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Abstract. Various properties of the (continuous) Cesàro operator C, acting
on Banach and Fréchet spaces of continuous functions and Lp-spaces, are in-
vestigated. For instance, the spectrum and point spectrum of C are completely
determined and a study of certain dynamics of C is undertaken (eg. hyper-
and supercyclicity, chaotic behaviour). In addition, the mean (and uniform
mean) ergodic nature of C acting in the various spaces is identi�ed.

1. Introduction

Let f be a C-valued, locally integrable function de�ned on R+ := [0,∞). Then
the Cesàro average Cf of f is the function de�ned by

Cf(x) :=
1

x

∫ x

0
f(t) dt, x ∈ (0,∞). (1.1)

The linear map f 7→ Cf is called the continuous Cesàro operator (as distinct from
the discrete Cesàro operator which forms the sequence of averages of vectors com-
ing from various Banach sequence spaces) and has been intensively investigated
in such Banach spaces as Lp([0, 1]) and Lp(R+), for 1 < p < ∞. The bound-
edness of C on these spaces is due to G.H. Hardy, [19, p.240], who showed that
the operator norm ∥C∥op = q in both Lp([0, 1]) and Lp(R+), where 1

p + 1
q = 1.

The spectra and point spectra of C are also known; see [11], [12], [21], [22], for
example, and the references therein. Two further Banach spaces on which C is
naturally de�ned are the spaces of continuous functions C([0, 1]) and Cl([0,∞]),
both equipped with the sup-norm; here Cl([0,∞]) is the space of all C-valued,
continuous functions f on R+ for which f(∞) := limx→infty f(x) exists in C. In
both spaces ∥C∥op = 1. The spectrum and point spectrum of C acting in these
spaces are completely determined in Propositions 2.1 and 2.2.

The dynamics of C have also been investigated in recent years. Recall that a
bounded linear operator T , de�ned on a separable Banach space X (or, more gen-
erally, a locally convex Hausdor� space X, brie�y lcHs), is said to be hypercyclic
if there exists x ∈ X such that its orbit {Tnx : n ∈ N0} is dense in X. Also, T is
called supercyclic if, for some x ∈ X, the projective orbit {λTnx : λ ∈ C, n ∈ N0}
is dense in X. Finally, T is said to be chaotic if it is hypercyclic and the set of
periodic points {u ∈ X : ∃n ∈ N with Tnu = u} is dense in X. As general ref-
erences we refer to [8], [18], for example. It is known that C acting on Lp([0, 1]),
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1 < p <∞, is hypercyclic and chaotic, [23], and that it is not (weakly) supercyclic
in L2(R+), [17]. On the other hand, C is not supercyclic (hence, not hypercyclic)
on C([0, 1]), [23]. We continue an investigation of such properties. For instance,
in Proposition 2.7 it is shown that C is not supercyclic on Cl([0,∞]).

There are also two natural types of Fréchet spaces in which the Cesàro operator
C acts continuously. One is the Fréchet space C(R+) consisting of all C�valued,
continuous functions on R+ endowed with the topology of uniform convergence
on the compact subsets of R+. In this space the spectrum of C is completely
determined and it is shown that C is not supercyclic; see Theorem 3.1. The other
class of Fréchet spaces consists of the re�exive spaces Lp

loc(R
+), 1 < p < ∞,

consisting of all C�valued, measurable functions on R+ which are p-th power
integrable on each set [0, j], for j ∈ N. In these spaces the spectrum of C is also
determined and it is shown that C is chaotic (cf. Theorem 4.2).

The main point of departure of this paper is actually to investigate (various)
mean ergodic properties of C. Let X be a lcHs and ΓX be a system of continuous
seminorms determining the topology of X. The strong operator topology τs in
the space L(X) of all continuous linear operators from X into itself (from X
into another lcHs Y we write L(X,Y )) is determined by the family of seminorms
qx(S) := q(Sx), for S ∈ L(X), for each x ∈ X and q ∈ ΓX , in which case we write
Ls(X). Denote by B(X) the collection of all bounded subsets of X. The topology
τb of uniform convergence on bounded sets is de�ned in L(X) via the seminorms
qB(S) := supx∈B q(Sx), for S ∈ L(X), for each B ∈ B(X) and q ∈ ΓX ; in this
case we write Lb(X). For X a Banach space, τb is the operator norm topology in
L(X). If ΓX is countable and X is complete, then X is called a Fréchet space.
The identity operator on a lcHs X is denoted by I. Finally, the dual operator of
T ∈ L(X) is denoted by T ′ : X ′ → X ′, where X ′ = L(X,C) is the topological
dual space of X. As a general reference for lcHs' see [25].

The relevant classes of operators are as follows. We say that T ∈ L(X), with X
a lcHs, is power bounded if {Tn}∞n=1 is an equicontinuous subset of L(X). For X
a Banach space, this means precisely that supn∈N ∥Tn∥op <∞. Given T ∈ L(X),
we can consider its sequence of averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (1.2)

called the Cesàro means of T . Then T is called mean ergodic (resp., uniformly
mean ergodic) if {T[n]}∞n=1 is a convergent sequence in Ls(X) (resp., in Lb(X)).

Since Tn

n = T[n] − n−1
n T[n−1], for n ≥ 2, it is clear that τs-limn→∞

Tn

n = 0
whenever T is mean ergodic. Hence, a mean ergodic operator acting in a Banach
space always has its spectrum lying in {z ∈ C : |z| ≤ 1}, [14, p.709, Lemma 1].
The study of mean ergodic operators, initiated by J. von Neumann, N. Dunford,
F. Riesz and others, began in the 1930's and has continued ever since; see [20],
[30, Ch. VIII] and the references therein. In Theorem 2.3 it is shown that C
acting on the Banach space C([0, 1]) is power bounded and mean ergodic but,
fails to be uniformly mean ergodic, whereas in the Banach space Cl([0,∞]) the
Cesàro operator C is power bounded but, not even mean ergodic (cf. Theorem
2.6). Concerning the above mentioned classes of Fréchet spaces in which C acts
continuously, it is shown in Theorem 3.1 that C is both power bounded and mean
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ergodic in C(R+) but, not uniformly mean ergodic. Finally, in the Fréchet spaces
Lp
loc(R

+), 1 < p < ∞, it turns out that C is neither power bounded nor mean
ergodic (cf. Theorem 4.2). For recent results on mean ergodic operators in lcHs'
we refer to [4], [5], [6], [7], [28], [29], for example, and the references therein.

