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Aim of the talk

Investigate the dynamics of the operators of

Differentiation: Df := f ′

Integration: Jf (z) :=
∫ z

0
f (ξ)dξ, z ∈ C

Hardy operator: Hf (z) := 1
z

∫ z

0
f (ξ)dξ, z ∈ C

on weighted Banach spaces of entire functions.

D and J are continuous on (H(C), co), where co denotes the
compact-open topology.

DJf = f and JDf (z) = f (z)− f (0) ∀f ∈ H(C), z ∈ C.
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Notation

Weights

A weight v on C is a strictly positive continuous function on C which is
radial, i.e. v(z) = v(|z |), z ∈ C, v(r) is non-increasing on [0,∞[ and
rapidly decreasing, that is, it satisfies limr→∞ rnv(r) = 0 for each n ∈ N.

For r ≥ 0 and f ∈ H(C), consider

Mp(f , r) :=

(
1

2π

∫ 2π

0

|f (re it)|pdt

)1/p

for 1 ≤ p <∞

and
M∞(f , r) := sup

|z|=r

|f (z)|, r ≥ 0.

Note that for each 1 ≤ p <∞ and each n ∈ N, we have
Mp(zn, r) = M∞(zn, r) for each r > 0.
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Generalized weighted Bergman spaces of entire functions

For a weight v and 1 ≤ p ≤ ∞, set

Bp,∞(v) := {f ∈ H(C) : sup
r>0

v(r)Mp(f , r) <∞}

and
Bp,0(v) := {f ∈ H(C) : lim

r→∞
v(r)Mp(f , r) = 0}.

Both are Banach spaces with the norm

|||f |||p,v := sup
r>0

v(r)Mp(f , r).

In case p =∞, these spaces are usually denoted by H∞v (C) and H0
v (C),

respectively.
We have

Bp,0(v) ⊆ Bp,∞(v) ⊆ B1,∞(v) ⊆ H(C)

with continuous inclusions for every 1 ≤ p ≤ ∞.
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Results of Lusky

Structure of the spaces

The polynomials are included in Bp,0(v) for all 1 ≤ p ≤ ∞ and they
are even dense. In particular, Bp,0(v) is separable.

For 1 < p <∞, the monomials are a Schauder basis of Bp,0(v), but
this is not satisfied in general for p ∈ {1,∞}.

For every 1 ≤ p ≤ ∞ the bidual of Bp,0(v) is isometrically
isomorphic to Bp,∞(v).
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Results of Lusky

Structure of the spaces

The space H∞v (C) = B∞,∞(v) is isomorphic either to H∞ or to `∞.
The characterization is in terms of a technical condition on the
weight v .

The space H0
v (C) = B∞,0(v) has a basis.
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Examples

Weighted spaces for exponential weights

Let 1 ≤ p ≤ ∞. The space Bp,q(a, α), q = 0 or q =∞, denotes the
Bergman space associated to the following weight:
va,α(r) = e−α, r ∈ [0, 1[, va,α(r) = r ae−αr , r ≥ 1, if a < 0 and
va,α(r) = (a/α)ae−a, r ∈ [0, a/α[, va,α(r) = r ae−αr , r ≥ a/α, if
a > 0.

In case a = 0, v0,α(r) = e−αr , and we write Bp,q(α).

The norms will be denoted by || ||p,a,α and || ||p,α. If, in addition,
p =∞, we simply write || ||a,α and || ||α.

Especially important for us are H∞α (C) := B∞,∞(α) and
H0
α(C) := B∞,0(α)
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Exponential functions in the space

The following result is useful in connection with the existence of periodic
points for the operators of integration or differentiation.

Proposition (Bonet, Bonilla)

The following conditions are equivalent for a weight v and 1 ≤ p ≤ ∞:

(i) {eθz : |θ| = 1} ⊂ Bp,0(v).

(ii) There is θ ∈ C, |θ| = 1, such that eθz ∈ Bp,0(v).

(iii) limr→∞ v(r) er

r
1
2p

= 0.
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Proof.

We consider f (z) = ez , z ∈ C, z = r(cos t + i sin t).
Applying the Laplace methods for integrals, for r > 0,

2πMp(f , r)p =

∫ 2π

0

erp cos tdt =
( π

2rp

)1/2
erp + erpO

( 1

rp

)
.

This yields, for a certain constant cp > 0 depending only on p,

Mp(f , r) = cp
er

r
1
2p

+ erO
( 1

r
1
p

)
.

This implies that for each 1 ≤ p <∞ there are dp,Dp > 0 and r0 > 0
such that for each |θ| = 1 and each r > r0

dp
er

r
1
2p

≤ Mp(eθz , r) ≤ Dp
er

r
1
2p

(1)

The equivalence of conditions (i), (ii) and (iii) in the statement follows
easily.
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Dynamics of linear operators

For a Banach space X , we write

L(X ) := {T : X → X linear and continuous }.

