Mean ergodic properties of the continuous **Cesàro operator**

José Bonet (IUMPA, UPV)

Elche, September, 2013

On joint work with Angela A. Albanese and Werner J. Ricker

Project Prometeo II/2013/013

INIVERSIDAD

Investigate the dynamics of the continuous Cesàro operator ${\sf C}$ on several Banach or Fréchet function spaces.

Let f be a \mathbb{C} -valued, locally integrable function defined on $\mathbb{R}^+ := [0, \infty)$. Then the Cesàro average Cf of f is the function defined by

$$Cf(x) := \frac{1}{x} \int_0^x f(t) dt, \quad x \in (0, \infty).$$
 (1)

The linear map $f \mapsto Cf$ is called the *continuous Cesàro operator*

The boundedness of C on the Banach spaces $L^{p}([0,1])$ and $L^{p}(\mathbb{R}^{+})$, for $1 , is due to G.H. Hardy, who showed that the operator norm <math>\|C\|_{op} = q$ in both spaces, $\frac{1}{p} + \frac{1}{q} = 1$. Hardy inequality.

Cesàro operator on spaces of continuous functions

- The continuous Cesàro operator Cf(x) := ¹/_x ∫₀^x f(t) dt, x > 0, acts also continuously on the Banach spaces of continuous functions C([0, 1]) and C_l([0,∞]).
- $C_l([0,\infty])$ is the space of all \mathbb{C} -valued, continuous functions f on \mathbb{R}^+ for which $f(\infty) := \lim_{x \to \infty} f(x)$ exists in \mathbb{C} .
- In this case, we set $Cf(0) := \lim_{x \to 0^+} Cf(x) = f(0)$ for every $f \in C([0,1])$ or $f \in C_l([0,\infty])$.
- If $f \in C_l([0,\infty])$, then also $\lim_{x\to\infty} Cf(x)$ exists and equals $f(\infty) := \lim_{x\to\infty} f(x)$, i.e., $Cf(\infty) = f(\infty)$.
- The linear maps C: $C([0,1]) \rightarrow C([0,1])$ and C: $C_l([0,\infty]) \rightarrow C_l([0,\infty])$ are well defined with $||C||_{op} = 1$ and satisfy $C\mathbf{1} = \mathbf{1}$.

For a Banach space X, we write

 $\mathcal{L}(X) := \{T : X \to X \text{ linear and continuous } \}.$

Given $T \in \mathcal{L}(X)$, the pair (X, T) is a *linear dynamical system*.

Definitions.

• Let $x \in X$. The orbit of x under T is the set

$$Orb(x, T) := \{x, Tx, T^2x, ...\} = \{T^nx : n \ge 0\}.$$

• $x \in X$ is a *periodic point* if $\exists n \in \mathbb{N}$ such that $T^n x = x$.

Dynamics of linear operators. Definitions.

For a Banach space X and $T \in \mathcal{L}(X)$, we say

Definitions.

- *T* topologically mixing $\Leftrightarrow \forall U, V \neq \emptyset$ open, $\exists n_0 : T^n U \cap V \neq \emptyset$ $\forall n \ge n_0$.
- *T* hypercyclic $\Leftrightarrow \exists x \in X, \ Orb(T, x) := \{x, Tx, T^2x, ...\}$ is dense in $X \Rightarrow X$ separable.
- *T* supercyclic $\Leftrightarrow \exists x \in X, \ \mathcal{POrb}(T, x) := \{\lambda T^n x | n \in \mathbb{N}, \lambda \in \mathbb{C}\}$ is dense in *X*.

Definition (Godefroy, Shapiro).

T is chaotic if

- T has a dense set of periodic points,
- T is hypercyclic.

Dynamics of linear operators. Definitions.

For a Banach space X and $T \in \mathcal{L}(X)$, we define

Definitions

- T power bounded $\Leftrightarrow \sup_n ||T^n|| < \infty$.
- T Cesàro power bounded $\Leftrightarrow \sup_n \left\|\frac{1}{n} \sum_{k=1}^n T^k\right\| < \infty$.
- T mean ergodic \Leftrightarrow

$$\forall x \in X, \ \exists Px := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} T^k x \in X.$$

• *T* uniformly mean ergodic $\Leftrightarrow \left\{\frac{1}{n}\sum_{k=1}^{n} T^{k}\right\}_{n}$ converges in the operator norm.

It is clear how to extend these concepts for locally convex spaces, in particular for Fréchet spaces.

Spectrum and resolvent set of an operator

Let X be a Fréchet space and $T \in \mathcal{L}(X)$.

