

(
Tn−1xi
n

)
+

ε

2M
p

(
Tn−1z

n

)
≤ p

(
Tn−1xi
n− 1

)
+
ε

2
.

But, p
(
Tn−1xi
n−1

)
→ 0 as n → ∞. So, there exists n0 ∈ N (depending only on

xi) such that p
(
Tnx
n

)
< ε for every n ≥ n0. Since x is arbitrary and the set

{x1, . . . , xk} is �nite, we can conclude that supx∈B p
(
Tnx
n

)
→ 0 for n → ∞. By

the arbitrariness of B and p we have τb-limn→∞
Tn

n = 0.

The following result should be compared with Proposition 4.1(ii). We point
out (even if dim(X) < ∞) that a Cesàro bounded operator T need not satisfy
Tn

n → 0 in Ls(X), [31, p.85].

Theorem 4.5. Let X be a prequojection Fréchet space and T ∈ M(X). If τs-
limn→∞

Tn

n = 0, then T is uniformly mean ergodic.

Proof. Case (I). X is a quojection.
The condition τs-limn→∞

Tn

n = 0 ensures that both τb-limn→∞
Tn

n = 0 (see
Remark 4.4(ii)) and that we can represent X = proj j(Xj , Qj,j+1) such that, for
every j ∈ N, there exists Tj ∈ L(Xj) satisfying QjT = TjQj ; see the proof of
Proposition 3.1. According to Lemma 4.3 and Remark 4.4(i) we have Tj ∈ K(Xj)

for all j ∈ N. Moreover,
Tn
j

n → 0 in Lb(Xj) for n → ∞; see Remark 4.4(ii) and

Lemma 2.6 with Sn := Tn

n , for n ∈ N.
Since Tj ∈ K(Xj) and

Tn
j

n → 0 in Lb(Xj) for n→∞, for every j ∈ N, each Tj
is uniformly mean ergodic, [22, p.711 Corollary 4], which implies that T is also
uniformly mean ergodic; see Lemma 2.7.

Case (II). X is a prequojection.
As noted before X and X ′β are barrelled (hence, quasi-barrelled) with T ′ ∈

L(X ′β) and T ′′ ∈ L(X ′′). So, the condition τb-limn→∞
Tn

n = 0 (see Remark

4.4(ii)) implies that τb-limn→∞
(T ′′)n

n = 0. Moreover, X ′′ is a quojection Fréchet
space. Also, Corollaries 2.3 and 2.4 of [17] yield that T ′′ ∈ M(X ′′). We can
then apply Case (I) to conclude that T ′′ is uniformly mean ergodic. So, T is also
uniformly mean ergodic as T ′′|X = T and X is a closed subspace of X ′′. �

It was noted prior to Proposition 4.1, for X a prequojection Fréchet space and
T ∈ K(X), that T is uniformly mean ergodic whenever τb-limn→∞

Tn

n = 0. Since
K(X) ⊂ M(X) in general, Theorem 4.5 can be viewed as an extension of this
fact.

Corollary 4.6. Let X be a prequojection Fréchet space and T ∈M(X) be power
bounded. Then Γ(T ) ⊆ {1} if and only if τb-limn→∞(Tn+1 − Tn) = 0.
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Proof. If τb-limn→∞(Tn+1 − Tn) = 0, then Theorem 3.13 yields Γ(T ) ⊆ {1}.
Conversely, suppose that Γ(T ) ⊆ {1}. Since T is power bounded, Tn

n → 0
in Lb(X) for n → ∞ and so T is uniformly mean ergodic by Theorem 4.5. By
Theorem 3.5 of [7] this is equivalent to the fact that (I−T )(X) is closed in X. So,
by Theorem 3.8 (ii)⇔(iii) we can conclude that τb-limn→∞(Tn+1 − Tn) = 0. �

In a Banach space X, an operator T ∈ L(X) is called quasi�compact if there
exist m ∈ N and K ∈ K(X) such that ‖Tm − K‖op < 1, [23, �6], [31, p.88].
For example, if some power of T ∈ L(X) is compact or if some power of T has
norm less than one, then T is quasi�compact. For a quasi�compact operator T
it is known that τs�limn→∞

Tn

n = 0 su�ces for T to be uniformly mean ergodic,
[22, Ch.VIII, Corollary 8.4]. For X non�normable, the question arises of how to
extend the notion of a quasi�compact operator.