Given T ∈ L(X ), the pair (X ,T ) is a linear dynamical system.

Definitions

Let x ∈ X . The orbit of x under T is the set

Orb(x ,T ) := {x ,Tx ,T 2x , ...} = {T nx : n ≥ 0}.

x ∈ X is a periodic point if ∃n ∈ N such that T nx = x .
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Dynamics of linear operators

For a Banach space X and T ∈ L(X ), we say

Definitions

T topologically mixing ⇔ ∀U,V 6= ∅ open, ∃n0 : T nU ∩ V 6= ∅
∀n ≥ n0.

T hypercyclic ⇔ ∃x ∈ X , Orb(T , x) := {x ,Tx ,T 2x , . . . } is dense
in X ⇒ X separable.

Definition (Godefroy, Shapiro)

T is chaotic if

T has a dense set of periodic points,

T is hypercyclic.
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Dynamics of linear operators

For a Banach space X and T ∈ L(X ), we define

Definitions

T power bounded ⇔ supn ‖T n‖ <∞
T Cesàro power bounded ⇔ supn ‖ 1n

∑n
k=1 T k‖ <∞

T mean ergodic ⇔

∀x ∈ X , ∃Px := lim
n→∞

1

n

n∑
k=1

T kx ∈ X

T uniformly mean ergodic ⇔{
1

n

n∑
k=1

T k

}
n

converges in the operator norm.
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Classical results

Theorem. Mac Lane (1952).

D : H(C)→ H(C) is hypercyclic, i.e.,

∃f0 ∈ H(C) : ∀f ∈ H(C), ∃(nk)k ⊆ N such that

f
(nk )
0 → f uniformly on compact sets.

Proposition.

The integration operator J : H(C)→ H(C) is not hypercyclic. In fact,
for each f ∈ H(C), the sequence (Jnf )n converges to 0 in H(C).
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Continuity

P is the space of polynomials.

Proposition.

Let T : (H(C), τco)→ (H(C), τco) be a continuous linear operator such
that T (P) ⊂ P, let v be a weight and 1 ≤ p ≤ ∞. The following
conditions are equivalent:

(i) T (Bp,∞(v)) ⊂ Bp,∞(v).

(ii) T : Bp,∞(v)→ Bp,∞(v) is continuous.

(iii) T (Bp,0(v)) ⊂ Bp,0(v).

(iv) T : Bp,0(v)→ Bp,0(v) is continuous.

Moreover, in this case the norm and the spectrum of the operators
coincide.

Harutyunyan, Lusky, 2008: The continuity of D and J on H∞v (C) is
determined by the growth or decline of v(r)eαr for some α > 0 in an
interval [r0,∞[.
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Continuity

Proposition.

Let v be a weight function such that sup
r>0

v(r)

v(r + 1)
<∞ and let

1 ≤ p ≤ ∞. Then the differentiation operators D : Bp,∞(v)→ Bp,∞(v)
and D : Bp,0(v)→ Bp,0(v) are continuous.

Proposition.

Let v be a weight such that v(r) = e−αr for some α > 0 and let
1 ≤ p ≤ ∞. The operator J is continuous on Bp,∞(v) and Bp,0(v) with
|||Jn|||p,v = 1/αn for each n.
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Hypercyclicity and chaos

Proposition.

Assume that the integration operator J : Bp,0(v)→ Bp,0(v) is continuous
for some 1 ≤ p ≤ ∞. The operator J is not hypercyclic and it has no
periodic points different from 0.

Theorem (Bonet, Bonilla)

Assume that the differentiation operator D : Bp,0(v)→ Bp,0(v) is
continuous for some 1 ≤ p ≤ ∞. The following conditions are equivalent:

(i) D : Bp,0(v)→ Bp,0(v) satisfies the hypercyclicity criterion.

(ii) D : Bp,0(v)→ Bp,0(v) is hypercyclic.

(iii) lim infn→∞
‖zn‖∞,v

n! = 0
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Proof for p =∞.

(ii) implies (iii). Assume that D is hypercyclic. Then, there is
f ∈ H0

v (C), such that (f (n)(0))n is unbounded in C.

Fix n ∈ N and apply the Cauchy inequalities to obtain, for each r > 0,

v(r)
|f (n)(0)|

n!
rn ≤ v(r) max

|z|=r
|f (z)| ≤ ||f ||v .

This implies
|f (n)(0)|

n!
sup
z∈C

v(z)|zn| ≤ ||f ||v ,

which yields |f (n)(0)| ||z
n||v
n! ≤ ||f ||v for each n ∈ N. Since (f (n)(0))n is

unbounded, we conclude lim infn→∞
||zn||v
n! = 0, which is condition (iii).
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Proof for p =∞ continued.

