UNIFORM CONVERGENCE AND SPECTRA OF OPERATORS
IN A CLASS OF FRECHET SPACES
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ABSTRACT. Well known Banach space results (eg. due to J. Koliha and to Y.
Katznelson /L. Tzafriri), which relate conditions on the spectrum of a bounded
operator 7' to the operator norm convergence of certain sequences of operators
generated by 7', are extended to the class of quojection Fréchet spaces. These
results are then applied to establish various mean ergodic theorems for con-
tinuous operators acting in such Fréchet spaces and which belong to certain
operator ideals, eg. compact, weakly compact, Montel.

1. INTRODUCTION

Given a Banach space X and a continuous linear operator T on X, there
are various classical results which relate conditions on the spectrum o(7") of T'
with the operator norm convergence of certain sequences of operators generated

by T. For instance, if lim, o % = 0, with || ||,y denoting the operator

norm, (even %L — 0 in the weak operator topology suffices), then necessar-
ily o(T) C D, where D := {2z € C: |2] < 1}, [22, p.709, Lemma 1]. The
stronger condition limy, o [|[T"]|op = 0 is equivalent to the requirement that both
o(T) € D and limy, 0 % = 0 hold, [29]. An alternate condition, namely

that {77}°°, is a convergent sequence relative to the operator norm, is equiva-

lent to the requirement that the three conditions lim,, % = 0, the range
(I —=T)™(X) is closed in X for some m € N and I'(T") C {1} are satisfied, [33].
Here I'(T') := o(T)NT with T := {z € C: |z| = 1} being the boundary of D. Such
results as above are often related to the uniform mean ergodicity of 7', meaning
that the sequence of averages {% P Tm} of T is operator norm convergent.
For instance, if lim, o % =0and 1 € p(T) := C\ o(T), then T is uni-
formly mean ergodic, [31, p.90, Theorem 2.7]. Or, if lim,_, % =0, then T
is uniformly mean ergodic if and only if (I —T")(X) is closed, [32].

Our first aim is to extend results of the above kind to the class of all Fréchet
spaces referred to as prequojections; this is achieved in Section 3. The extension
to the class of all Fréchet spaces is not possible; see Proposition 3.10 below and |7,
Example 3.11], for instance. We point out that a classical result of Katznelson and
Trafriri stating, for any Banach-space-operator T satisfying sup,,ex [|7"]|op < 00,
that lim,, o |77 — T7|op = 0 if and only if I'(T) C {1}, [28], is also extended
to prequojection Fréchet spaces; see Theorem 3.13.

Key words and phrases. Fréchet space, quojection, spectrum, uniform mean ergodic operator,
power bounded operator, compact operator.
Mathematics Subject Classification 2010: Primary 46A04, 47A35, 47B37; Secondary 46A11,
47A10.

1



2 A. A. Albanese, J. Bonet and W.J. Ricker

Our second aim is inspired by well known applications of the above mentioned
Banach space results to determine the uniform mean ergodicity of operators T
which satisfy lim,_, % = 0 and belong to certain operator ideals, such as the
compact or weakly compact operators; see, for example, [22, Ch. VIII, §8], [31,
Ch. 2, 8§2.2|, |23, Theorem 6.1],where T can even be quasi—compact. An extension
of such a mean ergodic result to the class of quasi-precompact operators acting
in various locally convex Hausdorff spaces is presented in [40]. For prequojection
Fréchet spaces, this result is further extended to the (genuinely) larger class of
quasi—Montel operators; see Proposition 4.10, Remark 4.11 and Theorem 4.13. A
mean ergodic theorem for Cesaro bounded, weakly compact operators (and also
reflexive operators) in a certain class of locally convex spaces (which includes all
Fréchet spaces) is also presented; see Proposition 4.1 and Remark 4.2(ii).

2. PRELIMINARIES AND SPECTRA OF OPERATORS

Let X be a IcHs and I'x a system of continuous seminorms determining the
topology of X. The strong operator topology 7 in the space £(X) of all contin-
uous linear operators from X into itself (from X into another IcHs Y we write
L(X,Y)) is determined by the family of seminorms ¢, (.S) := ¢(Sx), for S € L(X),
for each € X and ¢ € I'x, in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology 7, of uniform convergence
on bounded sets is defined in £(X) via the seminorms ¢p(S) := sup,cp ¢(Sz),
for S € L(X), for each B € B(X) and g € I'y; in this case we write £;(X). For
X a Banach space, 7, is the operator norm topology in £(X). If I'x is countable
and X is complete, then X is called a Fréchet space. The identity operator on a
IcHs X is denoted by 1.

By X, we denote X equipped with its weak topology o(X, X’), where X’ is
the topological dual space of X. The strong topology in X (resp. X') is denoted
by B(X,X’) (resp. B(X', X)) and we write X (resp. Xj); see [34, IV, Ch.
23| for the definition. The strong dual space (X}3)j of X} is denoted simply by
X". By X/ we denote X’ equipped with its weak—star topology o(X’, X). Given
T € L(X), its dual operator T': X' — X' is defined by (z,T"2") = (Tx,2’) for
all 7 € X, 2’ € X'. It is known that 7" € L(X[) and T" € L(X}), 30, p.134].

For a Fréchet space X and T € L(X), the resolvent set p(T) of T' consists of
all A € C such that R(\,T) := (M —T) 7! exists in £(X). Then o(T) := C\ p(T)
is called the spectrum of T'. The point spectrum o,(T) consists of all A € C such
that (M — T) is not injective. Unlike for Banach spaces, it may happen that
p(T) = 0. For example, let w = CN be the Fréchet space equipped with the lc—
topology determined via the seminorms {g,}2>, where ¢,(x) := maxi<j<p |z,
for x = ()32, € w. Then the unit left shift operator T': x — (22, x3, x4, .. .), for
T € w, belongs to L(w) and, for every A € C, the element (1, \,A%,\3,...) € wis
an eigenvector corresponding to .

For a Fréchet space X, the natural imbedding ®: X — X" is an isomorphism
of X onto the closed subspace ®(X) of X”. Moreover, we always have

S"od=%085, SeLl(X), (2.1)

that is, S” is an extension of S.
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The following result will be required in the sequel. Since the proof is standard
we omit it. The polar of a set & C X is denoted by U° C X'.

Lemma 2.1. Let X be a Fréchet space.

(i) Let {p; 321 C T'xv be a fundamental, increasing sequence which de-
termines the lc—topology of X". For each j € N define ¢; on X wvia
q;j == pjo®. Then {qj};?‘;l C I'x is a fundamental, increasing sequence
which determines the lc—topology of X.

(i) Let {r;}72, C I'x be a fundamental, increasing sequence which determines
the lc—topology of X. For each j € N, let r;-’ denote the Minkowski func-
tional (in X") of the bipolar of U; = rj_l([(), 1) C€ X. Then {rj}52, C
T x is a fundamental, increasing sequence which determines the lc—topology
of X". Moreover, for each j € N, we have

ri(z) = sup |(z,2')| and ré»’(x”) = sup [{z”,2')] (2.2)
x’EZ/{;’ x’EZ/{;’
foreachz € X and 2" € X". In particular, r]o® = r;, i.e., the restriction
of rj to X ~ ®(X) coincides with r;, for each j € N.

For Banach spaces the following fact is well known.

Lemma 2.2. Let X be a lcHs and {T,,}02, C L(X) be an equicontinuous se-
quence. Then also {T)/}5°; C L(X") is equicontinuous.

Proof. Let B € B(X). Then C := U2, T,,(B) € B(X) as {T,,}22, is equicontin-
uous. So, for all 2’ € X’ and n € N, we have Tz’ € Xé with
pu(Tya’) := sup [(z, Tya")| = sup (T, 2")| < sup [(y, )| = pc(2).
z€EB rEB yelC

As the seminorms {pp : B € B(X)} generate the lc-topology of Xé, the previous
inequality shows that {7},};2; C £(X}) is equicontinuous.

Since {T},}72, € L£(X}) is equicontinuous and the lc-topology of X" is gener-
ated by the polars of bounded subsets of X/, the same argument as above yields
that {7)/}>2, C £(X") is equicontinuous. O

Lemma 2.3. Let X be a Fréchet space andT € L(X). Then T is an isomorphism
of X onto itself if and only if T" is an isomorphism of X" onto itself.

Proof. If T is an isomorphism of X onto itself, then there exists T-! € L(X)
with 7T~ =TT = I. Tt follows that 7", (T~")" € L(X}) and so T, (T~")" €
L(X"). Accordingly, I = (TT~Y)" = T"(T~Y)" and I = (T'T)" = (T~H'"T".
Thus, (T")~! exists in £(X”) and (T”)~! = (T~!)", i.e., T" is an isomorphism
of X" onto itself.

Conversely, suppose that 7" is an isomorphism of X” onto itself. Since T” is
an extension of T (i.e., T = T"|x), we see that T is one—to—one. Moreover, since
X is a closed subspace of X” (as X is a complete, barrelled IcHs), it follows that
T(X)=T"(X) is closed. It remains to show that T'(X) = X. But, if T'(X) # X,
then there is f € X'\ {0} such that (Tz, f) = (x, T'f) = 0 for all x € X. Hence,
T'f = 0; this is a contradiction because the surjectivity of 7" implies that 7" is
necessarily one—to—one. O
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We remark that Lemma 2.3 remains valid for X a complete barrelled lcHs.
The next result is an immediate consequence of (2.1) and Lemma 2.3.

Corollary 2.4. Let X be a Fréchet space and T € L(X). Then p(T) = p(T")
and o(T) = o(T"). Moreover,

®oRAT)=R\T") o®, e p(T)=p(T"),

that is, the restriction of R(\,T") to the closed subspace X ~ ®(X) of X" coin-
cides with R(\,T). Briefly, RO\, T")|x = R(\,T).

A Fréchet space X is always a projective limit of continuous linear operators
Ry : Xg+1 — X, for kK € N, with each X a Banach space. If Xj and R
can be chosen such that each Ry is surjective and X is isomorphic to the projec-
tive limit proj ;(Xj, R;), then X is called a quojection, [11, Section 5|. Banach
spaces and countable products of Banach spaces are quojections. Actually, ev-
ery quojection is the quotient of a countable product of Banach spaces, [13]. In
[37] Moscatelli gave the first examples of quojections which are not isomorphic to
countable products of Banach spaces. Concrete examples of quojection Fréchet
spaces are w = C, the spaces LY (Q), with 1 < p < 00, and C™)(Q) for m € Ny,
with Q C RY any open set, all of which are isomorphic to countable products of
Banach spaces. The spaces of continuous functions C'(A), with A a o—compact,
completely regular topological space, endowed with the compact open topology
are also quojections. Domarski exhibited a completely regular topological space
A such that the Fréchet space C'(A) is a quojection which is not isomorphic to a
complemented subspace of a product of Banach spaces, |20, Theorem|. A Fréchet
space X admits a continuous norm if and only if X contains no isomorphic copy
of w, [27, Theorem 7.2.7]. On the other hand, a quojection X admits a continuous
norm if and only if it is a Banach space, [11, Proposition 3]. So, a quojection is
either a Banach space or contains an isomorphic copy of w, necessarily comple-
mented, [27, Theorem 7.2.7|. Also [19] is relevant.