For a Fréchet space X and T ∈ L(X), the resolvent set ρ(T ) of T consists of
all λ ∈ C such that R(λ, T ) := (λI−T )−1 exists in L(X). Then σ(T ) := C\ρ(T )
is called the spectrum of T . The point spectrum σpt(T ) consists of all λ ∈ C such
that (λI−T ) is not injective. If we need to stress the space X, then we also write
σ(T ;X), σpt(T ;X) and ρ(T ;X). Unlike for Banach spaces, it may happen that
ρ(T ) = ∅. For example, let ω = CN be the Fréchet space equipped with the lc�
topology determined via the seminorms {qn}∞n=1, where qn(x) := max1≤j≤n |xj |,
for x = (xj)

∞
j=1 ∈ ω. Then the unit left shift operator T : x 7→ (x2, x3, x4, . . .), for

x ∈ ω, belongs to L(ω) and, for every λ ∈ C, the element (1, λ, λ2, λ3, . . .) ∈ ω is
an eigenvector corresponding to λ. Or, let A = {αn : n ∈ N} be any countable
subset of C and de�ne S ∈ L(ω) by S : x 7→ (α1x1, α2x2, α3x3, . . .), for x ∈ ω.
Then σ(S) = σpt(S) = A and hence, σ(S) need not even be a closed subset of C.

For ease of reading, some technical (but useful) results which are needed in
relation to the spectrum and mean ergodicity of continuous linear operators acting
in the class of Fréchet spaces called quojections (to which C(R+) and Lp

loc(R
+),

1 < p < ∞, belong) have been formulated in an Appendix at the end of the
paper.

2. The Cesàro operator on Banach spaces of continuous functions

We consider here the continuous Cesàro operator C given in (1.1) when acting
on the Banach spaces C([0, 1]) and Cl([0,∞]).

In order to make the de�nition of the operator C consistent, we set Cf(0) :=
limx→0+ Cf(x) = f(0) for every f ∈ C([0, 1]) or f ∈ Cl([0,∞]). It is routine
to check if f ∈ Cl([0,∞]), then also limx→∞ Cf(x) exists and equals f(∞) :=
limx→∞ f(x), i.e., Cf(∞) = f(∞). Then the linear maps C : C([0, 1]) → C([0, 1])
and C : Cl([0,∞]) → Cl([0,∞]) are well de�ned with ∥C∥op = 1 and satisfy C1 =
1, where 1 is the constant function equal to 1. Moreover, the null space Ker(I −
C) = span{1}. Indeed, every function f satisfying Cf = f must be continuously
di�erentiable on (0, 1) or (0,∞) via (1.1); apply the quotient rule to deduce from
(1.1) and (Cf)′ = f ′ that f ′ ≡ 0.

We begin by identifying the spectrum and point spectrum of the Cesàro oper-
ator C on the Banach spaces C([0, 1]) and Cl([0,∞]).

Proposition 2.1. The Cesàro operator C : C([0, 1]) → C([0, 1]) satis�es

σ(C;C([0, 1])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
,

and

σpt(C;C([0, 1])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
\ {0}.

Proof. It is routine to check that C is injective on C([0, 1]). Also, C is not surjec-
tive (the range of C contains only continuously di�erentiable functions on (0, 1]).
Hence, 0 ∈ σ(C;C([0, 1])) \ σpt(C;C([0, 1])). If λ ∈ C \ {0} satis�es

∣∣λ− 1
2

∣∣ ≤ 1
2 ,

then the function gλ(x) := x
1
λ
−1, for x ∈ [0, 1], belongs to C([0, 1]) and Cgλ = λgλ,
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i.e., λ ∈ σpt(C;C([0, 1])). If λ ∈ C satis�es
∣∣λ− 1

2

∣∣ > 1
2 (equivalently, Re

(
1
λ

)
< 1),

then for ξ := 1
λ the linear map

Pξf(x) :=

∫ 1

0
s−ξf(xs) ds, x ∈ [0, 1],

is a bounded operator on L∞([0, 1]) with the property that ξI + ξ2Pξ is the
inverse of (λI−C) on L∞([0, 1]); see [11] and the comments on p.29 of [21]. By the
dominated convergence theorem applied to calculating limn→∞ Pξf(xn) whenever
f ∈ C([0, 1]) and xn → x in [0, 1] for n → ∞, it follows that Pξf ∈ C([0, 1])
whenever f ∈ C([0, 1]), i.e., ξI + ξ2Pξ restricted to the closed invariant subspace
C([0, 1]) of L∞([0, 1]) is the inverse of (λI − C) restricted from L∞([0, 1]) to
C([0, 1]). This implies that λ ̸∈ σ(C;C([0, 1])). So, the proof is complete. �
Proposition 2.2. The Cesàro operator C : Cl([0,∞]) → Cl([0,∞]) satis�es

σ(C;Cl([0,∞])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ = 1

2

}
and

σpt(C;Cl([0,∞])) = {1}.

Proof. Since C1 = 1, we have 1 ∈ σpt(C;Cl([0,∞])). The same argument given
in the proof of Proposition 2.1 yields that 0 ∈ σ(C;Cl([0,∞]))\σpt(C;Cl([0,∞])).
If f ∈ Cl([0,∞]) satis�es Cf = λf for some λ ̸= 0, then f is continuously
di�erentiable in (0,∞) and is a solution of the 1-st order Euler di�erential equa-
tion λxy′(x) + (λ − 1)y(x) = 0. But, every solution of this ODE has the form

f(x) = βx
1
λ
−1, x ∈ R+, for some β ∈ C. Since xα ̸∈ Cl([0,∞]) unless α = 0, we

conclude that necessarily λ = 1. Thus σpt(C;Cl([0,∞])) = {1}.
Now we prove that

σ(C;Cl([0,∞])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ = 1

2

}
= {λ ∈ C : Re

(
1

λ

)
= 1}.