According to [40, De�nition 1], for a lcHs X an operator T ∈ L(X) is called
quasi�precompact if there exists a 0�neighbourhood W such that for every 0-
neighbourhood U in X there exist p ∈ N and a �nite set F ⊆ X (both depending
on U) with the property that T p(W ) ⊆ ∪y∈F (y+U). For X a Banach space, this
notion coincides precisely with T being quasi�compact, [40, Theorem 3]. In [15]
an operatorK ∈ L(X) is called V �compact ifK(V ) is a relatively compact subset
of X, where V is some 0�neighbourhood in X. More generally, T ∈ L(X) is called
V �quasicompact, [15, De�nition 2.1], if there exist m ∈ N, a V �compact operator
K and δ ∈ (0, 1) such that (Tm −K)(V ) ∈ B(X) and (Tm −K)(V ) ⊆ δV .

Lemma 4.7. Let X be a lcHs and V be any 0�neighbourhood in X. Then every
V �quasicompact operator is quasi�precompact.

Proof. Let T ∈ L(X) be V �quasicompact. Choose m ∈ N, a V �compact operator
K and δ ∈ (0, 1) such that B := (Tm −K)(V ) is bounded and B ⊆ δV . Then

(Tm −K)2(V ) = (Tm −K)(B) ⊆ (Tm −K)(δV ) = δB.

Proceeding inductively yields

(Tm −K)p(V ) ⊆ δp−1B, p ∈ N. (4.6)

Fix p ∈ N. Note that Tm and K need not commute. By expanding (Tm−K)p

it can be seen that (Tm−K)p = Tmp−Hp, where Hp is a �nite sum of operators
all of the form AK or BK(Tm)n with A, B ∈ L(X) and n ∈ {1, . . . , p− 1}. The
claim is that Hp is a V �compact operator. Indeed, since AK is always V -compact
and the �nite sum of V -compact operators is clearly V �compact, it su�ces to
show that K(Tm)n (hence, also BK(Tm)n) is V �compact for all 1 ≤ n < p.

For n = 1, observe that Tm(V ) = K(V ) +B ⊆ K(V ) + δV yields

KTm(V ) ⊆ K2(V ) + δK(V ),

which is a relatively compact subset of X. For n = 2, we then have

(Tm)2(V ) ⊆ Tm(K(V ) + δV ) = TmK(V ) + δTm(V )

and hence, that
K(Tm)2(V ) ⊆ KTmK(V ) + δKTm(V ).

Since both TmK(V ) andKTm(V ) are relatively compact, it follows thatK(Tm)2(V )
is also relatively compact. This argument can be continued to yield the above
stated claim for all 1 ≤ n < p.
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De�ne now W := V and let U be any convex, balanced 0�neighbourhood of
X. Since B is bounded, there is λ > 0 such that B ⊆ 1

2λU . Choose p̃ ∈ N large

enough to ensure that δp̃−1λ ≤ 1. It follows from (4.6) that

(Tmp̃ −Hp̃)(W ) = (Tm −K)p̃(V ) ⊆ δp̃−1B

and so

Tmp̃(W ) ⊆ Hp̃(V ) + (Tmp̃ −Hp̃)(W ) ⊆ Hp̃(V ) +
1

2
δp̃−1λU ⊆ Hp̃(V ) +

1

2
U .

But, Hp̃(V ) is relatively compact and so there is a �nite set F ⊆ X such that
Hp̃(V ) ⊆ ∪x∈F (x+ 1

2U). Accordingly,

Tmp̃(W ) ⊆ 1

2
U + ∪x∈F (x+

1

2
W ) ⊆ ∪x∈F (x+ U).

which establishes that T is quasi�precompact. �

Returning to mean ergodicity, we have the following result of Pietsch, [40,
Theorem 7].
Fact 2. Let X be a complete, barrelled lcHs and T ∈ L(X) be a quasi�

precompact operator satisying τs-limn→∞
Tn

n = 0. Then T is uniformly mean
ergodic and Fix(T ) = Ker(I − T ) is �nite-dimensional.

In order to be able to extend this result to a larger class of operators we recall,
for a Banach space X, that T ∈ L(X) is quasi�compact if and only if there exists
a sequence {Kn}∞n=1 ⊆ K(X) such that limn→∞ ‖Tn−Kn‖ = 0, [31, p.88 Lemma
2.4].

De�nition 4.8. Let X be a lcHs. An operator T ∈ L(X) is called quasi�
Montel (resp., quasi�re�exive) if there exists a sequence {Mn}∞n=1 ⊆M(X) (resp.,
{Mn}∞n=1 ⊆ R(X)) such that (Tn −Mn)→ 0 in Lb(X) as n→∞.