Lemma 2.5. Let X be a quojection Fréchet space and S € L(X). Suppose that
X = proj ;(Xj,Qjj+1), with X; a Banach space (having norm || ||;) and linking
maps Qjj+1 € L(Xj41,X;) which are surjective for all j € N, and suppose, for
each j € N, that there exists S; € L(X) satisfying

5jQj = QjS, (2.3)

where Q; € L(X,X;), j € N, denotes the canonical projection of X onto X; (i.e.,
Qjj+10Qj+1=Qj). Then

a(S) CUj2,0(S;j) C a(S) UUZ 0p(S)). (2.4)
Moreover,
5(S) € UE,0,(S). (2.5)
If, in addition, for every X € p(S), the resolvent operator R(\,S) satisfies
R(XA, S)(Ker@;) CKer@j, jeN, (2.6)

then o(S) = U32,0(5;).



Proof. For the containments (2.4) and (2.5) we refer to [9, Lemma 6.1].

Suppose now that (2.6) holds for each A € p(S). To establish the desired
equality, let A € p(S). Then A\I — S is surjective. Fix j € N. Since Q;: X — X;
is surjective, it is routine to check from the identity (Al; — 5;)Q; = Q;(AM — 5)
that also A\I; — S is surjective (with I; € £(X}) the identity operator). To verify
A ; — S; is injective suppose that (Al; —S;)y = 0 for some y € X, in which case
y = Qjx for some x € X. Accordingly,

Qj(M = S)z = (M = 5j)Qjz = (Al = S;)y =0
shows that (A — S)x € Ker Q;. It then follows from (2.6) that z = R(X, S)(A —
S)x € KerQy, ie.,, Qjz = 0. Since y = Q;x, we have y = 0. Hence, A\I; — 5
is injective. This establishes that A € p(S;). Accordingly, p(S) = N5 p(S;) as
desired. g

The following result occurs in [9, Lemma 6.2].

Lemma 2.6. Let X be a quojection Fréchet space and {S,}2°, € L(X). Suppose
that X = proj ;(Xj,Qj +1), with X; a Banach space (having norm || ||;) and
linking maps Qj j+1 € L(Xj41, X;) which are surjective for all j € N, and suppose,
for each j, n € N, that there exists S,(f) € L(X;) satisfying

SYQ; = Q;Sy, (2.7)
where Q; € L(X,X;), j € N, denotes the canonical projection of X onto X; (i.e.,
Qjj+1 0 Qjt1 = Q;). Then the following statements are equivalent.
(1) The limit Tp-limy, o0 Sy, =: S exists in Lp(X).
(ii) For each j € N, the limit p-lim,_,0 SY) = SU) exists in Ly(X;).
In this case, the operators S € L(X) and SY) € L(X), for j € N, satisfy
Sx = (S(j)xj)j, T = (xj)j e X. (2.8)
Moreover, (i) and (ii) remain equivalent if T, is replaced by Ts.

Given any lcHs X and T' € £(X), let us introduce the notation

1 n
Tp=-3T"  neN, 2.9
] = mz_l (2.9)
for the Cesaro means of T'. Then T is called mean ergodic precisely when {7}, }72 4
is a convergent sequence in Ls(X). If {Tj,}n2, happens to be convergent in
Ly(X), then T will be called uniformly mean ergodic.
We always have the identities

1
(I =TTy =TI -T) = E(T -7, neN, (2.10)
and also (setting Tjg) := I) that
LA S o S (2.11)
n

Some authors prefer to use % 221;10 T™ in place of Tj,; since

1 n—1 1 1 n—1
Th :T(EZT’“) = (1" D+ > 1"  neN,
m=0 m=0

n
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this leads to identical results.

Recall that T € L£(X) is called power bounded if {1} is an equicontinuous
subset of £L(X).

The final result that we require (i.e., [9, Lemma 6.4]) is as follows.

Lemma 2.7. Let X = projj(Xj, Qj.j+1) be a quojection Fréchet space and opera-
tors S € L(X) and S; € L(X), for j € N, be given which satisfy the assumptions
of Lemma 2.5 (with Q; € L(X,X;), j € N, denoting the canonical projection of
X onto X; and || ||; being the norm in the Banach space X;).
(i) S € L(X) is power bounded if and only if each S; € L(X;), j € N, is
power bounded.
(ii) S € L(X) is mean ergodic (resp., uniformly mean ergodic) if and only if
each S; € L(X;), j € N, is mean ergodic (resp., uniformly mean ergodic).

3. SPECTRUM7 UNIFORM CONVERGENCE AND MEAN ERGODICITY

A prequojection is a Fréchet space X such that X” is a quojection. Every
quojection is a prequojection. A prequojection is called non—trivial if it is not
itself a quojection. It is known that X is a prequojection if and only if X /ﬁ is a
strict (LB)-space. An alternative characterization is that X is a prequojecton if
and only if X has no Kéthe nuclear quotient which admits a continuous norm;
see [11, 18, 39, 41]. This implies that a quotient of a prequojection is again a
prequojection. In particular, every complemented subspace of a prequojection
is again a prequojection. The problem of the existence of non-trivial prequo-
jections arose in a natural way in [11]; it has been solved, in the positive sense,
in various papers, [12], [18], [38]. All of these papers employ the same method,
which consists in the construction of the dual of a prequojection, rather than the
prequojection itself, which is often difficult to describe (see the survey paper [35]
for further information). However, in [36] an alternative method for construct-
ing prequojections is presented which has the advantage of being direct. For an
example of a concrete space (i.e., a space of continuous functions on a suitable
topological space), which is a non—trivial prequojection, see [1].

In this section we extend to prequojection Fréchet spaces some well known
results from the Banach setting which connect various conditions on the spectrum
o(T), of a continuous linear operator T, to the operator norm convergence of
certain sequences of operators generated by T. Such results have well known
consequences for the uniform mean ergodicity of T

We begin with a construction for quojection Fréchet spaces which is needed in
the sequel.

Let X be a quojection Fréchet space and {g; };";1 be any fundamental, increas-
ing sequence of seminorms generating the lc—topology of X. For each j € N,
set X 1= X/qul({O}) and endow X; with the quotient lc-topology. Denote by
Qj: X — Xj the corresponding canonical (surjective) quotient map and define
the quotient topology on X; via the increasing sequence of seminorms {(q;)x}72
on X; by

(G)k(Qjz) == inf{qr(y) : y € X and Q;y = Q;z}, =€ X, (3.1)
for each k € N. Then
(G)k(Qjr) < qr(z), z€X, k, jeEN; (3.2)



see (2.4) in [5]. Moreover,
(4));(Qjx) = ¢j(z), zeX, jeN, (3.3)

which implies that (¢;); is a norm on X;. As noted above, since X is a quojection
Fréchet space and every quotient space (of such a Fréchet space) with a continuous
norm is necessarily Banach, [11, Proposition 3], it follows that for each 7 € N
there exists k(j) > j such that the norm (g;)(;) generates the lc—topology of
X;. Moreover, it is possible to choose k(j + 1) > k(j) for all j € N. Thus, X is
isomorphic to the projective limit of the sequence {(Xj, (Gj)r(;))}52;1 of Banach
spaces with respect to the continuous, surjective linking maps Q;j+1: Xj41 — X;
defined by

Qjj+10Qjr1=Qj JeN (3.4)
This particular construction will be used on various occasions in the sequel, where
3j will always denote the closed unit ball of X, for j € N. The so constructed

Banach space norm (g;)x(;) of X; will always be denoted by ¢;, for j € N.
The following result is classical in Banach spaces, [22, p.709 Lemma 1].

Proposition 3.1. Let X be a quojection Fréchet space and T € L(X) satisfy
To-1imy, 00 % =0. Then o(T) C D.
In case X 1is a prequojection Fréchet space and Tp-limy, o T—nn =0, the inclusion

o(T) C D is again valid.

Proof. Case (I). X is a quojection.
Let {Tj}?; be a fundamental, increasing sequence of seminorms generating

the lc-topology of X. Since j;—n — 0in L45(X) as n — oo and X is a Fréchet
oo
n

_, 1s equicontinuous. So, for each j € N there exists

space, the sequence {%}
c¢; > 0 such that

Trx
T <n> <c¢rjiyi(z), zeX, nelN; (3.5)
there is no loss in generality by assuming that r;,1 can be chosen.

Define g; on X by g¢;(z) := max {r;(z),sup,enr; (£.2)}, for € X. Then
(3.5) ensures that {g;}72, is also a fundamental, increasing sequence of seminorms
generating the lc-topology of X. Moreover,

qj(Tz) < 2¢j(xz), ze€X,jeN. (3.6)

We now apply the construction (3.1)-(3.4) to the sequence of seminorms {g;}32,
to yield the corresponding sequence {(Xj,q;)}32; of Banach spaces and the quo-
tient maps Q; € L(X, Xj), for j € N; recall that g; := (§;)x(;), for j € N.

Fix j € N. Define the operator 7T: X; — X; via

T;Qjx == Q;Tx, xeX. (3.7)

Then Tj is a well defined, continuous linear operator from X; into X;. Indeed,
suppose Q;x = Q;y for some x,y € X, i.e., (z—y) € Ker @, so that g;(x—y) = 0.
This, together with (3.6), yields 0 < ¢;((T'(z — y)) < 2¢j(x —y) = 0. Since
KerQ; = qj_l({O}), it follows that Q;T'(x —y) = 0 and hence, by (3.7) that
T;Qj(x —y) = Q;T(x —y) = 0. Therefore, T;Q;x = T;Q;y. This means that T;
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is well defined. Clearly, Tj is also linear. Moreover, (3.2), (3.6) and (3.7) imply
that

i(Tj2) = 4;(T;Q57) = 4;(Q5Tx) < qu(j) (Tx) < 2qu(j) (),
for all # € X and x € X with Q;2 = 2. Taking the infimum with respect to
AS Q;l({:ﬁ}), it follows that

q;(T32) < 2q;(%), =€ X;. (3.8)

Since §; generates the quotient topology of X, (3.8) ensures the continuity of Tj.
Moreover, it follows from (3.7) that

(T3)"Qjx = Q;T"x, zeX,nelN. (3.9)

The surjectivity and the continuity of Q); together with (3.9) imply that 7,-

limy, 00 (T;)” = 0. Indeed, fix any # € X;. By the surjectivity of @); there

exists x € X such that Q;z = 2. By (3.9) it follows that % = Qj (T%),

n
% — 0 as n — oo by assumption. So, the continuity of

(T;)"&

for n € N. Moreover,

Q; yields that lim, = 0 in the Banach space X;. We can then apply
Lemma 1 in [22, p.709] to obtain that o(7}) C D.