HYPERCYCLICITY CRITERION: Suppose that the continuous
operator T on a separable Banach space E satisfies that there exist an
increasing sequence (nk)k of positive integers, two dense subsets V and
W of E and a sequence (Snk )k of maps, not necessarily linear nor
continuous, Snk : W → E , such that:

(1) (T nk v)k converges to 0 for each v ∈ V .

(2) (Snk w)k converges to 0 for each w ∈W .

(3) (T nk Snk w)k converges to w for each w ∈W .

Then T is hypercyclic.
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Proof for p =∞ continued.

Now we prove that (iii) implies (i).
Since D is continuous, there is C ≥ 1 such that ||f (j)||v ≤ C j ||f ||v for
each f ∈ H0

v (C) and each j ∈ N.
Set n0 = 0 and use (iii) inductively to find nk ∈ N with
nk+1 > nk + k + 1 and

||znk+k+1||v
(nk + k + 1)!

≤ 1

kC k
.

This is the increasing sequence of natural numbers required in the
hypercyclicity criterion.

Take V = W as the set of all polynomials and define Snk := Snk on W ,

with S the integration map defined on the monomials by S(zn) := zn+1

n+1 .
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Proof for p =∞ continued.

Conditions (1) and (3) in the criterium are clear.

We have to show that limk→∞ Snk w = 0 in Hv0 for each polynomial w .
To see this, fix s ∈ N ∪ {0} and take k ≥ s.
Observe that

Snk (z s) =
s!

(nk + s)!
znk+s

and

Dk+1−s(znk+k+1) =
(nk + k + 1)!

(nk + s)!
znk+s .

This implies
We have

||Snk (z s)||v =
s!

(nk + s)!
||znk+s ||v =

s!

(nk + k + 1)!
||Dk+1−s(znk+k+1)||v ≤ s!C k+1−s ||znk+k+1||v

(nk + k + 1)!
< s!

1

k
,

and the proof is complete.
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Hypercyclicity and chaos

Theorem (Bonet, Bonilla)

Assume that the differentiation operator D : Bp,0 → Bp,0 is continuous
for some 1 ≤ p ≤ ∞. The following conditions are equivalent:

(i) D : Bp,0(v)→ Bp,0(v) is mixing.

(ii) limn→∞
‖zn‖∞,v

n! = 0.

Theorem (Bonet, Bonilla)

Let v be a weight function such that the differentiation operator
D : Bp,0 → Bp,0 is continuous for some 1 ≤ p ≤ ∞. The following
conditions are equivalent:

(i) D : Bp,0(v)→ Bp,0(v) is chaotic.

(ii) D : Bp,0(v)→ Bp,0(v) has a periodic point different from 0.

(iii) limr→∞ v(r) er

r
1
2p

= 0.
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Hypercyclicity and chaos. An example

Corollary.

The operator D : B∞,0(a, α)→ B∞,0(a, α) satisfies

0 < α < 1 =⇒ D is not hypercyclic and has no periodic point
different from 0.

α = 1 =⇒ if a < 1/2, then D is topologically mixing, and if
a ≥ 1/2, D is not hypercyclic. It has no periodic point different from
0 iff a ≥ 0.

α > 1 =⇒ D is chaotic and topologically mixing.
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Norms, spectrum and mean ergodicity

From now on, to simplify the notation and the exposition, we will
concentrate on the operators D and J defined on the spaces

H∞v (C) = B∞,∞(v) and H0
v (C) = B∞,0(v).

More general results are available, but will not be mentioned in the
lecture.
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Norms, spectrum. Differentiation operator

If v(r) = r ae−αr (α > 0, a ∈ R) for r ≥ r0 : ||zn||a,α ≈ ( n+a
eα )n+a, with

equality for a = 0.

Proposition.

For a > 0:

||Dn||a,α = O
(

n!
(

eα
n−a

)n−a)
and n!

(
eα
n+a

)n+a

= O(||Dn||a,α).

For a ≤ 0 :

||Dn||a,α ≈ n!

(
eα

n + a

)n+a

and the equality holds for a = 0.
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Norms, spectrum. Differentiation operator

Proposition.

For every α > 0 and a ∈ R, the spectrum σa,α(D) = αD.

Proposition.

Let v be a weight such that D is continuous on H∞v (C) and that v(r)eαr

is non increasing for some α > 0. If |λ| < α, the operator D − λI is
surjective on H∞v (C) and on H0

v (C) and it even has a continuous linear
right inverse

Kλf (z) := eλz
∫ z

0

e−λξf (ξ)dξ, z ∈ C.

This was proved by Atzmon, Brive (2006) for a = 0.
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Norms, spectrum. Integration operator

Proposition.

For the weight v(r) = r ae−αr (α > 0, a ∈ R) for r big enough, we have

||Jn||a,α ∼= 1/αn, with the equality for a = 0.