Remark 4.9. (i) LetX be a Fréchet space and T ∈ L(X) be quasi�Montel. Then
T ′′ ∈ L(X ′′) is also quasi�Montel. Indeed, in the notation of De�nition 4.8, we
have {M ′′n}∞n=1 ⊆ M(X ′′), [17, Corollaries 2.3 and 2.4], with ((T ′′)n −M ′′n) → 0
in Lb(X ′′) as n→∞; see [3, Lemma 2.6] or [4, Lemma 2.1].

(ii) Let X be a Fréchet space and T ∈ L(X) be quasi�Montel. Then τs-
limn→∞

Tn

n = 0 if and only if τb-limn→∞
Tn

n = 0.

Again it su�ces to show that τs-limn→∞
Tn

n = 0 implies τb-limn→∞
Tn

n = 0.
Arguing as in Remark 4.4(ii), for every p ∈ ΓX there exist q ∈ ΓX and M > 0

such that (4.4) holds. Fix p ∈ ΓX , B ∈ B(X) and ε > 0. Choose q and M
according to (4.4). Since T is a quasi�Montel operator, there is {Mn}∞n=1 ⊆M(X)
with (Tn −Mn)→ 0 in Lb(X) as n→∞. So there exists m ∈ N such that

sup
x∈B

q((Tm −Mm)x) <
ε

4M
. (4.7)

But, Mm ∈M(X) and so Mm(B) is a relatively compact subset of X. It follows
that there exist x1, . . . , xk ∈ X such that

Mm(B) ⊆ ∪ki=1

(
xi +

ε

4M
Uq
)
, (4.8)
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where Uq := {x ∈ X : q(x) ≤ 1}. From (4.7) and (4.8) it follows that

Tm(B) ⊆ (Tm −Mm)(B) +Mm(B) ⊆ ε

4M
Uq + ∪ki=1

(
xi +

ε

4M
Uq
)

⊆ ∪ki=1

(
xi +

ε

2M
Uq
)
. (4.9)

Fix x ∈ B. By (4.9) there exist i ∈ {1, . . . , k} and z ∈ Uq such that Tm(x) =
xi + ε

2M z. Then, by (4.4), for every n > m we have that

p

(
Tnx

n

)
= p

(
Tn−m

n
Tm(x)

)
≤ p

(
Tn−mxi

n

)
+

ε

2M
p

(
Tn−mz

n

)
≤ p

(
Tn−mxi
n−m

)
+
ε

2
.

But, p
(
Tn−mxi
n−m

)
→ 0 as n → ∞. So, there exists n0 ∈ N (depending only on

xi) such that p
(
Tnx
n

)
< ε, for every n ≥ n0. Since x is arbitrary and the set

{x1, . . . , xk} is �nite, we can conclude that supx∈B p
(
Tnx
n

)
→ 0 for n → ∞. By

the arbitrariness of B and p we have τb-limn→∞
Tn

n = 0.

Proposition 4.10. Let X be a prequojection Fréchet space and T ∈ L(X) sat-
isfy τs-limn→∞

Tn

n = 0. If T is quasi�precompact, then there exists a sequence
{Kn}∞n=1 ⊆ K(X) such that τb-limn→∞(Tn −Kn) = 0. In particular, T is quasi�
Montel as K(X) ⊆M(X).

Proof. The completeness of X ensures that every precompact subset of X is also
relatively compact. By Fact 2 the operator T is uniformly mean ergodic and so
τb-limn→∞

Tn

n = 0. By Theorem 1, Theorem 2 and Satz 10 of [40] there exist R ∈
L(X) and a projection P ∈ L(X) commuting with T such that dimP (X) < ∞
and satisfying

Tn = Rn + TnP, n ∈ N (4.10)

and

C \ D ⊆ ρ(R). (4.11)

Since P ∈ K(X), also Kn := TnP ∈ K(X) for each n ∈ N. Moreover, (4.10)
yields Rn = Tn(I − P ) = (I − P )Tn, for n ∈ N, and so τb-limn→∞

Rn

n = 0. Since
(4.11) is equivalent to σ(R) ⊆ D, it then follows from Theorem 3.3 applied to R
that τb-limn→∞R

n = 0. It is then clear (see (4.10)) that (Tn−Kn) = Rn → 0 in
Lb(X) as n→∞. �

Remark 4.11. There exist quasi-Montel operators, even in quojection Fréchet
spaces, which fail to be quasi�precompact.