We have just shown that that (C\ D) C N321p(Tj). Moreover, the operators
T and Tj satisfy (3.7). So, we can apply Lemma 2.5 which yields (C\D) C p(T),
ie., o(T) C D.

Case (IT). X is a prequojection and 7p-limy, 0 7;—” =0.

Observe that X and X é are barrelled and hence, quasi-barrelled as X is a
Fréchet space and X 23 is the strong dual of a prequojection Fréchet space. Since
T" € L(X}) and T" € L(X"), the condition 7-lim,—c L~ = 0 implies that 7-

limy, 00 (T;;)n = 0 (see [3, Lemma 2.6] or [4, Lemma 2.1]). On the other hand,
X" is a quojection Fréchet space. So, it follows from Case (I) that o(T”) C D.

Finally, Corollary 2.4 ensures that o(T) = o(T") and so o(T) C D. O

Remark 3.2. For a power bounded operator T' € £(X) it is always the case
that 7p-limy, oo % = (0 and so, whenever X is a prequojection Fréchet space, it
follows from Proposition 3.1 that o(T") C D.

For operators in Banach spaces, the following result is due to J.J. Koliha, [29].

Theorem 3.3. Let X be a prequojection Fréchet space and T € L(X). The
following assertions are equivalent.

(i) 7p-limpy_o0 7" = 0.

(i) The series Y - o T™ converges in Ly(X).

(iii) 7p-limpyeo - =0 and o(T) C D.
Moreover, if one (hence, all) of the above conditions holds, then I — T is an
isomorphism of X onto X with inverse (I — T)~1 = 3°° ' T" and the series
converging in Ly(X).

Proof. Case (I). X is a quojection.

(i)=(ii). The assumption 7-lim, oo 7" = 0 implies that 7p-lim, .o %
0. So, we can proceed as in the proof of Proposition 3.1 to obtain that X =
proj ;(Xj, Qj,j+1) in such a way that, for every j € N, there exists T; in L£(X})
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satisfying 1;Q; = Q;T. Then also T”QJ Q;T™, for every j, n € N. So, Lemma
2.6 implies that 73- llmn_>oo =0 for all j € N. Thus, by [29, Theorem 2.1] the
series Y7 (T converges in Eb( ;), for each j € N. With S,, := >"p_ T*, for
n € N, it follows again from Lemma 2.6 that the series Zn:() T " converges in
Ly(X).

(ii)=(iii). The assumption clearly implies 75-lim,, o0 TTn = 0. So, as in the
proof of (i)=>(ii), we may assume that X = proj ;(Xj, @ ;+1) in such a way that,
for every j € N, there exists T; in £(X;) satisfying 7;Q; = @Q;T. Then also
T7'Qj = Q;T", for every j, n € N. Since 3 72  T™ converges in L(X) and X is a
quojection, the series Y > T7" also converges in Ly(X;) for all j € N; see Lemma

2.6. By |29, Theorem 2.1] we have that o(T;) C D and so A := (C\ D) C p(Ty),
for all 7 € N. Accordingly, since T;Q; = Q]T for all j € N, Lemma 2.5 yields
A C N3y p(Ty) € p(T), ie., o(T) CD.

(111) (i). Since A C p(T), for every A € A, the operator I — AT = A\~H(\I —
T) € L£(X) is invertible, i.e., bijective with (I — A~'T)~! € £(X). On the other
hand, 7-limy, (G 0 for every A € A as 7p-limy, 0 % =0and A7 <1
So, by Theorem 4.1 in [5] (see also Theorem 3.5 of [7]) we can conclude that

T — nlgrolo(xlT)[n] =0, MEA. (3.10)

Let {rj};‘ozl be a fundamental, increasing sequence of seminorms generating
the lc-topology of X. Arguing as in the proof of Proposition 3.1 (and adopting
the notation from there) we conclude that (3.5) is satisfied. Define ¢; on X by
gj(z) := max {r;(z),sup, ey 7; (TT%)}, for x € X. Then again (3.6) is satisfied
and, for each j € N, there exists a continuous linear operator T;: X; — X;
satisfying both (3.7) and (3.8). Moreover, it follows from (3.7) that

AT "Qr = Q;(NIT)"x, z€ X, neEN, A€ A, (3.11)
Fix A 6 A and consider the sequences {R,}5° and {H,}32 in L(X) given
by R, = Zm o meoATIT)" and Hy, := I — (AT}, for n € N. Then the

operator A = | — X\ T satisfies H, = AR,, = R, A for all n € N. Moreover,
(3.10) implies that H,, — R := 1 in L£3(X). Since all the assumptions of Lemma
3.4 in [7] are satisfied with F = FE =X, R=1¢€ L(X,X)and A =1—-\"'T, we
can proceed as in the proof of that result to conclude, for every j € N, that the
operator I — A~1T} is invertible in £(X;) (hence, also A\I — Tj is 1nvert1ble)
A € p(T}).

By the arbitrariness of A € A, we have that A C p(7}), for all j € N. So, there
exists 0; € (0,1) such that p(T; ) SD{AeC:|A\[>1—- 5 ;1. It follows that

r(T;) := max{|A\| : A € 0(T})} = hm ,"/HT”HOP (1-65)<1, jeN,

and hence, that lim, o [|7}'[|op = 0. Because of (3.11), with A = 1 € A, it follows
from Lemma 2.6 (with S,, := T™) that 7,-lim,, o T" = 0.

Case (IT). X is a prequojection.

As noted before X and Xj are barrelled with 7" € £(Xj) and T" € L(X").

(1)=(@1i). fT™ — 0 in Ly(X) for n — oo, then an argument as for Case (II)
in the proof of Proposition 3.1 shows that (T")" = (T™)" — 0 in Ly(X") for
n — oo. Since X" is a quojection Fréchet space, we can apply (i)=-(ii) of Case
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(I) above to conclude that the series > 7 ((T")™ converges in L£,(X"). Then also
Yoo o T™ converges in £4(X) as T"|x =T and X is a closed subspace of X”.

(ii)=-(iii). If D02 1™ converges in Ly(X), then > o2 (T”)" converges in
Ly(X"); see [3, Lemma 2.6] or [4, Lemma 2.1]. Since X” is a quojection Fréchet
space, we can apply (ii)=-(iii) of Case (I) above to conclude that o(7") C D (the
condition 7y-lim, o £~ = 0 clearly follows from the assumption). So, o(T) C D
by Corollary 2.4.

(iii)=-(i). As already noted (cf. proof of Case (II) in Proposition 3.1) X and
(T//)Tl

X é are barrelled (hence, quasi-barrelled) and 7-lim,, = 0. By Corollary
2.4, p(T") = p(T) and so A C p(T") by assumption. Since X" is a quojection
Fréchet space, we can apply Case (I) to conclude that 7-lim;, o (T")" = 0. So,
also 7p-limy, 0o 7" =0 as T"|x = T and X is a closed subspace of X”.

Finally, suppose that one (hence, all) of the above conditions hold. Then the
series y 2 T" converges in £,(X) and so T" — 0 in Ly(X) for n — co. But,
for every n € N we have

n n
(I—T) Z T — Z(Tm _Tm—‘rl) _ (I_Tn-i-l)
m=0 m=0
and so, for n — oo, we can conclude that (I —T) > " ,T™ = I with convergence
of the series in £(X). In a similar way one shows that (3 2 (T™) (I —T) = I,

with the series again converging in Ly(X). O

Remark 3.4. In the proof of (iii)=(i) in Case (I) above, if inf;end; =: § > 0,
then it follows that p(T) D {A € C: |\| > (1 —¢)}. But, this is not the case in
general as the following example shows.

Let X be a Banach space and {\,}>2; € (0,1) be an increasing sequence with
sup,eny An = 1. Consider the quojection Fréchet space X N (endowed with the
product topology) and the operator T on XY defined by T(zn)n := (AnZn)n,
for (), € XN. It is easy to show that 7' € £(X) and that T is even power
bounded. Moreover, A C p(T). Indeed, for a fixed A € A, if x € Ker(A — T,
then Ao — Tx = 0, i.e., (A — Ay)x, = 0 for all n € N. Since XA & {A\,}02,, it
follows that z, = 0 for all n € N and so = 0. On the other hand, if y € X",
then = := (y,/(A — An))n belongs to XN and Tz = y. Hence, A\I — T is bijective
and so A € p(T"). Moreover, fix any z € X \ {0} and set e, := (dpm®)m for every
n € N. Then Te, = A\e, for every n € N. Thus, each A, is an eigenvalue of T'.

Now, suppose that p(7) D {A € C: |A\] > 1 — ¢} for some 6 € (0,1). Then
B(1,6/2) ={peC:|u—1] <§/2} C p(T). But A\, = 1 for n — oo and hence,
there is ng € N such that \,, € B(1,0/2) C p(T). This a contradiction as A, is
an eigenvalue for 7'

n

If T is uniformly mean ergodic, then (2.11) implies that 73-lim, TT = 0.
With an extra condition the converse is also valid.

Corollary 3.5. Let X be a prequojection Fréchet space and T € L(X). If 7,-
limy, o0 % =0and 1€ p(T), then T is uniformly mean ergodic.

Proof. Since 1 € p(T), the operator I — T is bijective and so (I — T)(X) = X is
closed in X. By [7, Theorem 3.5, T' is uniformly mean ergodic. In particular, as
Ker(I —T) = {0}, we have that T},,) — 0 in £,(X) for n — oo. O
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Remark 3.6. Let X be a prequojection Fréchet space and T € L(X) satisfy
Tp-limy, o0 - = 0. If 1 € p(T), then the proof of Corollary 3.5(i) shows that
T is uniformly mean ergodic with 7-limy, 00 Tj) = 0. On the other hand, if
o(T) C D (a stronger condition than 1 € p(7T')), then Theorem 3.3 implies that
Tp-limy, 0o T™ = 0 and hence, again 7-limy, o T} = 0 follows, [8, Remark 3.1].
However, the stronger conclusion that 7p-lim, ., 7" = 0 does not follow from
Corollary 3.5(i) in general. Indeed, let X # {0} be any Banach space (even finite
dimensional). Then every power of T' := il belongs to the set {—1,1,—iI,il} and
so T is power bounded. This implies that 7-lim, % = 0. Since o(T) = {i},
surely 1 € p(T') and so, by Corollary 3.5(i), it follows that 7,-lim;, o0 Tfy,) = 0.
However, for every n € N we have ||[T"||,, = 1 and so {||T"||op}02, does not
converge to zero. This does not contradict Theorem 3.3 as ¢(T") is not included
in D.