For this we recall that D. Boyd proved the following results, [11, Theorem 1]:

(1) If Re(ξ) < 1, then Pξf(x) :=
∫ 1
0 s

−ξf(xs) ds, for x ∈ R+, de�nes a

continuous linear operator on L∞(R+). Moreover, if λ ̸= 0 and Re
(
1
λ

)
<

1, then

(λI − C)−1 = (λ−1I + λ−2P1/λ), in L(L∞(R+)).

(2) If Re(ξ) > 1, then Qξf(x) :=
∫∞
1 s−ξf(xs) ds, for x ∈ R+, de�nes a

continuous linear operator on L∞(R+). Moreover, if λ ̸= 0 and Re
(
1
λ

)
>

1, then

(λI − C)−1 = (λ−1I + λ−2Q1/λ), in L(L∞(R+)).

To show that

σ(C;Cl([0,∞])) ⊆
{
λ ∈ C : Re

(
1

λ

)
= 1

}
, (2.1)

we �rst observe, via the dominated convergence theorem (as applied in the proof
of Proposition 2.1), that if f is bounded and continuous on R+, then also Pξf ,
for Re(ξ) < 1, and Qξf , for Re(ξ) > 1, are bounded and continuous functions
on R+. So, the proof of (2.1) will follow if we can show, for each f ∈ Cl([0,∞]),
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that Pξf ∈ Cl([0,∞]) whenever Re(ξ) < 1 and that Qξf ∈ Cl([0,∞]) whenever
Re(ξ) > 1. To see this, �x f ∈ Cl([0,∞]). Take �rst ξ ∈ C with Re(ξ) < 1. Fix a
sequence {xn}∞n=1 ⊆ (0,∞) such that xn → ∞. Then f(xns) → f(∞), for every

�xed s ∈ (0, 1) as n → ∞, and |s−ξf(xns)| ≤ s−Re(ξ)∥f∥∞ for all s ∈ (0, 1) and

n ∈ N with s−Re(ξ) ∈ L1([0, 1]) as Re(ξ) < 1. Then the dominated convergence

theorem implies that Pξf(xn) =
∫ !
0 1s

−ξf(xns) ds →
∫ 1
0 s

−ξf(∞) ds as n → ∞.
Since the sequence {xn}∞n=1 is arbitrary, it follows that limx→∞ Pξf(x) exists and

is equal to f(∞)
1−ξ . So, Pξf ∈ Cl([0,∞]).

Now, let ξ ∈ C with Re(ξ) > 1. Fix again a sequence {xn}∞n=1 ⊆ (0,∞) such
that xn → ∞. Then f(xns) → f(∞), for each �xed s ∈ (1,∞) as n → ∞,

and |s−ξf(xns)| ≤ s−Re(ξ)∥f∥∞ for all s ∈ (1,∞) and n ∈ N with s−Re(ξ) ∈
L1((1,∞)) as Re(ξ) > 1. Then the dominated convergence theorem implies that
Qξf(xn) =

∫∞
1 s−ξf(xns) ds →

∫∞
1 s−ξf(∞) ds as n → ∞. Since the sequence

{xn}∞n=1 is arbitrary, it follows that limx→∞Qξf(x) exists and is equal to f(∞)
ξ−1 .

So, Qξf ∈ Cl([0,∞]).

We will also require the fact that ∥Pξ∥op = 1
1−Re(ξ) for each ξ ∈ C with Re(ξ) <

1. To verify this, �x ξ ∈ C with Re(ξ) < 1. If f ∈ Cl([0,∞]) and x ∈ R+,
then it follows from the de�nition of Pξf that |Pξf(x)| ≤ 1

1−Re(ξ)∥f∥∞. So,

∥Pξ∥op ≤ 1
1−Re(ξ) . Since Pξ1(x) = 1

1−ξ , for x ∈ R+, we are done if ξ ∈ R with

ξ < 1. For the remaining case, assume ξ = α + iβ, with β ̸= 0 and α < 1. For
given ε > 0, de�ne gε(x) := xiβ+ε if x ∈ (0, 1], gε(0) := 0 and gε(x) := 1 if x ≥ 1.
Then gε ∈ Cl([0,∞]) and ∥gε∥∞ = 1. Moreover,

Pξgε(1) =

∫ 1

0
s−ξgε(s) ds =

∫ 1

0
s−α+ε ds =

1

1− α+ ε
.

So, ∥Pξgε∥∞ ≥ 1
1−α+ε . Hence, ∥Pξ∥op ≥ supε>0

1
1−α+ε = 1

1−α = 1
1−Re(ξ) and we

can conclude, as stated, that ∥Pξ∥op = 1
1−Re(ξ) .

We complete the proof of σ(C;Cl([0,∞])) = {λ ∈ C : Re
(
1
λ

)
= 1} by applying

an argument of Boyd, [11, p.34]. Suppose there exists λ0 ∈ ρ(C;Cl([0,∞])) with

λ0 ∈ C \ {0, 1} and satisfying Re
(

1
λ0

)
= 1. Select a sequence {λn}∞n=1 ⊆ C such

that λn → λ0 for n → ∞ and Re
(

1
λn

)
< 1 for all n ∈ N. For each n ∈ N, set

ξn := 1
λn
. Then

∥(λnI − C)−1∥op = ∥ξnI + ξ2nPξn∥op ≥ |ξn|2
1

1− Re(ξn)
− |ξn|

for every n ∈ N. Since Re(ξn) → 1 as n → ∞, it follows that ∥(λnI −
C)−1∥op → ∞ for n → ∞. This is a contradiction because the resolvent set
ρ(C;Cl([0,∞])) is open in C and the resolvent map λ 7→ (λI−C)−1 is continuous
from ρ(C;Cl([0,∞])) into Lb(Cl([0,∞])). So, no such λ0 exists. �

The mean ergodicity of C : C([0, 1]) → C([0, 1]) is essentially due to Galaz
Fontes and Solís, [15].