- The resolvent set $\rho(T; X)$ of T consists of all $\lambda \in \mathbb{C}$ such that $R(\lambda, T) := (\lambda I T)^{-1}$ exists in $\mathcal{L}(X)$.
- The spectrum of T is the set $\sigma(T; X) := \mathbb{C} \setminus \rho(T)$.
- The point spectrum $\sigma_{pt}(T; X)$ consists of all $\lambda \in \mathbb{C}$ such that $(\lambda I T)$ is not injective.
- Unlike for Banach spaces, it may happen that ρ(T) = Ø: The operator T: x → (x₂, x₃, x₄,...), for x ∈ ω, belongs to L(ω) and, for every λ ∈ C, the element (1, λ, λ², λ³,...) ∈ ω is an eigenvector corresponding to λ.

- The spectra and point spectra of C in the Banach spaces L^p([0, 1]) and L^p(ℝ⁺), for 1 Leibowitz in 1968-1973.
- The operator C is hypercyclic and chaotic on L^p([0,1]), 1 León-Saavedra, Piqueras-Lerena, Seoane–Sepúlveda (2009).
- The operator C is not supercyclic on L²(ℝ⁺). Gónzalez, León-Saavedra (2009).
- Orbits of the operator C on C([0,1]) and $C_l([0,\infty])$ were studied by Galaz Fontes and Solís in 2008.
- The operator C is not supercyclic on C([0,1]). León-Saavedra, Piqueras-Lerena, Seoane-Sepúlveda (2009).

Lemma.

The closure $\overline{(I - C)(C([0, 1]))}$ of the range (I - C)(C([0, 1])) of (I - C) is precisely the space $Z := \{f \in C([0, 1]) : f(0) = 0\}.$

Lemma.

Let $g \in C([0,1])$ belong to (I - C)(C([0,1])). Then g(0) = 0 and, for each $x \in (0,1)$, the limit $\lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{x} \frac{g(t)}{t} dt$ exists.

Theorem.

The Cesàro operator C: $C([0,1]) \rightarrow C([0,1])$ is power bounded and mean ergodic but, not uniformly mean ergodic. Also, C fails to be hypercyclic.

Proof that C: $C([0,1]) \rightarrow C([0,1])$ **is not uniformly mean ergodic:** Define $g(x) := -1/(\log x)$, for $x \in (0, 1/2]$, with g(0) := 0 and $g(x) := 1/(\log 2)$, for $x \in [1/2, 1]$. The function $g \in (I - C)(C([0,1]))$. On the other hand, for every $\varepsilon \in (0, 1/2)$, we have

$$\int_{\varepsilon}^{1/2} \frac{g(t)}{t} \, dt = -\int_{\varepsilon}^{1/2} \frac{dt}{t \log t} = \log(-\log \varepsilon) - \log(\log 2),$$

which tends to ∞ as $\varepsilon \to 0^+$. Thus $g \notin (I - C)(C([0, 1]))$, and (I - C)(C([0, 1])) is not closed in C([0, 1]). Since $\lim_{n\to\infty} \frac{\|C^n\|_{op}}{n} = 0$, a result of M. Lin yields that C is not uniformly mean ergodic.

Theorem.

The Cesàro operator C: $C_l([0,\infty]) \rightarrow C_l([0,\infty])$ is power bounded, not hypercyclic and not mean ergodic. Moreover,

$$\overline{(I-\mathsf{C})(C_l([0,\infty]))} = \{f \in C_l([0,\infty]) \colon f(0) = f(\infty) = 0\}$$
(2)

Proof that C is not mean ergodic in $C_l([0,\infty])$:

If C is mean ergodic, then $C_l([0,\infty]) = \text{Ker}(I-C) \oplus \overline{(I-C)(C_l([0,\infty]))}$, and so the function $f(x) = (\cos x)/(x+1) \in C_l([0,\infty])$ could be written as $f = c\mathbf{1} + g$ with $g(0) = g(\infty) = 0$ by (2) in the Theorem above. This implies that $f(0) = c = f(\infty)$. But, f(0) = 1 and $f(\infty) = 0$ which gives a contradiction.

Proposition.

The Cesàro operator C: $C_l([0,\infty]) \rightarrow C_l([0,\infty])$ is not supercyclic.

Spectrum and point spectrum on C([0, 1])

Proposition

The Cesàro operator C: $C([0,1]) \rightarrow C([0,1])$ satisfies

$$\sigma(\mathsf{C}; \mathsf{C}([0,1])) = \left\{ \lambda \in \mathbb{C} \colon \left| \lambda - \frac{1}{2} \right| \leq \frac{1}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; \mathsf{C}([0,1])) = \left\{\lambda \in \mathbb{C} \colon \left|\lambda - \frac{1}{2}\right| \leq \frac{1}{2}\right\} \setminus \{0\}.$$

э

Spectrum and point spectrum on $C_l([0,1])$

Proposition

The Cesàro operator C: $C_l([0,\infty]) \rightarrow C_l([0,\infty])$ satisfies

$$\sigma(\mathsf{C}; C_l([0,\infty])) = \left\{ \lambda \in \mathbb{C} \colon \left| \lambda - \frac{1}{2} \right| = \frac{1}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; C_l([0,\infty])) = \{1\}.$$

The main step in the proof is to show that certain operators constructed by Boyd act continuously in the spaces C([0, 1]) and $C_l([0, 1])$.