Remark 3.7. Let X be a prequojection Fréchet space and T' € £(X). We observe
that:

(i) Corollary 3.5(ii) and Proposition 3.1 yield that if T is uniformly mean
ergodic, then 7p-limy, o0 % =0and o(T) C D.

(ii) Suppose that 7-limg, o % = 0. If o(T) C D, then T is uniformly mean
ergodic and 7y-limy, 00 Tjy) = 0 (cf. Remark 3.6).

For Banach spaces the next result is due to M. Mbekhta and J. Zemanek, [33].
Recall that I'(T") := o(T) N T.

Theorem 3.8. Let X be a prequojection Fréchet space and T € L(X). The
following statements are equivalent.
(1) {T"}22 is convergent in Ly(X).
(il) 7p-limy—yo0 L= = 0, the linear space (I —T)™(X) is closed in X for some
m € N and T'(T) C {1}.
(iil) 7p-limy oo (T™ — T = 0 and (I — T)™(X) is closed for some m € N.

Proof. (i)=-(ii). If {T™}>°, converges in L;(X) to P say, then T is uniformly
mean ergodic with ergodic projection equal to P, [8, Remark 3.1]. Moreover, as
{T™}2°, is necessarily equicontinuous, it follows that 7-lim,, 0 TTH = 0. Hence,
by Theorem 3.5 and Remark 3.6 of [7] the space (I —T)™(X) is closed for every
m € N. Moreover, by Proposition 3.1 we have o(T) C D. To establish the
remaining condition I'(T") C {1} we distinguish two cases.

(a) X is a quojection.

Let {r; };";1 be any fundamental, increasing sequence of seminorms generating
the lc-topology of X. By equicontinuity of {T7}>°,, for each j € N there exists
c; > 0 such that

ri(T"z) < ¢jrjpi(xz), ze€X, neN. (3.12)
Define g;, for each j € N, by ¢;(x) := sup,>or;(T"x), for z € X. Then (3.12)
ensures that {g; joq is also a fundamental, increasing sequence of seminorms

generating the le-topology of X. Moreover, it is routine to check (using also that
T"z — Px for each x € X) that

qj(Txz) < gj(x) and ¢;(Pz) <gj(z), ze€X, jelN (3.13)
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With (3.13) in place of (3.6), we can argue as in the proof of Proposition 3.1
to deduce that X = proj;(Xj;, @ +1) and that, for every j € N there exist
operators T and P; in £(X) satisfying 7;Q; = Q;T and P;Q; = Q;P. Hence,
T]”Qj = Q;T™ for every j, n € N. Since also 7-lim,, oo T™ = P, it follows from
Lemma 2.6 (with S, := T™ and S := P) that 7-lim,, 17 = Pj, for each j € N.
By [33, Corollaire 3| we have that I'(T;) C {1} for every j € N. This implies that
I'(T) C {1}. Indeed, if A € T\ {1}, then for every j € N we have A ¢ I'(T}) and
so A € p(T}), ie., A € M52y p(T}). As T;Q; = Q4T for every j € N, an appeal to
Lemma 2.5 yields that A € p(T).

(b) X is a prequojection.

As noted before, X and Xj are barrelled (hence, quasi-barrelled) with 7", P’ €
L(Xp)and T", P" € L(X"). Hence, 7-lim;, 00 T = P implies that 7p-limy, 00 (T7)" =
P”; see |3, Lemma 2.6] or |4, Lemma 2.1]. Since X" is a quojection Fréchet
space, we can apply the result from case (a) to conclude that I'(T") C {1} and
so I'(T') C {1}; see Corollary 2.4.

(ii)=(i). The assumptions 7,-lim, % =0and (I —T)™(X) closed for some
m € N imply that 7" is uniformly mean ergodic, |7, Theorem 3.4 and Remark
3.6]. In particular, (I —T)(X) is closed and

X =Ker(I-T)@® (I - T)(X), (3.14)

[7, Theorem 3.4]. Moreover, Proposition 3.1 implies that o(T) C D. Tt then
follows from the assumption I'(T") C {1} that either I'(T) = 0 or T'(T) = {1}.

If T(T) = 0, then necessarily o(7') C D and so, by (iii)=(i) of Theorem 3.3 we
have 7p-lim,, oo T™ = 0.

In the event that I'(T") = {1} we have that 1 € o(T) and so Ker(I —T') # {0}
(otherwise, (I—T) is injective and from X = Ker(/-T)&(I-T)(X) = (I-T)(X)
also surjective, i.e.,, 1 € p(T')). Define Y := (I —T)(X) and 77 :=Tl|y. Then Y
is a prequojection Fréchet space (being a quotient space of the prequojection X)
which is T-invariant and so 71 € £(Y). The claim is that

p(T1) = p(T) U{1}. (3.15)
It follows from (3.14) that 1 € p(T1). Fix A € p(T') (sothat A # 1). If M —-T1)x =
0 for some x € Y (i.e., (A —T)xz =0), then z =0 as A € p(T). Hence, (A —T7)
is injective. Next, let y € Y. Then there exists € X such that (A — T)z = y.
Since x = x1 + x2 with ;1 € Ker(Il —T) and z2 € Y (cf. (3.14)), it follows
that (A — Dzg + (M — Th)ze = vy, e, (A= 1)z = y — (M — T1)za, with
A=1)zy € Ker(I —=T) and (y — (A —Th)z2) € Y. As Ker(I —T)NY = {0}
and A # 1, this implies that z; = 0 and so (M — Th1)ze = y with 29 € Y,
i.e., (AN —T1) is surjective. These facts show that A € p(T7). This establishes
p(T) U {1} € p(T1).

Fix A € p(T1) \ {1}. Suppose that (A —T)z = 0 for some x € X. Then
x = x1 + a2 with 1 € Ker(I —T) and z2 € Y (cf. (3.14)). It follows that
()\ — 1).7}1 + (/\I — Tl)l'Q = 0 with (/\ — 1).%'1 S Ker([ — T) and ()\I — Tl)xz €Y.
Arguing as in the previous paragraph, this implies that 1 = 0 and (Al —T1)z2 =
0. Since xz2 € Y and X € p(T1), we can conclude that z = 0, i.e., (Al —T)
is injective. Next, let y € X. Then y = y; + yo with y; € Ker(I — T) and
y2 € Y (cf. (3.14)). Since A # 1, the element z1 := ¥ € Ker(f — T) exists.
Moreover, A € p(T1) with yo € Y implies the existence of x93 € Y such that
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ya = (M —Ty)xg = (M — T)xe. It follows that x := (1 + x2) € X satisfies
(M — T)x = y. Hence, (A —T) is also surjective and so A € p(T'). Accordingly,
p(T1) € p(T) U {1} is proved. This establishes (3.15).

Since o(T) C DU {1} and (3.15) is equivalent to o(71) = o(T') \ {1}, it follows
that o(71) € D. Moreover, Y is a prequojection Fréchet space and g — 0in
Ly(Y) as n — oo (because 7p-limy, o0 % =0and Ty =T on Y). So, we can
apply Theorem 3.3 to conclude that 77" — 0 in £4(Y) as n — oco. On the other
hand, T'= I on Ker(I — T'). These facts ensure that 7" =1 & (T1)" — I ® 0 in
Ly(X) because X =Ker(I —T)®Y and Ty =T on Y.

(1)=(iii). If {T™}>2, converges to some P in L,(X), then T is uniformly
mean ergodic with ergodic projection equal to P, [8, Remark 3.1]. Hence, by [7,
Theorem 3.5 and Remark 3.6] the space (I —T)™(X) is closed for every m € N.
Moreover, (T" — T"!1) — P — P =0 in £,(X) as n — oo.

(iii)=-(i). We first observe that

1 & 1
=y (T =T = (T -T""), neN
n n

This identity (together with the fact that 7-limy, 0o (7™ — T 1) = 0 implies for
the averages that 7p-lim, oo £ >0 (T™ — T™*1) = 0, |8, Remark 3.1]) yields
Tp-lim,, o0 %(T — T = 0. But, 7-lim, 00 % = 0 and so we can conclude that
Tp-1imy, s 00 % =0. As also (/ — T)™(X) is closed for some m € N, we can apply
|7, Theorem 3.4 and Remark 3.6] to conclude that 7" is uniformly mean ergodic
and, in particular, that (3.14) is valid with (I —7")(X) being closed. We claim that
this fact, together with the assumption that 7-lim, oo (7™ — T7*1) = 0, imply
that {T™}o° ; converges in £,(X). To see this, note that 7' = I on Ker(I —T)
and so T" = I — I in Ly(Ker(I —T)) as n — oo. On the other hand, the
surjective operator (I —T): X — (I —T)(X) lifts bounded sets via |34, Lemma
26.13| because X and Ker(I —T'), both being prequojections, are quasinormable
Fréchet spaces [35, Proposition 2.1], [41], i.e., for every C € B((I —T)(X)) there
exists B € B(X) such that C C (I—-T)(B). So, for fixed C € B((I-T)(X)) (with
corresponding set B € B(X)) and p € I'x (every q € I'(;_px is the restriction of
some p € I'yx), we have
sup p(T"y) < sup p(T™(I — T)z) = sup p((T™ — T" ™ Hz), n €N,
yelC zeB zeB

where sup,cpp((T™ — T™)z) — 0 as n — oo by assumption. Set T :=
T'|(r—7)(x)- The arbitrariness of C' and p show that (71)" — 0in Ly((I —T)(X))
(after observing that (I —T')(X) is T-invariant and so T1 = T'|;_1)(x) € L((I —
T)(X))). These facts ensure that 7" = I & (T1)" — I &0 in Lp(X) as X =
Ker(I-T)a®Y. O

Remark 3.9. In assertion (ii) of Theorem 3.8 the condition that “(I —T)™(X)
1s closed in X for some m € N” can be replaced with the condition that “T" s
uniformly mean ergodic”; see |7, Theorem 3.5 and Remark 3.6].

Theorems 3.3 and 3.8 do not necessarily hold for operators acting in general
Fréchet spaces.
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Proposition 3.10. Let p € [1,00) or p = 0 and let A be a Kothe matriz on N
such that A\p(A) is a Montel space with \,(A) # CN. Then there exists an operator
T € L(Ap(A)) such that T™ — 0 in Ly(Ap(A)) as n — oo and I'(T') = {1} but,
(I = T)™(Ap(A)) is not closed for every m € N.