Theorem 2.3. The Cesàro operator C : C([0, 1]) → C([0, 1]) is power bounded
(hence, not hypercyclic) and mean ergodic but, not uniformly mean ergodic.
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Proof. Since ∥C∥op = 1 and Cn1 = 1 for each n ∈ N, it follows that ∥Cn∥op = 1
for each n ∈ N. Hence, C is power bounded; this also implies immediately that C
cannot be hypercyclic. By [15, Theorem 3], for every f ∈ C([0, 1]), the sequence
{Cnf}∞n=1 converges to f(0)1 in C([0, 1]). This implies that the operator sequence
of iterates {Cn}∞n=1 converges to the projection P : C([0, 1]) → C([0, 1]) given by
f 7→ Pf := f(0)1, in Ls(C([0, 1])). Consequently, the arithmetic means {C[n]}∞n=1

also converge to P in Ls(C([0, 1])), i.e., C is mean ergodic. Finally, suppose that
C : C([0, 1]) → C([0, 1]) is uniformly mean ergodic. By [20, �2.2, Theorem 2.7], the
point 1 cannot be a limit point of the spectrum of C. This contradicts Proposition
2.1.

�
It is of some interest to determine explicitly the closure (I − C)(C([0, 1])) of

the range (I−C)(C([0, 1])), and to give a necessary condition which ensures that
g ∈ C([0, 1]) belongs to (I − C)(C([0, 1])).

Proposition 2.4. (i) The closure (I − C)(C([0, 1])) of the range (I−C)(C([0, 1]))
of (I − C) is precisely the space Z := {f ∈ C([0, 1]) : f(0) = 0}.

(ii) Let g ∈ C([0, 1]) belong to (I − C)(C([0, 1])). Then g(0) = 0 and, for each

x ∈ (0, 1), the limit limε→0+
∫ x
ε

g(t)
t dt exists.

Proof. (i) Clearly, Z is a closed subspace of C([0, 1]). Since Cf(0) = f(0) for all

f ∈ C([0, 1]), the space (I − C)(C([0, 1])) ⊆ Z. So, (I − C)(C([0, 1])) ⊆ Z.

For each n ∈ N, direct calculation yields (I − C)xn =
(
1− 1

n+1

)
xn. It follows

that
span{xn : n ∈ N} ⊆ (I − C)(C([0, 1])) ⊆ Z. (2.2)

Fix g ∈ Z. By Weierstrass' theorem there exists a sequence of polynomials
{Pk}∞k=1 such that Pk → g uniformly on [0, 1]. Since 1 ̸∈ Z, the polynomials
{Pk}∞k=1 may not lie in (I − C)(C([0, 1])) ⊆ Z. However, it follows from Pk(0) →
g(0) = 0 that the sequence of polynomials Qk(x) := Pk(x)− Pk(0), for x ∈ [0, 1]
and k ∈ N, lies in the left-side of (2.2). Since also Qk → g uniformly on [0, 1], we

have (via (2.2)) that g ∈ span{xn : n ∈ N} and the result is proved.
(ii) Let f ∈ C([0, 1]) satisfy (I − C)f = g. Then g(0) = 0 and

f(x)− 1

x

∫ x

0
f(t) dt = g(x), x ∈ (0, 1].

The function h := (f − g) ∈ C([0, 1]) satis�es h(x) = 1
x

∫ x
0 f(t) dt, for x ∈ (0, 1],

and hence, h is continuously di�erentiable on (0, 1]. Since xh(x) =
∫ x
0 f(t) dt,

for x ∈ (0, 1], we can conclude via di�erentiation that h(x) + xh′(x) = f(x), for

x ∈ (0, 1]. It follows that h′(x) = g(x)
x on (0, 1].

Fix x ∈ (0, 1]. For each ε ∈ (0, x), the continuity of h′ on [ε, x] implies that

h(x)− h(ε) =

∫ x

ε
h′(t) dt =

∫ x

ε

g(t)

t
dt.

As h ∈ C([0, 1]), it follows that limε→0+
∫ x
ε

g(t)
t dt = h(x)− h(0) exists. �

Remark 2.5. One can use Proposition 2.4 to provide an alternate, more trans-
parent proof of the fact that C : C([0, 1]) → C([0, 1]) is not uniformly mean er-
godic: Consider the continuous function g(x) := −1/(log x), for x ∈ (0, 1/2],
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with g(0) := 0 and g(x) := 1/(log 2), for x ∈ [1/2, 1]. By Proposition 2.4(i), the

function g ∈ (I − C)(C([0, 1])). On the other hand, for every ε ∈ (0, 1/2), we
have ∫ 1/2

ε

g(t)

t
dt = −

∫ 1/2

ε

dt

t log t
= log(− log ε)− log(log 2),

which tends to ∞ as ε → 0+. By Proposition 2.4(ii), it follows that g ̸∈ (I −
C)(C([0, 1])), i.e., (I −C)(C([0, 1])) is not closed in C([0, 1]). Then a result of M.
Lin [24] yields that C is not uniformly mean ergodic.

Theorem 2.6. The Cesàro operator C : Cl([0,∞]) → Cl([0,∞]) is power bounded
(hence, not hypercyclic) and not mean ergodic. Moreover,

(I − C)(Cl([0,∞])) = {f ∈ Cl([0,∞]) : f(0) = f(∞) = 0} (2.3)

Proof. For each n ∈ N, we have ∥Cn∥op = 1 and so C is power bounded. In
particular, C is then not hypercyclic.

We �rst prove the identity (2.3). Clearly,

Z := {f ∈ Cl([0,∞]) : f(0) = f(∞) = 0}

is closed in Cl([0,∞]) and (I − C)(Cl([0,∞])) ⊆ Z. So, (I − C)(Cl([0,∞])) ⊆ Z.
For each m, n ∈ N, de�ne hm,n(x) = xn if x ∈ [0,m] and hm,n(x) = mn if x ∈

[m,∞). Then (I −C)hm,n(x) =
(
1− 1

n+1

)
xn if x ∈ [0,m] and (I −C)hm,n(x) =(

1− 1
n+1

)
mn+1

x if x ∈ [m,∞). For each m, n ∈ N, let gm,n := n+1
n (I − C)hm,n.

Then, for every m, n ∈ N, we have gm,n ∈ (I −C)(Cl([0,∞])) with gm,n(x) = xn

if x ∈ [0,m] and gm,n(x) = mn+1

x if x ∈ [m,∞). So, span{gm,n : m, n ∈ N} ⊆
(I − C)(Cl([0,∞])).