Theorem.

The Cesàro operator C: $L^{p}([0,1]) \rightarrow L^{p}([0,1])$, 1 , is not power bounded and not mean ergodic. On the other hand, it is hypercyclic, chaotic and satisfies

$$\sigma(\mathsf{C}; L^p([0,1])) = \left\{ \lambda \in \mathbb{C} \colon \left| \lambda - \frac{q}{2} \right| \le \frac{q}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; L^p([0,1])) = \left\{\lambda \in \mathbb{C} : \left|\lambda - \frac{q}{2}\right| < \frac{q}{2}\right\}.$$

The statements about the spectrum are due to Leibowitz.

Proof that C is not mean ergodic on $L^p([0,1]), 1 :$

Suppose that C is mean ergodic on $L^p([0,1])$. It follows that $\frac{C^n}{n}f \to 0$ as $n \to \infty$ for each $f \in L^p([0,1])$. So, $\left\{\frac{C^n}{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded relative to $\|\cdot\|_{op}$ (by the Principle of Uniform Boundedness). Hence, there exists M > 0 such that $\left\|\frac{C^n}{n}\right\|_{op} \leq M$ for all $n \in \mathbb{N}$.

On the other hand, by the spectral mapping theorem $\sigma(C^n; L^p([0, 1])) = \{\lambda^n : \lambda \in \sigma(C; L^p([0, 1]))\}$, for $n \in \mathbb{N}$, and so $q^n \in \sigma(C^n; L^p([0, 1]))$, for $n \in \mathbb{N}$. Therefore,

$$q^n \leq r(\mathsf{C}^n) \leq \|\mathsf{C}^n\|_{op} \leq Mn, \quad n \in \mathbb{N};$$

a contradiction as q > 1.

Theorem.

The Cesàro operator C: $L^{p}(\mathbb{R}^{+}) \rightarrow L^{p}(\mathbb{R}^{+})$, 1 , is not power bounded and not mean ergodic. Moreover,

$$\sigma(\mathsf{C}; L^p(\mathbb{R}^+)) = \left\{ \lambda \in \mathbb{C} : \left| \lambda - \frac{q}{2} \right| = \frac{q}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; L^p(\mathbb{R}^+)) = \emptyset.$$

The statements about the spectrum are due to Boyd and Leibowitz.

The Fréchet space $C(\mathbb{R}^+)$ is endowed with the topology of uniform convergence on the compact subsets of \mathbb{R}^+ .

Theorem

The Cesàro operator C: $C(\mathbb{R}^+) \to C(\mathbb{R}^+)$ is power bounded and mean ergodic but, not uniformly mean ergodic and not supercyclic (hence, not hypercyclic). Moreover,

$$\sigma(\mathsf{C}; \mathsf{C}(\mathbb{R}^+)) = \left\{ \lambda \in \mathbb{C} : \left| \lambda - \frac{1}{2} \right| \leq \frac{1}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; C(\mathbb{R}^+)) = \sigma(\mathsf{C}; C(\mathbb{R}^+)) \setminus \{0\}.$$

The Cesàro operator on the Fréchet space $L^p_{loc}(\mathbb{R}^+)$, 1 ,

 $L^p_{loc}(\mathbb{R}^+),\,1< p<\infty,$ is the Fréchet space of all $\mathbb{C}\text{-valued},$ measurable functions f on \mathbb{R}^+ such that

$$q_j(f) := \left(\int_0^j |f(x)|^p \, dx\right)^{1/p} < \infty, \quad j \in \mathbb{N}, \tag{3}$$

endowed with the locally convex topology generated by the increasing sequence of seminorms $\{q_j\}_{j\in\mathbb{N}}$.

The Cesàro operator on the Fréchet space $L^p_{loc}(\mathbb{R}^+)$, 1 ,

Theorem

Let $1 . The Cesàro operator C: <math>L^{p}_{loc}(\mathbb{R}^{+}) \rightarrow L^{p}_{loc}(\mathbb{R}^{+})$ is not power bounded and not mean ergodic but, it is hypercyclic, chaotic and satisfies

$$\sigma(\mathsf{C}; L^p_{loc}(\mathbb{R}^+)) = \left\{ \lambda \in \mathbb{C} : \left| \lambda - \frac{q}{2} \right| \le \frac{q}{2} \right\}$$

and

$$\sigma_{pt}(\mathsf{C}; L^p_{loc}(\mathbb{R}^+)) = \left\{ \lambda \in \mathbb{C} \colon \left| \lambda - \frac{q}{2} \right| < \frac{q}{2} \right\}.$$

Lemma.