Proof. By the proof of Proposition 3.1 in [7] there exists d := (d;); € RY with
0 < d; < 1for all i € N such that the diagonal operator T': A\,(A) — A\,(A) given
by T'((x;):) = (dix;)i, for x = (z;); € Ap(A), is power bounded, uniformly mean
ergodic and (I —T)(\,(A)) is dense but, not closed in A, (A). So, for every m € N,
also (I —T)™(Ap(A)) is dense but not closed in A,(A). To see this, note that
the arguments in the proof of |7, Remark 3.6, (5)=-(4)| are valid for any operator
T satisfying 7s-limy, oo % = 0 and acting in any Fréchet space. So, in the case
that (I —T)™(\,(A)) was closed for some m € N, we could apply |7, Remark
3.6, (5)=(4)] to conclude that (I —T")(Ap(A)) is also closed; a contradiction. So
1 eINT).

We claim that 7" — 0 in L£p(A\p(A)) as n — oo. Indeed, since {T"}9° is
equicontinuous and convergence of a sequence in Ly(\,(A)) is equivalent to its
convergence in Ls(Ap(A)) (as A\p(A) is Montel), it suffices to show that lim,, ., T"e; =
0 in A\,(A) for each j € N, where e; := (0;5); € A\p(A). But, this is immediate
because T"e; = d?ej, for all j, n € N.

It remains to show that I'(T") C {1}. Set D := {d; : i € N}. Then D C [0, 1].
Let A € T\ {1}. Then inf;eny|A — d;| =: § > 0. It is routine to check that, for

a fixed y € \p(A), the element z := (A%dlyl) belongs to A\,(A) and satisfies

(M —T)x = y. This means that the operator (AI —T') is surjective. On the other
hand Ker(AI —T') = {0} which follows from A ¢ {d; : i € N}. Therefore, as \,(A)
is a Fréchet space, A € p(T), i.e., T\ {1} C p(T). Since 1 € I'(T), it follows that
INT) = {1}. O

Concerning the example in Proposition 3.10 we note that (i) of Theorem 3.3
holds but, (iii) of Theorem 3.3 fails (as I'(T") = {1} implies that o(T) € D).
Moreover, (i) of Theorem 3.8 holds (as 7-lim, 0o 7™ = 0) but, (ii) and (iii)
of Theorem 3.8 fail (because (I — T')"™(Ap(A)) is not closed in \,(A) for every
m € N). Of course, A\,(A) is not a prequojection.

A well known result of Katznelson and Tzafriri states that a power bounded
operator T on a Banach space satisfies lim,, oo ||[T7F! — T"|lop = 0 if and only if
I'(T) C {1}, [28, Theorem 1 and p. 317 Remark|. In order to extend this result to
prequojection Fréchet spaces (see Theorem 3.13 below) we require the following
notion.

Let X be a Fréchet space and T € £(X). A fundamental, increasing sequence
{Qj}?; C I'x which generates the lc—topology of X is called T-contractively
admissible if, for each j € N, we have

qj(Tz) < gj(z), =€ X. (3.16)

Lemma 3.11. Let X be a Fréchet space and T € L(X). Then there exists a
T-contractively admissible sequence of seminorms which generates the lc—topology
of X if and only if T is power bounded.
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Proof. 1f {q;}72, C I'x is T-contractively admissible, then it is clear from (3.16)
that ¢;(T"x) < g;(x), for € X and every n € Ny, j € N. This means precisely
that {T™}22, is equicontinuous in £(X), i.e., T is power bounded.

Conversely, suppose that T is power bounded. Let {rj}?‘;l be a fundamen-
tal, increasing sequence in 'y which generates the lc—topology of X. Via the
equicontinuity of {T™}>2, for every j € N there exist k(j) > j and «; > 0 such
that

ri(T"z) < ajrygy(z), =€ X, neN
Define g;(x) := sup,en, (1" ), for x € X and each j € N. Then the previous
inequality implies that

ri(z) < gj(7) < ajrygy(z), € X, jeEN,

and so {g;}32, C I'x is a fundamental, increasing sequence determining the lc-
topology of X, which clearly satisfies (3.16). That is, {g;}72 is T-contractively
admissible. O

Remark 3.12. (i) For a Banach space X, Lemma 3.11 simply states that 7" is
power bounded if and only if it is a contraction for some equivalent norm in X.

(ii) Let X be a Fréchet space and T' € L(X) be an isomorphism which is bi-
power bounded, i.e., {T™: n € Z} is equicontinuous in £(X). An examination
of the proof of Lemma 3.11 shows that there exists a sequence {qj};";l C I'y,

again called T-contractively admissible, which generates the lc-topology of X and
satisfies, for each j € N,

¢;i(T"x) < gj(x), zeX, nel. (3.17)

Theorem 3.13. Let X be a prequojection Fréchet space and T € L(X) be power
bounded. The following assertions are equivalent.

(1) 7p-limy, oo (T —T™) = 0.

(ii) I(T) C {1} and there exists a T-contractively admissible sequence {p;}32,
I'x such that, for each A € T\ {1} and j € N, there exists My ; > 0 sat-
isfying

pi(R\, T)x) < My jpi(x), ze€X. (3.18)

Remark 3.14. (i) If I'(T) C {1}, then necessarily T \ {1} C p(T) and so the
resolvent family {R(A,T): A € T\ {1}} is defined.

(i) f T(T') = 0, then (i) of Theorem 3.13 follows without any further conditions.
Indeed, by Remark 3.2 we actually have o(T') C D. Then Theorem 3.3 implies
that 7-lim, o 7™ = 0 and hence, also Tj-lim,, oo (T — T7) = 0.

(iii) If X is a Banach space and || - || is any norm in X for which T is a
contraction (i.e., || - || is T-contractively admissible), then the requirement (3.18)
automatically holds with M) := ||R(X,T)||op. That is, condition (ii) in Theorem
3.13 simply reduces to I'(T") C {1} and we recover the result of Katznelson and
Tzafriri.

Proof. (of Theorem 3.13) (i)=-(ii). As usual we distinguish two cases.

Case (I). X is a quojection.

According to Lemma 3.11 there is a T-contractively admissible sequence {g; }3”;1
I'x satisfying (3.16) and hence, also ¢;(T"z) < ¢;(z), for z € X and all j, n € N.

-

C
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We proceed as in the proof of Proposition 3.1 (now using (3.16) in place of (3.6)
so that (3.8) becomes ¢;(Tj2) < ¢;(2), for £ € X; and j € N) to obtain that
X = proj ;(Xj,@j +1) in such a way that, for every j € N, there exists a con-
traction T; € L(X;) satisfying T;Q; = Q;T. Then also 17'Q; = QT for all
J,» n € N. For each j € N, define p;j(x) := ¢;(Qjx) for x € X. By the proper-
ties of projective limits {p;}32; C I'x is a fundamental sequence generating the
le-topology of X. Moreover,

pj(Tz) = ¢;(Q;Tx) = ¢;(T;Qjx) < 4;(Qjx) = pj(x), =€ X,

shows that {qj}ﬁl is also T-contractively admissible. According to Lemma 2.6
(applied to the norms || ||; := g and with S, = (T"** —T"), n € N, and
S = (T;L+1 — T}, for j, n € N), the assumption Tp-limy, oo (TP = T7) = 0
implies that lim,_ . ||Tj"Jrl —T7|lop = 0, for each j € N. By [28, Theorem 1]
we can conclude that I'(7}) € {1}. On the other hand, o(7;) C D as T} is a
contraction and so o(Tj) € DU {1}, ie, p(T;) 2 C\ (DU {1}), for j € N.
According to Lemma 2.5 also p(T) D C\ (DU {1}), i.e., I'(T) C {1}.

Concerning (3.18), fix A € T\ {1} and j € N. By the previous paragraph
X € p(T) N p(T}). It follows from T;Q; = Q;T that Q;R(N\,T) = R\, T})Q;.
Hence, for x € X, we have

pi(R(A, T)z) = ¢;(Q; R(A, T)x) = ¢;(R(A, Tj)Qj)
< RO, T)llopdi (@) = [[R(X, Tj)lloppj ()
which establishes (3.18).

Case (IT). X is a prequojection.

As noted before, X and X é are barrelled (hence, quasi-barrelled) with T" €
L(Xj) and T" € L(X"). So, the assumption Tp-limy, oo (T — T™) = 0 implies
that 7p-lim, oo ((T7)" T — (T")") = 0. Moreover, X" is a quojection Fréchet
space and T"” is power bounded; see Lemma 2.2. So, the result of Case (I) yields
[(T") C {1}. But, I(T) = T'(T") (see Corollary 2.4) and so I'(T") C {1} .

By (i)=(ii) for quojections there exists a T"-contractively admissible sequence
{332 € T'xr such that, for every A € T\ {1} and j € N, there exists M) ; >0
satisfying

PR T")a") < My pi(2"), a" e X"
By Lemma 2.1 and Corollary 2.4 the seminorms p; := p;-’o(l), J € N, satisfy (3.18).

(ii)=(i). Case (I): X is a quojection.

Let {p;}72; C I'x be as in the statement of (ii), in which case (3.16) holds. Pro-
ceed as in Case (I) of the proof of (i)=>(ii) to obtain that X = proj ;(Xj;,Q;;+1) in
such a way that, for every j € N, there exists a contraction T; € L(X}), satisfying
T;Q; = Q;T-

Claim 1. T'(Tj) C {1}, for every j € N.

To establish this, let A € T\ {1}. Since I'(T") C {1}, it follows that A € p(T)
and hence, A\I — T is surjective. But, also Q;: X — Xj is surjective. It is then
routine to check from the identity (A; — T;)Q; = Q;(Al — T) that A\I; — T} is
surjective. To verify that AI; — T} is injective suppose that (A; — Tj)y = 0 for
some y € X, in which case y = Q;x for some x € X. Accordingly,

QiN —T)z = (M; - T;)Qjz = (M; —Tj)y =0
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shows that (Al — T)x € Ker@; = Kerp;. It then follows from (3.18) that
x = R\T)N —T)x € Kerpj, ie., Qjz = 0. Since y = Qjx, we have y = 0.
Hence, AI; — T is injective. This establishes that A € p(T}) and hence, Claim 1
follows as A € T \ {1} was arbitrary.

Fix j € N. From Claim 1 and the fact that T} is a contraction, it follows from
28, Theorem 1] that limy, o |7} —T}”lHop = 0. According to Lemma 2.6 (with
Sp = (T —T™), n € N) we can conclude that 7p-lim,,_,oo (7" — T7) = 0.

Case (II): X is a prequojection.

By Corollary 2.4 we have from I'(T") C {1} that I'(T”) C {1}. Moreover,
Lemma 2.2 implies that 7" € £L(X") is power bounded.