Fix ψ ∈ Z. For each ε > 0, there is M ∈ N with |ψ(x)| ≤ ε
3 whenever x ≥ M

(as ψ(∞) = 0). By Weierstrass' Theorem there is a polynomialQ(x) =
∑r

j=1 ajx
j

with Q(0) = 0 such that |ψ(x)−Q(x)| ≤ ε
3 for x ∈ [0,M ]. Observe that |Q(M)| ≤

|Q(M)−ψ(M)|+ |ψ(M)| ≤ 2ε
3 . Moreover, the function h :=

∑r
j=1 ajgM,j belongs

to (I − C)(Cl([0,∞])) and coincides with Q on [0,M ]. Now, if x ∈ [0,M ], then

|ψ(x)− h(x)| = |ψ(x)−Q(x)| ≤ ε

3

and, if x ≥M , then

|ψ(x)− h(x)| =

∣∣∣∣∣∣ψ(x)−
r∑

j=1

aj
M j+1

x

∣∣∣∣∣∣ ≤ |ψ(x)|+ M

x

∣∣∣∣∣∣
r∑

j=1

ajM
j

∣∣∣∣∣∣
= |ψ(x)|+ M

x
|Q(M)| ≤ ε

3
+

2ε

3
= ε.

Accordingly, ∥ψ − h∥∞ ≤ ε. It follows that ψ ∈ (I − C)(Cl([0,∞])).
Finally, we show that the power bounded operator C is not mean ergodic in

Cl([0,∞]). On the contrary, if C is mean ergodic, then Cl([0,∞]) = Ker(I −
C) ⊕ (I − C)(Cl([0,∞])), [20, �2.1, Theorem 1.3], and so the function f(x) =
(cosx)/(x+1) ∈ Cl([0,∞]) could be written as f = c1+g with g(0) = g(∞) = 0;
see (2.3). This implies that f(0) = c = f(∞). But, f(0) = 1 and f(∞) = 0
which gives a contradiction. �
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Our next result for C([0, 1]) is stated (correctly) in [23, Theorem 2.7]. However,
the proof given there is incorrect as it is based on the claim that σpt(C

′) = ∅,
which is not the case. Indeed, the Dirac point measure δ0 induces the element of
(C([0, 1]))′ given by δ0 : f 7→ f(0), which satis�es C′δ0 = δ0. Hence, σpt(C

′) ̸= ∅.
This result was also proved correctly in [16, Prop. 16].

Proposition 2.7. Neither of the two Cesàro operators C : C([0, 1]) → C([0, 1])
and C : Cl([0,∞]) → Cl([0,∞]) is supercyclic.

Proof. Proceeding by contradiction, suppose that there exists a supercyclic vector
g ∈ C([0, 1]) for C, i.e., the set {λCng : λ ∈ C, n ∈ N0} is dense in C([0, 1]). Then
there exist a sequence {λk}∞k=1 ⊆ C and an increasing sequence {nk}∞k=1 ⊆ N such
that λkC

nkg → 1 in C([0, 1]) for k → ∞. In particular, λkC
nkg(0) = λkg(0) → 1

for k → ∞ and so g(0) ̸= 0. On the other hand, given any function f ∈ C([0, 1])
such that f ̸= 0 but f(0) = 0 (eg., f(x) = x for x ∈ [0, 1]), there exist a sequence
{µr}∞r=1 ⊆ C and an increasing sequence {mr}∞r=1 ⊆ N such that µrC

mrg → f in
C([0, 1]) for r → ∞. Hence, µrC

mrg(0) = µrg(0) → f(0) = 0 for r → ∞ and so
µr → 0 for r → ∞ (as g(0) ̸= 0). Since ∥µrCmrg∥∞ ≤ |µr| · ∥g∥∞ for all r ∈ N, it
follows that ∥f∥∞ = 0; a contradiction to f ̸= 0.

The proof for C : Cl([0,∞]) → Cl([0,∞]) is similar. It su�ces to replace the
continuous function f used there (i.e., f(x) = x, for x ∈ [0, 1]) with f ∈ Cl([0,∞])
given by f(x) = x if x ∈ [0, 1] and f(x) = 1 if x ≥ 1. �

3. The Cesàro operator on the Fréchet space C(R+)

The lc�topology of the Fréchet space C(R+) (see �1) is generated by the in-
creasing sequence of seminorms

qj(f) := max
x∈[0,j]

|f(x)|, f ∈ C(R+), j ∈ N. (3.1)

For each j ∈ N, we denote by C([0, j]) the Banach space of all C-valued, contin-
uous functions on [0, j] endowed with the norm

∥f∥j := max
x∈[0,j]

|f(x)|, f ∈ C([0, j]). (3.2)

For each j ∈ N, let Qj : C(R+) → C([0, j]) and Qj,j+1 : C([0, j + 1]) →
C([0, j]) be the respective restriction maps, i.e., Qjf := f |[0,j] for f ∈ C(R+)
and Qj,j+1f := f |[0,j] for f ∈ C([0, j + 1]). Clearly, Qj,j+1 ◦ Qj+1 = Qj

with ∥Qjf∥j = qj(f) and ∥Qj,j+1g∥j = ∥g∥j ≤ ∥g∥j+1 for every f ∈ C(R+),
g ∈ C([0, j + 1]) and j ∈ N. Moreover, we have the projective limit C(R+) =
proj j∈N(C([0, j]), Qj,j+1). Observe that all of the operators Qj,j+1 and Qj , for
j ∈ N, are surjective.

We investigate the Cesàro operator C : C(R+) → C(R+) de�ned, for every
f ∈ C(R+), by Cf(0) = f(0) and Cf(x) = 1

x

∫ x
0 f(t) dt, for x > 0. To do this

we denote by Cj : C([0, j]) → C([0, j]) the Banach space operator de�ned by the
same formulae but, now for f ∈ C([0, j]), j ∈ N. It is routine to check that
CjQj = QjC and Qj,j+1Cj+1 = CjQj,j+1 for every j ∈ N. The continuity of C
on C(R+) is immediate from the inequalities qj(Cf) ≤ qj(f), for f ∈ C(R+) and
j ∈ N. For each j ∈ N, de�ne Tj : C([0, 1]) → C([0, j]) by Tjg(x) := g(x/j),
for x ∈ [0, j] and g ∈ C([0, 1]). The linear operator Tj is an isometry with

inverse given by T−1
j h(x) := h(jx), for x ∈ [0, 1] and h ∈ C([0, j]). Moreover,
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TjC1 = CjTj , for each j ∈ N. To see this, �x f ∈ C([0, 1]) and x ∈ [0, j]. Since
(TjC1f)(0) = (CjTjf)(0) = f(0) we may assume that x ∈ (0, j]. Then

(CjTjf)(x) =
1

x

∫ x

0
(Tjf)(t) dt =

1

x

∫ x

0
f(t/j) dt

=
1

x/j

∫ x/j

0
f(s) ds = (C1f)(x/j) = (TjC1)f(x).