Let X be a Fréchet space and $S \in \mathcal{L}(X)$. Suppose that $X = \text{proj}_{j \in \mathbb{N}}(X_j, Q_{j,j+1})$, with X_j a Banach space (having norm $|| ||_j$) and linking maps $Q_{j,j+1} \in \mathcal{L}(X_{j+1}, X_j)$ which are surjective for all $j \in \mathbb{N}$, and suppose, for each $j \in \mathbb{N}$, that there exists $S_j \in \mathcal{L}(X_j)$ satisfying

$$S_j Q_j = Q_j S, \tag{4}$$

where $Q_j \in \mathcal{L}(X, X_j)$, $j \in \mathbb{N}$, denotes the canonical projection of X onto X_j (i.e., $Q_{j,j+1} \circ Q_{j+1} = Q_j$). Then

$$\sigma(S) \subseteq \bigcup_{j=1}^{\infty} \sigma(S_j) \subseteq \sigma(S) \cup \bigcup_{j=1}^{\infty} \sigma_{pt}(S_j).$$
(5)

Moreover,

$$\sigma_{pt}(S) \subseteq \bigcup_{j=1}^{\infty} \sigma_{pt}(S_j).$$
(6)

Lemma.

Let $X = \text{proj}_{j \in \mathbb{N}}(X_j, Q_{j,j+1})$ be a Fréchet space and operators $S \in \mathcal{L}(X)$ and $S_j \in \mathcal{L}(X_j)$, for $j \in \mathbb{N}$, be given which satisfy the assumptions of Lemma above (with $Q_j \in \mathcal{L}(X, X_j)$, $j \in \mathbb{N}$, denoting the canonical projection of X onto X_j and $|| ||_j$ being the norm in the Banach space X_j).

- (i) $S \in \mathcal{L}(X)$ is power bounded if and only if each $S_j \in \mathcal{L}(X_j)$, $j \in \mathbb{N}$, is power bounded.
- (ii) $S \in \mathcal{L}(X)$ is uniformly mean ergodic if and only if each $S_j \in \mathcal{L}(X_j)$, $j \in \mathbb{N}$, is uniformly mean ergodic.
- (iii) $S \in \mathcal{L}(X)$ is mean ergodic if and only if each $S_j \in \mathcal{L}(X_j)$, $j \in \mathbb{N}$, is mean ergodic.

How to apply the lemmas to $C(\mathbb{R}^+)$?

- For each $j \in \mathbb{N}$, we set $X_j := C([0, j])$ the Banach space of all \mathbb{C} -valued, continuous functions on [0, j] endowed with the sup-norm $\|.\|_j$
- For each $j \in \mathbb{N}$, let $Q_j \colon C(\mathbb{R}^+) \to C([0,j])$ and $Q_{j,j+1} \colon C([0,j+1]) \to C([0,j])$ be the respective restriction maps.
- $Q_{j,j+1} \circ Q_{j+1} = Q_j$ and $||Q_{j,j+1}g||_j = ||g||_j \le ||g||_{j+1}$ for every $g \in C([0, j+1])$ and $j \in \mathbb{N}$.
- $C(\mathbb{R}^+) = \text{proj}_{j \in \mathbb{N}}(C([0, j]), Q_{j,j+1})$. Observe that all of the operators $Q_{j,j+1}$ and Q_j , for $j \in \mathbb{N}$, are *surjective*.
- If $C_j: C([0,j]) \to C([0,j])$ is the Cesàro operator defined by the same formula but, now for $f \in C([0,j])$, $j \in \mathbb{N}$, then $C_j Q_j = Q_j C$ and $Q_{j,j+1}C_{j+1} = C_j Q_{j,j+1}$ for every $j \in \mathbb{N}$.

- A.A. Albanese, J. Bonet and W.J. Ricker, Mean ergodic properties of the continuous Cesàro operators, Preprint, 2013.
- A.A. Albanese, J. Bonet and W.J. Ricker, Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34 (2009), 401–436.
- **D.W. Boyd,** The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) **29** (1968), 31–34.
- F. Galaz Fontes, F. J. Solís, Iterating the Cesàro operators. Proc. Amer. Math. Soc. 136 (2008), 2147–2153.

- **G.M. Leibowitz,** Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged) **35** (1973), 27–28.
- F. León–Saavedra, A. Piqueras–Lerena, J.B.
 Seoane–Sepúlveda, Orbits of Cesàro type operators. Math. Nachr. 282 (2009), 764–773.
- M. Lin, On the uniform ergodic theorem. Proc. Amer. Math. Soc. 43 (1974), 337–340.