Let {p;}72; C I'x be as stated in part (ii). Apply Lemma 2.1 to construct
the seminorms {p}/}32; C I'x~ given there. We first verify that {p}}72; C T'x» is
T"-contractively admissible. Since {p; };”;1 is T-contractively admissible, we have
T'(U;) € U; with U; the closed unit ball of pj, ie., U; = pj_l([O, 1]), for j € N. By
the Bi-polar Theorem, [34, Theorem 22.13] applied twice we have

T"U°) =T"U;) CTU;) CU; =U, (3.19)

where V7 denotes the closure for the weak topology (X", X’) of a subset V C X”
(or, of V.C X C X"). Then (3.19) implies that p;(T"z") < pi(z") for each
a” € X" and j €N, ie., {p]}32; is T"-contractively admissible.

It follows from (3.18) that R(\,T)(U;) C U;, for all A € T\ {1} and j € N.
Using R(A\,T")|x = R(A\,T) (cf. Corollary 2.4) one can repeat the argument
via the Bi-polar Theorem to conclude that R(A, T")(U;°) € M, jU;°, which then

implies that
Pj(R(N,T")z") < My ;pj(z"), 2" e X"

So, the conditions in part (ii) are satisfied for the power bounded operator T” €
L(X") with respect to {p7}22;. Applying (ii)=(i) for the quojection Fréchet
space X” we conclude that 7-lim, o ((T")"* — (T")") = 0. But, 7"|x = T
with X closed in X”. So, Tp-limy, o0 (T —T™) = 0, i.e., (i) holds. O

Let X be a prequojection Fréchet space and T € £(X) be power bounded. By
Remark 3.2 we have o(T') C D. Suppose that T is actually bi-power bounded.
Then also o(T71) C D. Clearly, 0 € p(T). Moreover, if u € D\ {0}, then

% € C\'D and so % € p(T7h), ie, (%I — T*1> € L(X). It is routine to check
that R, := —%Tfl (%I — T*1> € L(X) satisfies (ul —T)R, =1 =R, (pl —T)
and hence, (uI —T) is invertible in £(X) with (u —T)~' = R,,. This shows that
D C p(T). Accordingly, o(T) C T; for X a Banach space, see [21, Proposition
1.31], for example. Suppose now, in addition, that ¢(7T') = {1} in which case
o(T —1I) = {0}, i.e., T is quasinilpotent. For X a Banach space, a classical result
of Gelfand—Hille then states that necessarily T = I; see the survey article [42]

for a complete discussion of this topic. The following fact is an extension of this
result.

Corollary 3.15. Let X be a prequojection Fréchet space and T € L(X) be an
isomorphism which is bi-power bounded. Suppose that T'(T) = {1} and there



18 A. A. Albanese, J. Bonet and W.J. Ricker

exists a T-contractively admissible sequence {pj};?‘;l C T'x such that, for each
A € T\ {1}, the inequalities (3.18) are satisfied. Then T = I.

Proof. According to Theorem 3.13 we can conclude that 7-lim,,_, (T”+1 —-T") =
0. Fix x € X. For each j € N, it follows that

pi((T = Dz) = p;(T"T™(T — Iz) < p;(T"™(T ~ I)z) = p;(T"* = T")a)

for every n € N. Since limy, 00 (T — T™)x = 0, it follows that p;((T'—I)z) =0
with j € N arbitrary, i.e., Te = x. So, T = 1. O

4. OPERATOR IDEALS AND UNIFORM MEAN ERGODICITY

Let X, Y belcHs’. An operator T' € L(X,Y) is called Montel (resp. reflexive)
if T maps bounded subsets of X into relatively compact (resp. relatively weakly
compact subsets) subsets of Y, [17] (resp., [16]). According to Grothendieck, [26,
Chapter 5, Part 2|, T is called compact (resp., weakly compact) if there exists a
0-neighbourhood U C X such that T'(U) is relatively compact (resp., relatively
weakly compact) in Y. Clearly, the 2-sided ideal M(X,Y) (resp., R(X,Y)) of all
Montel (resp., reflexive) operators coincides with the 2—sided ideal (X, Y) (resp.,
WK (X,Y)) of all compact (resp., weakly compact) operators whenever X, Y are
Banach spaces. For general IcHs” we always have (X,Y) C M(X,Y) but, the
containment may be proper; consider the identity operator on an infinite dimen-
sional Montel lcHs. Clearly, M(X,Y) C R(X,Y) and WK(X,Y) C K(X,Y).
Criteria for membership of M(X,Y) (resp. R(X,Y)) occur in Theorem 9.2.1
(resp. Corollary 9.3.2) of [24], for example.

In this section we present various connections between the uniform convergence
of sequences of operators generated by an operator 7' € H(X) and the uniform
mean ergodicity of T', where H stands for one of the operator ideals IC, M, WK,
R.

Every compact operator T' acting in a Banach space has the property that
(I —T) has closed range. Hence, if lim,,_, T lop 0, then T is uniformly mean
ergodic, [22, p.711, Corollary 4], [31, p.87, Theorem 2.1]. For any lcHs X and
T € K(X), it is also the case that (I — T")(X) is a closed subspace of X, [24,
Theorem 9.10.1]. Hence, if X is a prequojection Fréchet space, then Theorem
3.5 of [7] implies that 7" is uniformly mean ergodic whenever 75-lim;, o % =0
(equivalently, Ts-lim, o L = 0 because K € K(X); see Remark 4.4(ii)). Since
K(X) C M(X), the question arises of whether the same is true for T € M(X)?
This is indeed so; see Theorem 4.5 below.

In a lcHs X all relatively o(X, X’)—compact sets and all relatively sequentially
o(X, X')-compact sets are necessarily relatively countably o (X, X’)-compact.
These are the only implications between these three notions which hold in general.
All three notions coincides whenever X, is angelic, [25, p.31]. Such spaces X
include all Fréchet spaces (actually, all (LF)-spaces), all (DF)-spaces and many
more, [25, Section 3.10], [14, Theorem 11, Examples 1.2].

Operators T' € L£(X) for which {T},)}72; € £(X) is equicontinuous will be
called Cesaro bounded; see |31, p.72| for X a Banach space.

Proposition 4.1. Let X be a lcHs such that X, is angelic and T € L(X).
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(i) If T € R(X) is Cesaro bounded and satisfies Ts-limy,_ o0 TTR =0, then T
s mean ergodic.

(ii) If T € M(X) is Cesaro bounded and satisfies T,-limy, o0 %n =0, then T
1s uniformly mean ergodic.

1
Tpw = Ty (I = D)o + Ty Te = (T = T" o + Tz,  neN. (41)

The equicontinuity of {7, }52; ensures that {Tj,z};2; € B(X). Since T €
R(X), the set {T(Tj,z)}nz, is relatively weakly compact in X. Moreover,

limy, 00 2 (T — T )2 = 0 in X because of 7y-limy, oo T—nn = (. These facts, to-
gether with X, being angelic and(4.1), show that {T},jx};2; is relatively weakly
(hence, relatively weakly sequentially) compact in X. Since x is arbitrary, we can
apply Theorem 2.4 of [2] (an examination of its proof shows that it is not neces-
sary to assume the barrelledness of X stated there because of the equicontinuity
of {7}, }52; assumed here) to conclude that 7' is mean ergodic.

(ii) By part (i) the operator T' is mean ergodic, i.e., Ts-limp, oo Tjy) =: P exists
in £5(X). In particular, P = TP = PT (which follows from (2.10)) and so
P= T[H}P = PT[n], for n € N.

To establish the uniform mean ergodicity of T, fix p € I'x, ¢ > 0 and B € B(X).
By the equicontinuity of {7}, };Z; there exist M >0 and g € I'x such that

p((Tn) — P)z) < Mq(z), re X, neN. (4.2)

On the other hand, T'(B) is a relatively compact subset of X and so there exist
Z1,...,2n € T(B) such that, for every y € T'(B), we have q(y — z;) < ¢/(2M) for
some i € {1,...,h}. Hence, via (4.2) we obtain, for every z € B and n € N, that
p(Ty Tz — Px) = p((Tj) — P)Tx) < p((T}) — P)(Tz — z)) + p((T}) — P)zi)
€
< Mq(Tz — z) + p((Tin) — P)zi) < 5 + p((Tin) — P)zi).
It follows that
sup p(Tiy Tr — Px) < = max p((T) — P)zi), neN,
z€B 2 i=1,..,h
with limy, o max;—; _p p((T[n] — P)z;) = 0. The arbitrariness of € > 0 implies
that limy, o0 Sup,e g p(TjnTr — Px) = 0. So, 7p-limp 00 T}y T = P.
Finally, the arbitrariness of p € I'x and of B € B(X) together with the assump-
tion Tp-limy, o0 TT" = 0 imply, via (4.1), that 7" is uniformly mean ergodic. O

Remark 4.2. (i) Let X be a lcHs and T' € £(X) be mean ergodic with P := 75-
limp, o0 Tfyy)- Then it follows from P = PT that P € H(X) whenever T' € H(X)
(here, H stands for the operator ideal K, M, WK or R). In particular, if T €
K(X), then the space Fix(T) := {x € X: Tx = 2} = Ker(Il —T) = P(X) is
finite-dimensional, [24, Theorem 9.10.1(1)].

(ii) Let X be a lcHs such that X, is angelic. Then the class of all weakly
completely continuous operators in £(X) in the sense of Definition 2 in [10] is
precisely WK (X). Moreover, if X is additionally barrelled then, for any 7' €
L(X), the boundedness of the set {77}, in L4(X) is equivalent to T being
power bounded. In particular, T is necessarily Cesaro bounded and satisfies



20 A. A. Albanese, J. Bonet and W.J. Ricker

Ts-limy, o0 %" = 0. Accordingly, the containment WK (X) C R(X) shows that
Proposition 4.1(i) is an extension of the following result of Altman, [10, Theorem].
Fact 1. Let X be a barrelled lcHs with X, being angelic. Then every power

bounded operator T € WK (X) is mean ergodic.
The following technical result should be compared with [17, Proposition 3.1].

Lemma 4.3. Let X be a quojection Fréchet space, Y be a Fréchet space and
T € M(X,Y) (resp. T € R(X,Y)). Suppose that X = proj ;(X;, Qjj+1), with
X; a Banach space (having norm || ||;) and surjective linking maps Qjj+1 €
L(Xj11,Xj), for all j € N, and that Y = proj ;(Y}, Rjj+1), with Y; a Banach
space (having norm ||| |||;) and linking maps Rjj1 € L(Yj41,Y;) for all j € N.
Then, for every j € N, there exist k(j) > j and Tj € K(Xy(),Y;) (resp. T; €
WK (X, Yj)) such that
R;T = Tij(j), (4.3)

where Rj € L(Y,Y}), j € N, is the canonical projection of Y into Y} (i.e., Rj j410
Rjt1 = Rj).
Proof. If we define ¢;(x) := ||Q;z||; for z € X and j € N and r;(y) := |||R;v|l|;
for y € Y and j € N, then {g;}72; and {r;}72, are fundamental sequences of
seminorms generating the lc—topology of X and of Y, respectively.