(i) For X := ω = CN, de�ne the projection P ∈ L(X) via

Px := (x1, 0, x3, 0, x5, . . .), x = (xn)n ∈ X.

Since X is a Montel space, all of its bounded subsets are relatively compact. It
is then clear that P ∈ M(X) and hence, P is surely quasi�Montel. Of course,
P 6∈ K(X). On the other hand, since Ker(I−P ) is in�nite-dimensional, P cannot
be quasi�precompact, [40, Satz 3].

(ii) Let X be as in (i) and de�ne the diagonal operator T ∈ L(X) by

Tx :=

(
x1,

1

2
x2,

1

3
x3, . . .

)
, x = (xn)n ∈ X.
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The same argument as in (i) shows that T ∈ M(X). In this case, in contrast to
(i), the space Ker(I − T ) = span{(1, 0, 0, . . .)} is �nite-dimensional. However, T
still fails to be quasi�precompact, [40, p.24].

Remark 4.12. The converse of Proposition 4.10 is not valid. Indeed, let X := ω
and T ∈ L(X) be as Remark 4.11(ii), in which case X is a quojection Fréchet
space. For each n ∈ N, let Kn ∈ L(X) be the �nite rank operator given by

Knx :=
(
x1,

x2
2n
,
x3
3n
, . . . ,

xn
nn
, 0, 0, . . .

)
, x = (xj)j ∈ X.

Then Un := {x ∈ X : max1≤j≤n |xj | ≤ 1} is a 0�neighbourhood in X. Since Kn

has �nite-dimensional range, it follows that Kn(Un) is a relatively compact subset
of X, i.e., Kn ∈ K(X) for each n ∈ N. Direct calculations show that the sequence
of operators

(Tn −Kn)x =

(
0, . . . , 0,

xn+1

(n+ 1)n
,

xn+2

(n+ 2)n
, . . .

)
, x = (xj)j ∈ X,

converges to 0 in Ls(X) as n → ∞. Since X is a Montel space, also τb-
limn→∞(Tn − Kn) = 0. However, as noted in Remark 4.11(ii), the diagonal
operator T is not quasi�compact.

In view of Remark 4.11 the following result is an extension of Fact 2 above for
prequojection Fréchet spaces (without the condition dim Ker(I − T ) <∞).

Theorem 4.13. Let X be a prequojection Fréchet space and T ∈ L(X). If T is a
quasi�Montel operator and τs-limn→∞

Tn

n = 0, then T is uniformly mean ergodic.

Proof. Case (I). X is a quojection.
The assumption τs-limn→∞

Tn

n = 0 ensures that we can proceed as in the proof
of Proposition 3.1 to obtain X = proj j(Xj , Qj,j+1) in such a way that, for every
j ∈ N, there exists Tj in L(Xj) satisfying QjT = TjQj . Then also QjT

n = Tnj Qj

and Qj
Tn

n =
Tn
j

n Qj , for every j, n ∈ N. So, Lemma 2.6 (with Sn := Tn

n , for

n ∈ N) implies that τs-limn→∞
Tn
j

n = 0 for all j ∈ N.
Since T is quasi�Montel, there exists a sequence {Mn}n∈N ⊆M(X) such that

τb-limn→∞(Tn−Mn) = 0. From this it follows that the operator Tj , for any �xed
j ∈ N, is quasi�precompact. To see this, let q̃j denote the norm of Xj and ε > 0.
Since pj := q̃j ◦Qj ∈ ΓX , there exists n ∈ N such that

sup
x∈B

pj(T
nx−Mnx) <

ε

2
,

with B ∈ B(X) chosen such that B̂j ⊆ Qj(B). Since

sup
x∈B

pj(T
nx−Mnx) = sup

x∈B
q̃j(Qj(T

nx−Mnx)) = sup
x∈B

q̃j(T
n
j Qjx−QjMnx),

it follows that

Tnj (B̂j) ⊆ Tnj (Qj(B)) ⊆ Qj(Mn(B)) +
ε

2
B̂j .

Hence, by the relative compactness (hence, precompactness) of Qj(Mn(B)) in
Xj , due to Mn ∈ M(X) and the continuity of Qj , there exist x̂1, . . . , x̂k ∈ Xj

such that
Tnj (B̂j) ⊆ ∪ki=1(x̂i + εB̂j).
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The arbitrariness of ε ensures that Tj ∈ L(Xj) is quasi�precompact. As Xj is

a Banach space, Tj is quasi�compact,[40, Theorem 3], and satis�es
Tn
j

n → 0 in
Ls(Xj) for n → ∞. By Fact 2, each operator Tj , for j ∈ N, is uniformly mean
ergodic. Then Lemma 2.7 implies that T is also uniformly mean ergodic.