It follows from TjC1 = CjTj that TjC
n
1 = Cn

j Tj and hence, that TjC
n
1T

−1
j = Cn

j for

all j, n ∈ N. Since both Tj , T−1
j are isometries, we can conclude that ∥Cn

j ∥op =

∥Cn
1∥op = 1, for each j, n ∈ N, and that both

σ(Cj ;C([0, j])) = σ(C1;C([0, 1])) (3.3)

and
σpt(Cj ;C([0, j])) = σpt(C1;C([0, 1])), (3.4)

for each j ∈ N. So, for each j ∈ N, the operator Cj is power bounded. Moreover,

the identities (Cj)[n] = Tj(C1)[n]T
−1
j , for j, n ∈ N, together with Theorem 2.3 and

Proposition 2.7 imply, for each j ∈ N, that Cj is mean ergodic but, not uniformly
mean ergodic and not supercyclic (hence, not hypercyclic).

Theorem 3.1. The Cesàro operator C : C(R+) → C(R+) is power bounded and
mean ergodic but, not uniformly mean ergodic and not supercyclic (hence, not
hypercyclic). Moreover,

σ(C;C(R+)) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
and

σpt(C;C(R+)) = σ(C;C(R+)) \ {0}.

Proof. All the assumptions of Lemmas 5.1 and 5.4 (in the Appendix) are satis�ed
with X := C(R+), Xj := C([0, j]), S := C ∈ L(X) and Sj := Cj ∈ L(Xj), for
j ∈ N.

By Theorem 2.3 the operator C1 : C([0, 1]) → C([0, 1]) is power bounded and
mean ergodic. The comments prior to Theorem 3.1 ensure that Cj : C([0, j]) →
C([0, j]) is also power bounded and mean ergodic, for each j ∈ N. So, Lemma 5.4
(i)&(iii) in the Appendix yield that C : C(R+) → C(R+) is both power bounded
and mean ergodic.

If C were uniformly mean ergodic on C(R+), then also C1 : C([0, 1]) → C([0, 1])
would be uniformly mean ergodic by Lemma 5.4(ii) in the Appendix. This con-
tradicts Theorem 2.3. So, C is not uniformly mean ergodic.

Observe that C1Q1 = Q1C with Q1 surjective. If C : C(R+) → C(R+) is
supercyclic, then {λCnf : n ∈ N0, λ ∈ C} is dense in C(R+) for some f ∈ C(R+).
By the properties mentioned in the previous two sentences it follows, with g :=
Q1f ∈ C([0, 1]), that {λCn

1g : n ∈ N0, λ ∈ C} is dense in C([0, 1]), i.e., C1 is
supercyclic in C([0, 1]). This contradicts Proposition 2.7. So, C is not supercyclic
in C(R+).

Concerning the spectra, by (5.2) of Lemma 5.1 (in the Appendix) and Propo-
sition 2.1 we have via (3.3) that

σ(C;C(R+)) ⊆ ∪∞
j=1σ(Cj ;C([0, j])) = σ(C1;C([0, 1])). (3.5)
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On the other hand, for every λ ∈ σpt(C1;C([0, 1])) =
{
λ ∈ C :

∣∣λ− 1
2

∣∣ ≤ 1
2

}
\ {0}

(see Proposition 2.1), the function fλ(x) = x
1
λ
−1, for x ∈ [0, 1], when de�ned by

the same formula for all x ∈ R+, belongs to C(R+) and satis�es Cfλ = λfλ. So,
λ ∈ σpt(C;C(R+)) and we have

σpt(C1;C([0, 1])) ⊆ σpt(C;C(R+)) ⊆ σ(C;C(R+)). (3.6)

Since the range C(C(R+)) ⊆ C1(R+) with C1(R+) a proper subspace of C(R+),
we see that C is not surjective and so 0 ∈ σ(C;C(R+)). So, we also have via
Proposition 2.1 that

σpt(C1;C([0, 1])) ∪ {0} = σ(C1;C([0, 1])) ⊆ σ(C;C(R+)).

By (5.2) of Lemma 5.1 (in the Appendix) and (3.4), (3.6), it follows that

σ(C1;C([0, 1])) ⊆ σ(C;C(R+)) ∪ ∪∞
j=1σpt(Cj ;C([0, j]))

= σ(C;C(R+)) ∪ σpt(C1;C([0, 1])) ⊆ σ(C;C(R+)).

Combined with (3.5) this yields that

σ(C;C(R+)) = σ(C1;C([0, 1])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
.

Finally, by (5.3) of Lemma 5.1 (in the Appendix), we have

σpt(C;C(R+)) ⊆ ∪∞
j=1σpt(Cj ;C([0, j])) = σpt(C1;C([0, 1])) ⊆ σpt(C;C(R+)).

Thus, from Proposition 2.1 it follows that

σpt(C;C(R+)) = σpt(C1;C([0, 1])) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
\ {0}.

�

4. The Cesàro operator on the Fréchet space Lp
loc(R

+), 1 < p <∞

Recall that Lp
loc(R

+), 1 < p <∞, is the Fréchet space of all C-valued, measur-
able functions f on R+ such that

qj(f) :=

(∫ j

0
|f(x)|p dx

)1/p

<∞, j ∈ N, (4.1)

endowed with the lc-topology generated by the increasing sequence of seminorms
{qj}j∈N .