Fix j € N. The continuity of 7" implies that there exist k(j) > j and C; > 0
satisfying

ri(Tz) < Cjqu;)(v), =€ X,
or equivalently, that
1R Tz[||; < CjllQugyxlly, =€ X.

As noted before such an inequality ensures that there exists T € L(Xj;,Y))
defined via R;T = T;Qy;)-

Denote by Uy;) the closed unit ball of Xj;). Since X is a quojection Fréchet
space, there exists B € B(X) such that Uy € Q) (B), [19, Proposition
1]. Since T is Montel (resp. reflexive) and R; is continuous, it follows from
T (Uny)) € Tj(Qr)(B)) = R;(T(B)), with R;(T(B)) a relatively compact subset
(resp. relatively weakly compact subset) of Y;, that T;(Uy;)) is a relatively com-
pact (resp. relatively weakly compact) subset of Y;. That is, T; € K(Xp;,Yj)
(resp. Tj € WK(Xy(5), Y5))- O
Remark 4.4. (i) Let X = proj ;(Xj,@; +1) be a quojection Fréchet space and
T € L(X). Suppose, for every j € N, that there exists C; > 0 such that ¢;(Tx) <
Cjq;j(z) for x € X (here, the notation is according to Lemma 4.3 and its proof with
Y := X). Then, for every j € N, there exists T; € L(X}) satisfying Q;T = T;Q;.
So,if T'e M(X) (resp., T € R(X)), then each T; € KC(X}) (resp., Tj € WK(X})).

(ii) Let X be a Fréchet space and T € M(X). Then 7s-lim, % =0if and
only if 7-limy, 00 % =0.

As 75 C 7y, it suffices to show 74-limy, 00 % = 0 implies 7p-limy, 00 % =0.

Since X is a Fréchet space and 75-lim,, % = 0, the set {%}zo:l is equicon-
tinuous in L£(X), i.e., for every p € I'x there exist ¢ € I'xy and M > 0 such
that

Tn
p< nx> < Mg(z), z€X, neN. (4.4)
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Now, fix p € 'y, B € B(X) and € > 0. Choose ¢ € I'y and M > 0 according
o (4.4). Since T is a Montel operator, T'(B) is a relatively compact subset of X
and so there exist x1,...,zr € X such that

9
T(B) C Uy (mi+ 527t ) (4.5)

with U, = {z € X: q(z) < 1}. Let z € B. By (4.5) there exist i € {1,...,k}
and z € U, such that T'(x) = x; + 55;2. Then, by (4.4), we have for every n > 1
that

T'z\ T”*IT() < T g . € T 12 < T g +€
PAT ) TPy v =P n om? n =P\ 2

But, p (Tn_lm) — 0 as n — oo. So, there exists ng € N (depending only on

x;) such that p (T x) < ¢ for every n > ng. Since z is arbitrary and the set
{z1,..., 24} is finite, we can conclude that sup,cpp (T L2y — 0 for n — oo. By
the arbltrarlness of B and p we have 7-lim,, oo % = 0.

The following result should be compared with Proposition 4.1(ii). We point
out (even if dim(X) < oo) that a Cesaro bounded operator T need not satisfy
L= 0in £4(X), [31, p.85].

Theorem 4.5. Let X be a prequojection Fréchet space and T' € M(X). If 74-
limy, 00 % =0, then T is uniformly mean ergodic.

Proof. Case (I). X is a quojection.

The condition 7¢-lim,, TT = 0 ensures that both 7-lim,_, TT" = 0 (see
Remark 4.4(ii)) and that we can represent X = proj ;(Xj, Q;+1) such that, for
every j € N, there exists T; € L£(X;) satisfying QjT = Tij; see the proof of
Proposition 3.1. According to Lemma 4.3 and Remark 4.4(i) we have T; € K(X})

for all j € N. Moreover 5 L 0in Ly(X;) for n — oo; see Remark 4.4(ii) and
Lemma 2.6 with S, := = for n € N.

Since Tj € IC(Xj) and — 0 in Ly(X;) for n — oo, for every j € N, each 7}
is uniformly mean ergodlc [22, p.711 Corollary 4], Wthh implies that T is also
uniformly mean ergodic; see Lemma 2.7.

Case (II). X is a prequojection.

As noted before X and Xj are barrelled (hence, quasi-barrelled) with 7" €
L(Xj) and T" € L£(X"). So, the condition Tp-limy o0 L= = 0 (see Remark

4.4(ii)) implies that 7p-lim, o (T;;)n = 0. Moreover, X" is a quojection Fréchet

space. Also, Corollaries 2.3 and 2.4 of [17] yield that 7" € M(X"). We can
then apply Case (I) to conclude that 7" is uniformly mean ergodic. So, T is also
uniformly mean ergodic as T”|x = T and X is a closed subspace of X”. O

It was noted prior to Proposition 4.1, for X a prequojection Fréchet space and
T € K(X), that T is uniformly mean ergodic whenever 7-lim,, Tn—n = 0. Since
K(X) € M(X) in general, Theorem 4.5 can be viewed as an extension of this
fact.

Corollary 4.6. Let X be a prequojection Fréchet space and T € M(X) be power
bounded. Then T'(T) C {1} if and only if 7p-lim, oo (T — T™) = 0.
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Proof. If 7y-lim,, 00 (T — T™) = 0, then Theorem 3.13 yields T'(T) C {1}.
Conversely, suppose that I'(7") C {1}. Since T is power bounded, 7;" — 0

in Ly(X) for n — oo and so T' is uniformly mean ergodic by Theorem 4.5. By

Theorem 3.5 of 7] this is equivalent to the fact that (I —T)(X) is closed in X. So,

by Theorem 3.8 (ii)<(iii) we can conclude that 7-lim, seo (T —T7) = 0. O

In a Banach space X, an operator T' € £(X) is called quasi—compact if there
exist m € N and K € K(X) such that |7 — K|, < 1, |23, §6], [31, p.88].
For example, if some power of T' € L£(X) is compact or if some power of T' has
norm less than one, then T is quasi—compact. For a quasi—compact operator T’
it is known that 75-lim, % = 0 suffices for T" to be uniformly mean ergodic,
[22, Ch.VIII, Corollary 8.4]. For X non-normable, the question arises of how to
extend the notion of a quasi—compact operator.

According to [40, Definition 1|, for a IcHs X an operator T € £(X) is called
quasi—precompact if there exists a O-—neighbourhood W such that for every 0-
neighbourhood U in X there exist p € N and a finite set F' C X (both depending
on U) with the property that 7?7 (W) C Uyer(y +U). For X a Banach space, this
notion coincides precisely with 7' being quasi—compact, [40, Theorem 3|. In [15]
an operator K € £(X) is called V—compact if K (V) is a relatively compact subset
of X, where V is some 0—neighbourhood in X. More generally, T € £(X) is called
V —quasicompact, |15, Definition 2.1], if there exist m € N, a V—compact operator
K and 0 € (0,1) such that (7™ — K)(V) € B(X) and (T™ — K)(V) C§V.

Lemma 4.7. Let X be a IcHs and V' be any O-neighbourhood in X. Then every
V —quasicompact operator is quast—precompact.

Proof. Let T € L(X) be V—quasicompact. Choose m € N, a V—compact operator
K and ¢ € (0,1) such that B := (T — K)(V) is bounded and B C §V. Then
(T™ — K)*(V) = (T™ — K)(B) C (T™ — K)(6V) = 6B.
Proceeding inductively yields
(T™ - K)*(V)C 6" 'B, peN. (4.6)

Fix p € N. Note that 7" and K need not commute. By expanding (T — K )P
it can be seen that (T — K)? = T™ — H,,, where H), is a finite sum of operators
all of the form AK or BK(T™)" with A, Be€ L(X) andn € {1,...,p—1}. The
claim is that H), is a V—compact operator. Indeed, since AK is always V-compact
and the finite sum of V-compact operators is clearly V—compact, it suffices to
show that K(T™)™ (hence, also BK(T™)") is V-compact for all 1 <n < p.

For n =1, observe that T"(V) = K(V)+ B C K(V) + 0V yields

KT™(V) C K*(V)+6K(V),
which is a relatively compact subset of X. For n = 2, we then have
(T™*(V) CT™(K(V)+0V)=T"K(V) 4 6T™(V)
and hence, that
K(T™?(V) C KT"K(V)+§KT™(V).
Since both T K (V') and KT™ (V) are relatively compact, it follows that K (T™)%(V)

is also relatively compact. This argument can be continued to yield the above
stated claim for all 1 < n < p.
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Define now W := V and let U be any convex, balanced 0—neighbourhood of
X. Since B is bounded, there is A > 0 such that B C %)\M. Choose p € N large
enough to ensure that =1\ < 1. It follows from (4.6) that

(T™ — Hp)(W) = (T = K)’(V) C 6" 'B
and so
TMO(W) € Hy(V) + (T — Hy)(W) € Hy(V) + 367N € Hy(V) + U,

But, Hp(V) is relatively compact and so there is a finite set F' C X such that
H3(V) € Ugep(z + 3U). Accordingly,

_ 1 1
which establishes that T is quasi—precompact. O

Returning to mean ergodicity, we have the following result of Pietsch, [40,
Theorem 7.

Fact 2. Let X be a complete, barrelled IcHs and T € L(X) be a quasi—
precompact operator satisying Ts-lim, % = 0. Then T is uniformly mean
ergodic and Fix(T) = Ker(I — T is finite-dimensional.

In order to be able to extend this result to a larger class of operators we recall,
for a Banach space X, that T' € £(X) is quasi-compact if and only if there exists
a sequence {K,}>°; C KC(X) such that lim,_, || 7" — K,|| = 0, [31, p.88 Lemma
2.4].

Definition 4.8. Let X be a IcHs. An operator T € L£(X) is called quasi—
Montel (vesp., quasi-reflexive) if there exists a sequence { M, }°° ; € M(X) (resp.,
{M,,}32, CR(X)) such that (T™ — M,,) — 0in Ly(X) as n — .

Remark 4.9. (i) Let X be a Fréchet space and T' € £(X) be quasi-Montel. Then
T" € L(X") is also quasi-Montel. Indeed, in the notation of Definition 4.8, we
have {M]/}>2 | C M(X"), [17, Corollaries 2.3 and 2.4], with ((T")" — M) — 0
in L£,(X") as n — oo; see [3, Lemma 2.6] or [4, Lemma 2.1].