Case (II). X is a prequojection.
The condition τs-limn→∞

Tn

n = 0 actually means that τb-limn→∞
Tn

n = 0 be-
cause T is quasi�Montel (see Remark 4.9(ii)). So, arguing as for Case (II) in

the proof of Theorem 4.5 it follows that also τb-limn→∞
(T ′′)n

n = 0. Moreover, by
Remark 4.9(i) the operator T ′′ is quasi�Montel. Since X ′′ is a quojection Fréchet
space, we can apply Case (I) to conclude that T ′′ is uniformly mean ergodic.
Then T is also uniformly mean ergodic as T ′′|X = T with X a closed subspace of
X ′′. �

Since the only Fréchet-Montel spaces which are normable are the �nite-dimensional
ones, the following result may be viewed as an analogue of the fact that Ker(λI−
T ) is �nite-dimensional whenever T is quasi�precompact; see De�nition 3 and
Theorem 1 of [40].

Proposition 4.14. Let X be a Fréchet space and T ∈ L(X) be a quasi�Montel
operator. Then Ker(λI − T ) is a Fréchet�Montel space, for every λ ∈ T.

Proof. It su�ces to show that Fix(T ) = Ker(I − T ) is a Fréchet-Montel space.
Indeed, for every λ ∈ T, the operator λ−1T is quasi�Montel if and only if T is
quasi�Montel, with Ker(λI − T ) = Fix(λ−1T ).

Let {rj}∞j=1 be any fundamental, increasing sequence of seminorms generating

the lc�topology of X. Let {xk}∞k=1 ⊆ Fix(T ) be a bounded sequence. Since T is
quasi�Montel, there exists {Mn}∞n=1 ⊆M(X) such that τb-limn→∞(Tn−Mn) = 0
and so, for every j ∈ N, we have supk∈N rj(xk −Mnxk)→ 0 as n→∞.

Since {xk}∞k=1 is bounded and each operator Mn, for n ∈ N, is Montel, we may

construct recursively subsequences {xnk}∞k=1 of {xk}∞k=1 such that each {xn+1
k }∞k=1

is a subsequence of {xnk}∞k=1 and {Mnx
n
k}∞k=1 converges in X for all n ∈ N. Con-

sider the diagonal sequence {xkk}∞k=1. Clearly, {Mnx
k
k}∞k=1 converges in X for each

n ∈ N (by observing that {Mnx
k
k}∞k=1 ⊆ {Mnx

n
k}∞k≥n). Fix ε > 0 and j ∈ N. Then

, for every k, k′ ∈ N and n ∈ N, we have

rj(x
k
k − xk

′
k′) ≤ rj(xkk −Mnx

k
k) + rj(Mnx

k
k −Mnx

k′
k′) + rj(Mnx

k′
k′ − xk

′
k′)

≤ 2 sup
h∈N

rj(xh −Mnxh) + rj(Mnx
k
k −Mnx

k′
k′),

with suph∈N rj(xh − Mnxh) → 0 as n → ∞. So, there is n0 ∈ N such that

suph∈N rj(xh −Mnxh) < ε/4 for every n ≥ n0. But, {Mn0x
k
k}∞k=1 converges in

X and hence, there is also k0 ∈ N such that rj(Mn0x
k
k − Mn0x

k′
k′) < ε/2 for

all k, k′ ≥ k0. It follows that rj(x
k
k − xk

′
k′) < ε whenever k, k′ ≥ k0. By the

arbitrariness of j ∈ N and ε > 0 this means that {xkk}∞k=1 is a Cauchy sequence in
X and so it converges in X. Since X is a Fréchet space, this shows that Fix(T )
is a Fréchet�Montel space. �

Proposition 4.15. Let X be a prequojection Fréchet space and T ∈ L(X) be a
quasi�Montel operator. If τs-limn→∞

Tn

n = 0, then (I − T )(X) is closed.
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Proof. By Theorem 4.13 the operator T is uniformly mean ergodic. Also τb-
limn→∞

Tn

n = 0. By [7, Theorem 3.5] this is equivalent to (I − T )(X) being
closed in X. �
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