Fix 1 < p <∞. For each j ∈ N, denote by Lp([0, j]) the Banach space of all C-

valued, measurable functions on [0, j] with the norm ∥f∥j :=
(∫ j

0 |f(x)|p dx
)1/p

,

for f ∈ Lp([0, j]).
For each j ∈ N, denote by Qj : L

p
loc(R

+) → Lp([0, j]) and Qj,j+1 : L
p([0, j +

1]) → Lp([0, j]) the respective restriction maps on [0, j], i.e., Qjf := f |[0,j] for f ∈
Lp
loc(R

+) and Qj,j+1f := f |[0,j] for f ∈ Lp([0, j + 1]). Clearly, for each j ∈ N, we
haveQj,j+1◦Qj+1 = Qj with ∥Qjf∥j = qj(f), for f ∈ Lp

loc(R
+), and ∥Qj,j+1g∥j =

∥g∥j ≤ ∥g∥j+1, for g ∈ Lp([0, j + 1]). Observe that the maps Qj and Qj,j+1 are
surjective for all j ∈ N. Moreover, Lp

loc(R
+) = proj j∈N(L

p([0, j]), Qj,j+1).

We consider the Cesàro operator C : Lp
loc(R

+) → Lp
loc(R

+) given by Cf(x) :=
1
x

∫ x
0 f(t) dt, for x > 0 and all f ∈ Lp

loc(R
+), which is well de�ned as Lp([0, x]) ⊆
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L1([0, x]) for each x > 0. For each j ∈ N, denote by Cj the operator de�ned in
the same way on the Banach space Lp([0, j]). By Hardy's inequality, [19, p.240],
the linear operators C and Cj , j ∈ N, are continuous. Moreover, it is routine to
check that CjQj = QjC and Qj,j+1Cj+1 = CjQj , for each j ∈ N. More detailed
information about the Fréchet space Lp

loc(R
+) can be found in [1], [2], [3], for

example.
Fix j ∈ N and de�ne Tj : L

p([0, 1]) → Lp([0, j]) by (Tjf)(x) := f(x/j), for
x ∈ [0, j] and f ∈ Lp([0, 1]). Then the linear operator Tj is a bijection with norm

∥Tj∥op = j1/p. Indeed, for every f ∈ Lp([0, 1]), we have

∥Tf∥pj =
∫ j

0
|(Tf)(x)|p dx =

∫ j

0
|f(x/j)|p dx = j

∫ 1

0
|f(y)|p dy = j∥f∥p1.

The inverse of Tj is the operator T
−1
j : Lp([0, j]) → Lp([0, 1]) given by (T−1

j f)(x) :=

f(jx), for x ∈ [0, 1] and f ∈ Lp([0, j]), with ∥T−1
j ∥op = j−1/p.

The same calculations as in �3 show that CjTj = TjC1, for j ∈ N. It follows that
TjC

n
1 = Cn

j Tj and hence, also that TjC
n
1T

−1
j = Cn

j for all j, n ∈ N. Accordingly,
∥Cn

j ∥op ≤ ∥Tj∥op∥Cn
1∥op∥T

−1
j ∥op = ∥Cn

1∥op. In a similar way it follows from Cn
1 =

T−1
j Cn

j Tj that ∥Cn
1∥op ≤ ∥Cn

j ∥op and hence, for every j, n ∈ N, that ∥Cn
j ∥op =

∥Cn
1∥op = qn, where 1

p + 1
q = 1.

We now collect some known results about the Cesàro operator C : Lp([0, 1]) →
Lp([0, 1]), 1 < p <∞, that are needed below.

Theorem 4.1. The Cesàro operator C : Lp([0, 1]) → Lp([0, 1]), 1 < p < ∞, is
not power bounded and not mean ergodic. On the other hand, it is hypercyclic,
chaotic and satis�es

σ(C;Lp([0, 1])) =
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ ≤ q

2

}
and

σpt(C;L
p([0, 1])) =

{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
.

The statements about the spectrum are due to G.M. Leibowitz, [21]; see also
[22, Theorem 1]. León-Saavedra et al. have shown in [23, Theorems 2.3 and
2.6], that C is both hypercyclic and chaotic on Lp([0, 1]) and so, it is not power
bounded. Moreover, C cannot be mean ergodic because the spectrum of a mean
ergodic operator is contained in the closed unit disc; see Section 1.

Theorem 4.2. Let 1 < p < ∞. The Cesàro operator C : Lp
loc(R

+) → Lp
loc(R

+)
is not power bounded and not mean ergodic but, it is hypercyclic, chaotic and
satis�es

σ(C;Lp
loc(R

+)) =
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ ≤ q

2

}
and

σpt(C;L
p
loc(R

+)) =
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
.

Proof. All the assumptions of Lemmas 5.1 and 5.4 (in the Appendix) are satis�ed
with X := Lp

loc(R
+), Xj := Lp([0, j]), S := C ∈ L(X) and Sj := Cj ∈ L(Xj), for

j ∈ N. By Theorem 4.1 the operator C1 : L
p([0, 1]) → Lp([0, 1]) is neither power

bounded nor mean ergodic. So, by applying Lemma 5.1 (i)&(iii) (in the Appendix)
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we can conclude that also C : Lp
loc(R

+) → Lp
loc(R

+) is not power bounded and not
mean ergodic.

Since (Cj)[n] = Tj(C1)[n]T
−1
j , the operator Cj is hypercyclic on Lp([0, j]) for

all j ∈ N (cf. Theorem 4.1). On account of the comments immediately prior to
Theorem 4.2 and the identities CjQj = QjC, for each j ∈ N, we can apply [10,
Proposition 2.1] to conclude that C is hypercyclic on Lp

loc(R
+).

Theorem 4.1 and the identities Cj = TjC1T
−1
j , for each j ∈ N, imply that

σ(Cj ;L
p([0, j])) = σ(C1;L

p([0, 1])) (4.2)

and
σpt(Cj ;L

p([0, j])) = σpt(C1;L
p([0, 1])), (4.3)

for each j ∈ N. Accordingly, we can apply (5.2) of Lemma 5.1 to conclude, via
(4.2), that

σ(C;Lp
loc(R

+)) ⊆ ∪∞
j=1σ(Cj ;L

p([0, j])) = σ(C1;L
p([0, 1])). (4.4)

Now, if λ ∈ σpt(C1;L
p([0, 1])) =

{
λ ∈ C :

∣∣λ− q
2

∣∣ < q
2

}
(see Theorem 4.1), then

Re
(
1
λ

)
> 1

q and so the function fλ(x) := x
1
λ
−1 belongs to Lp

loc(R
+) and is an

eigenvector of C corresponding to the eigenvalue λ. To see this, observe for every
j ∈ N that

(qj(fλ))
p =

∫ j

0
|x

1
λ
−1|p dx =

∫ j

0
xp(Re( 1

λ
)−1) dx <∞,

as p
(
Re

(
1
λ

)
− 1

)
> p(1q − 1) = −1. Thus, fλ ∈ Lp

loc(R
+). It is routine to check

that Cfλ = λfλ. Hence,

σpt(C1;L
p([0, 1])) ⊆ σpt(C;L

p
loc(R

+)) ⊆ σ(C;Lp
loc(R

+)).