σa,α(J) = (1/α)D.

J − λI is not surjective on B∞,∞(a, α) or B∞,0(a, α) if |λ| ≤ 1/α.
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Norms and spectrum. Hardy operator

Theorem

For v an arbitrary weight, the Hardy operator H : H∞v (C)→ H∞v (C) is
continuous with norm ‖H‖v = 1. Moreover, H2(H∞v (C)) ⊂ H0

v (C) and
H2 is compact. Therefore, σ(H) = { 1n}N ∪ {0}. If the integration
operator J : H∞v (C)→ H∞v (C) is continuous, then H is compact.

The operator H is power bounded and uniformly mean ergodic on
H∞v (C) and not hypercyclic on H0

v (C)

Remark

For the weight v(r) = exp(−(log r)2) :

J is not continuous on H∞v (C) (Harutyunyan, Lusky)

H : H∞v (C)→ H0
v (C), H : H0

v (C)→ H0
v (C), are compact (Lusky).
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Mean ergodicity

Proposition.

Let T = D or T = J and assume T : H∞v (C)→ H∞v (C) is continuous.
The following conditions are equivalent:

(i) T : H∞v (C)→ H∞v (C) is uniformly mean ergodic.

(ii) T : H0
v (C)→ H0

v (C) is uniformly mean ergodic.

(iii) limN→∞
||T+···+TN ||v

N = 0.

Moreover, if 1 ∈ σv (T ), then T is not uniformly mean ergodic.
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Mean ergodicity. Two useful results.

Theorem (Lin)

Let T ∈ L(X ) such that ‖T n/n‖ → 0. Then,

T uniformly mean ergodic ⇐⇒ (I − T )X is closed .

Theorem (Lotz)

Let T ∈ L(H∞α ) such that ‖T n/n‖ → 0. Then,

T mean ergodic ⇐⇒ T uniformly mean ergodic .

H∞α is a Grothendieck Banach space with the Dunford-Pettis property,
since it is isomorphic to `∞ by a result due to Galbis.
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Examples

Recall

f ∈ H∞α (C)⇐⇒ sup
z∈C
|f (z)| exp(−α|z |) <∞

and

f ∈ H0
α(C)⇐⇒ lim

|z|→∞
|f (z)| exp(−α|z |) = 0.
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Mean ergodicity of the differentiation operator.

Theorem.

Let v(r) = e−αr , r ≥ 0.

D is power bounded on H∞α (C) or H0
α(C) if and only if α < 1.

D is uniformly mean ergodic on H∞α (C) and H0
α(C) if α < 1.

D not mean ergodic if α > 1, and

D is not mean ergodic on H∞1 (C) and not uniformly mean ergodic
on H0

1 (C).
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Mean ergodicity of the integration operator

Theorem.

Let v(r) = e−αr , r ≥ 0.

J is never hypercyclic.

J is power bounded on H∞α (C) or H0
α(C) if and only if α ≥ 1.

If α > 1, J is uniformly mean ergodic on H∞α (C) and H0
α(C).

J is not mean ergodic on these spaces if α < 1.

If α = 1, then J is not mean ergodic on H∞1 (C), and mean ergodic
but not uniformly mean ergodic on H0

1 (C).
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Summary

J 0 < α < 1 α = 1 α > 1
Power bounded no yes yes

Hypercyclic on H0
α no no no

Mean ergodic on H0
α no yes yes

Mean ergodic on H∞α no no yes
Uniformly mean ergodic no no yes

D 0 < α < 1 α = 1 α > 1
Power bounded yes no no

Hypercyclic on H0
α no yes yes

Top. mixing on H0
α no yes yes

Chaotic on H0
α no no yes

Mean ergodic on H0
α yes ? no

Mean ergodic on H∞α yes no no
Uniformly mean ergodic yes no no
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Open problem

(1) Is the operator of differentiation D mean ergodic on H0
1 (C)?

In other words:

Assume that f ∈ H(C) satisfies lim|z|→∞ |f (z)| exp(−|z |) = 0.
Does it follow that

lim
n→∞

1

n
sup
z∈C
|f ′(z) + · · ·+ f (n)(z)| exp(−|z |) = 0?
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A related abstract result (A. Peris, 2013)

(2) Are there mean ergodic operators on a separable Banach space that
are hypercyclic?

A. Peris has constructed hypercylcic (even mixing) operators on a
Banach space that are even uniformly mean ergodic. The example is
a variation of a recent example due to F. Mart́ınez, Oprocha and
him, that appeared in 2013 in Math. Z.

It is clear that no power bounded operator can be hypercyclic. There
are examples classical of mean ergodic operators T on a Banach
space such that the sequence (||T n||)n tends to infinity due to Hille
in 1945. A general construction was presented by Tomilov and
Zemanek in 2004.
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