(ii) Let X be a Fréchet space and T' € L(X) be quasi-Montel. Then -
limy, 00 % = 0 if and only if 7-lim,, e % = 0.

Again it suffices to show that 7-limy,— % = 0 implies 7-lim;, 00 % =0.

Arguing as in Remark 4.4(ii), for every p € I'x there exist ¢ € 'x and M >0
such that (4.4) holds. Fix p € T'x, B € B(X) and € > 0. Choose ¢ and M
according to (4.4). Since T is a quasi-Montel operator, there is {M, }2°; C M(X)

with (T™ — M,,) — 0 in £(X) as n — oo. So there exists m € N such that

€
su ™" — M,)z) < —. 4.7
sup ) < 4oz (7)

But, M,, € M(X) and so M,,(B) is a relatively compact subset of X. It follows
that there exist x1,...,z; € X such that

M, (B) C UL, (m + (4.8)

)



24 A. A. Albanese, J. Bonet and W.J. Ricker
where Uy := {z € X: ¢(x) < 1}. From (4.7) and (4.8) it follows that

m m € k €
C — c— ; b
T™(B) C (T™ = M)(B) + Mun(B) © Uy + Uiy (i + -0,

c Uk (a: + ﬁuq) . (4.9)

Fix x € B. By (4.9) there exist ¢ € {1,...,k} and z € U, such that T (z) =
r; + 5572. Then, by (4.4), for every n > m we have that

Tx ™" T ", € Th—my T ™, €
D =p TM(x) ) <p +—>p <p|———|+5.
n n n 2M n n—m 2

mxi

But, p <T:l:7m) — 0 as n — oo. So, there exists ng € N (depending only on

x;) such that p (%) < ¢, for every n > mng. Since x is arbitrary and the set
{z1,..., 21} is finite, we can conclude that sup,cpp (%) — 0 for n — oo0. By
the arbitrariness of B and p we have 7-lim,, oo TT =0.

Proposition 4.10. Let X be a prequojection Fréchet space and T € L(X) sat-
18fy Ts-limg, oo % = 0. If T is quasi—precompact, then there exists a sequence
{Kn}oo, € K(X) such that Tp-limy, oo (T" — K,) = 0. In particular, T is quasi—

Montel as K(X) C M(X).

Proof. The completeness of X ensures that every precompact subset of X is also
relatively compact. By Fact 2 the operator T is uniformly mean ergodic and so
p-limy, o0 - = 0. By Theorem 1, Theorem 2 and Satz 10 of [40] there exist R €
L(X) and a projection P € L(X) commuting with T such that dimP(X) < oo
and satisfying
T"=R"+T"P, neN (4.10)
and
C\D C p(R). (4.11)

Since P € K(X), also K,, := T"P € K(X) for each n € N. Moreover, (4.10)
yields R" =T"(I — P) = (I — P)T™, for n € N, and 80 7p-lim;, 0 T = 0. Since
(4.11) is equivalent to o(R) C D, it then follows from Theorem 3.3 applied to R
that 7-lim, oo R™ = 0. It is then clear (see (4.10)) that (T" — K,) = R — 0 in

Lp(X) as n — 0. O

Remark 4.11. There exist quasi-Montel operators, even in quojection Fréchet
spaces, which fail to be quasi—precompact.
(i) For X := w = CN, define the projection P € £(X) via

Px = (;1;1’0,,1‘3,0,1'5,...), xr = (ZL‘n)nGX.

Since X is a Montel space, all of its bounded subsets are relatively compact. It
is then clear that P € M(X) and hence, P is surely quasi-Montel. Of course,
P ¢ K(X). On the other hand, since Ker(I — P) is infinite-dimensional, P cannot
be quasi—precompact, [40, Satz 3.

(ii) Let X be as in (i) and define the diagonal operator 7' € L£L(X) by

1 1
Tx .= (xla 52727 gl’g, . ) y L= (:En)n €X.



25

The same argument as in (i) shows that 7' € M(X). In this case, in contrast to
(1), the space Ker(I —T') = span{(1,0,0,...)} is finite-dimensional. However, T’
still fails to be quasi—precompact, [40, p.24].

Remark 4.12. The converse of Proposition 4.10 is not valid. Indeed, let X := w
and T € L£(X) be as Remark 4.11(ii), in which case X is a quojection Fréchet
space. For each n € N, let K,, € £(X) be the finite rank operator given by

T2 X3 In

27737%"7””7

K,z = (ajl’ 0,0,...), $:($j)j€X.

Then U,, := {x € X: maxi<j<, |z;] < 1} is a O-neighbourhood in X. Since K,
has finite-dimensional range, it follows that K, (U, ) is a relatively compact subset
of X, ie., K, € K(X) for each n € N. Direct calculations show that the sequence
of operators

Tn41 Tn42
T — Kyp)x=1{0,...,0 =(z;); € X
( n):l" ( ) ’ 7(n+1)na(n+2)na >a x (xj)je ’
converges to 0 in Ls5(X) as n — oo. Since X is a Montel space, also 7,-
lim, 0o (T™ — K,,) = 0. However, as noted in Remark 4.11(ii), the diagonal
operator T' is not quasi—compact.

In view of Remark 4.11 the following result is an extension of Fact 2 above for
prequojection Fréchet spaces (without the condition dimKer(I —T') < o0).

Theorem 4.13. Let X be a prequojection Fréchet space and T € L(X). If T is a
quasi—Montel operator and 15-lim,, oo % =0, then T is uniformly mean ergodic.

Proof. Case (I). X is a quojection.

The assumption 7g-lim, oo % = 0 ensures that we can proceed as in the proof
of Proposition 3.1 to obtain X = proj ;(Xj,@;  +1) in such a way that, for every
J €N, there exists T} in L(X;) satisfying Q;7 = T;Q;. Then also Q;T" = T}'Q;

and ij;b—n = %Qj, for every j, n € N. So, Lemma 2.6 (with S, := %, for
n € N) implies that 7,-lim,, ;o0 - = 0 for all j € N.

Since T is quasi-Montel, there exists a sequence {M,, },en € M(X) such that
Tp-limy, 500 (IT™ — M,,) = 0. From this it follows that the operator T}, for any fixed
J € N, is quasi-precompact. To see this, let ¢; denote the norm of X; and € > 0.
Since p;j 1= q; o Q; € I'x, there exists n € N such that

sup p;(T"x — Myx) < E,
el 2

with B € B(X) chosen such that B; C Q;(B). Since
sup pj (1" — Mpx) = sup §;(Q;(T"z — Myz)) = sup ¢;(1}'Qjx — Q; Myzx),
z€EB z€eB zeB

it follows that

A~

T} (B;) € T}(Q4(B)) € Q;(Mu(B)) + - B;.

Hence, by the relative compactness (hence, precompactness) of Q;(M,(B)) in
X, due to M,, € M(X) and the continuity of @Q;, there exist &1,...,2; € X
such that

T}'(Bj) C Uy (& +By).
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The arbitrariness of ¢ ensures that T; € L£(X) is quasi-precompact. As X is

a Banach space, T is quasi-compact,[40, Theorem 3|, and satisfies % — 0 in
Ls(X;) for n — oo. By Fact 2, each operator T}, for j € N, is uniformly mean
ergodic. Then Lemma 2.7 implies that 7" is also uniformly mean ergodic.

Case (II). X is a prequojection.

The condition 7s-lim, s % = 0 actually means that 7-lim,, .~ j;—n = 0 be-
cause T is quasi-Montel (see Remark 4.9(ii)). So, arguing as for Case (II) in
the proof of Theorem 4.5 it follows that also 7-lim,, oo (T;Z)n = 0. Moreover, by
Remark 4.9(i) the operator 7" is quasi-Montel. Since X" is a quojection Fréchet
space, we can apply Case (I) to conclude that 7" is uniformly mean ergodic.
Then T is also uniformly mean ergodic as T”|x = T with X a closed subspace of
X", ]

Since the only Fréchet-Montel spaces which are normable are the finite-dimensional
ones, the following result may be viewed as an analogue of the fact that Ker(\ —
T) is finite-dimensional whenever T' is quasi—precompact; see Definition 3 and
Theorem 1 of [40].

Proposition 4.14. Let X be a Fréchet space and T € L(X) be a quasi—-Montel
operator. Then Ker(AI —T') is a Fréchet—Montel space, for every A € T.

Proof. Tt suffices to show that Fix(T) = Ker(/ — T') is a Fréchet-Montel space.
Indeed, for every A € T, the operator A~!T is quasi-Montel if and only if T is
quasi-Montel, with Ker(Al — T) = Fix(A\~17).

Let {r; }3";1 be any fundamental, increasing sequence of seminorms generating
the lc-topology of X. Let {z;}72, C Fix(T) be a bounded sequence. Since T is
quasi-Montel, there exists { M, }22; € M(X) such that 7-limy, oo (T —M,,) =0
and so, for every j € N, we have supyeyn 7j(2r — Mpxy) — 0 as n — oo.

Since {x1}72, is bounded and each operator M, for n € N, is Montel, we may
construct recursively subsequences {27}, of {z}}% , such that each {z}"1}%°,
is a subsequence of {z}}7°, and {M,x}}?° | converges in X for all n € N. Con-
sider the diagonal sequence {x§}2° |. Clearly, {M,z}}3°, converges in X for each
n € N (by observing that {M,zF}3° | C {M,2?}52 ). Fixe > 0and j € N. Then
, for every k, k' € N and n € N, we have -

ri(el —a) < rjlaf = Mazg) + rj (Mol — Mazy) +rj(Mazy — )
< 2suprj(xp, — Mpxy) + rj(Myzf — Mz,
heN
with suppen (2 — Mpxp) — 0 as n — oo. So, there is ng € N such that
suppen 7 (Th — M) < /4 for every n > ng. But, {Mp,zF}3°, converges in
X and hence, there is also kg € N such that rj(Mnox’,j — Mnoxlz:) < ¢/2 for
all k, k' > ko. Tt follows that r;(z§f — z¥,) < ¢ whenever k, k' > ko. By the
arbitrariness of 7 € N and € > 0 this means that {a:]g}iil is a Cauchy sequence in

X and so it converges in X. Since X is a Fréchet space, this shows that Fix(T)
is a Fréchet—Montel space. ]

Proposition 4.15. Let X be a prequojection Fréchet space and T € L(X) be a
quasi—Montel operator. If Ts-lim, % =0, then (I —T)(X) is closed.
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Proof. By Theorem 4.13 the operator T' is uniformly mean ergodic. Also 7p-

limy, oo - = 0. By [7, Theorem 3.5] this is equivalent to (I — T)(X) being
closed in X. O
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