So, by (5.2) of Lemma 5.1 it follows that

σ(C1;L
p([0, 1])) ⊆ σ(C;Lp

loc(R
+)) ∪ ∪∞

j=1σpt(Cj ;L
p([0, j]))

= σ(C;Lp
loc(R

+)) ∪ σpt(C1;L
p([0, 1])) ⊆ σ(C;Lp

loc(R
+)).

Combined with (4.4) this shows that

σ(C;Lp
loc(R

+)) = σ(C1;L
p([0, 1])) =

{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ ≤ q

2

}
.

Now, by (5.3) of Lemma 5.1 we obtain

σpt(C;L
p
loc(R

+)) ⊆ ∪∞
j=1σpt(Cj ;L

p([0, j])) = σpt(C1;L
p([0, 1])) ⊆ σpt(C;L

p
loc(R

+)),

and hence, that

σpt(C;L
p
loc(R

+)) = σpt(C1;L
p([0, 1])) =

{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
.

�
We already know that C is hypercyclic. It remains to show that C is chaotic in

Lp
loc(R

+). For this we need the following result.

Lemma 4.3. Let 1 < p <∞ and the sequence {αn}∞n=1 ⊆ C satisfy Re(αn) > −1
p

for each n ∈ N. Suppose that {αn}∞n=1 has an accumulation point in the open set

H+
p =

{
z ∈ C : Re(z) > −1

p

}
. Then

Y := span{xαn : n ∈ N}
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is a dense subspace of Lp
loc(R

+).

Proof. For each α ∈ H+
p , set fα := xα, in which case Re(α) > −1

p ensures that

fα ∈ Lp
loc(R

+). Suppose that F ∈ (Lp
loc(R

+))′ satis�es F (g) = 0 for each g ∈ Y .
Then F (fαn) = 0, for each n ∈ N. By the structure of the dual space of Lp

loc(R
+),

[2], there exist j ∈ N and h ∈ Lq(R+), where 1
p+

1
q = 1, such that supp(h) ⊆ [0, j]

and

F (f) =

∫ j

0
f(x)h(x) dx, f ∈ Lp

loc(R
+).

De�ne Φ: H+
p → C by Φ(α) := F (fα) =

∫ j
0 x

αh(x) dx, for α ∈ H+
p . The func-

tion Φ is analytic on H+
p and vanishes on the sequence {αn}∞n=1, which has an

accumulation point in H+
p . So, Φ is identically zero on H+

p , i.e., F (fα) = 0 for

all α ∈ H+
p . In particular, F vanishes on all C-valued polynomials on R+. Since

such polynomials form a dense subspace of Lp
loc(R

+), it follows that F = 0 on
Lp
loc(R

+). As F is arbitrary, we can conclude via the Hahn�Banach theorem that
Y is dense in Lp

loc(R
+). �

Returning to showing that C is chaotic in Lp
loc(R

+), it su�ces to verify that
the space

H := span{Ker(λI − C) : λ = e2πiθ for some θ ∈ Q}
is dense in Lp

loc(R
+); see [18, Proposition 2.33]. We already know that

σpt(C;L
p
loc(R

+)) =
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
.

Since q > 1, we can select {θn}∞n=1 ⊆ Q such that λn := e2πiθn ∈ σpt(C;L
p
loc(R

+))

for each n ∈ N with λn → 1 as n → ∞. De�ne βn := 1
λn

− 1, for n ∈ N. Since

limn→∞ βn = 0, also limn→∞Re(βn) = 0 and so there exists N ∈ N such that
Re(βn) > −1

p for all n > N . Hence, the sequence αn := βn+N , for n ∈ N, satis�es
Re(αn) > −1

p for all n ∈ N and {αn}∞n=1 has 0 ∈ H+
p as an accumulation point.

Then, by Lemma 4.3 applied to {αn}∞n=1, the space Y := span{xαn : n ∈ N} is
dense in Lp

loc(R
+). Since Cxαn = λnx

αn with xαn ∈ Lp
loc(R

+), for all n ∈ N, it
follows that Y ⊆ H. Hence, C has a dense set of periodic points, i.e., it is chaotic
(being also hypercyclic). �

5. Appendix

Here we collect a few relevant results concerning the spectrum and mean ergodic
properties of continuous linear operators de�ned on certain classes of Fréchet
spaces.

Lemma 5.1. Let X be a Fréchet space and S ∈ L(X). Suppose that X =
proj j∈N(Xj , Qj,j+1), with Xj a Banach space (having norm ∥ ∥j) and linking
maps Qj,j+1 ∈ L(Xj+1, Xj) which are surjective for all j ∈ N, and suppose, for
each j ∈ N, that there exists Sj ∈ L(Xj) satisfying

SjQj = QjS, (5.1)

where Qj ∈ L(X,Xj), j ∈ N, denotes the canonical projection of X onto Xj (i.e.,
Qj,j+1 ◦Qj+1 = Qj). Then

σ(S) ⊆ ∪∞
j=1σ(Sj) ⊆ σ(S) ∪ ∪∞

j=1σpt(Sj). (5.2)
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Moreover,

σpt(S) ⊆ ∪∞
j=1σpt(Sj). (5.3)

Proof. It follows from (5.1) that

(λIj − Sj)Qj = Qj(λI − S) (5.4)

for all j ∈ N and λ ∈ C, where Ij denotes the identity map on Xj .
Fix any λ ∈ ∩∞

j=1ρ(Sj). If (λI − S)x = 0 for some x ∈ X, then by (5.4) we

have (λIj − Sj)Qjx = Qj(λI − S)x = 0 for all j ∈ N. It follows that Qjx = 0 for
all j ∈ N. This implies that x = 0 as x ∈ X = proj j∈N(Xj , Qj,j+1). The proof of
the surjectivity of (λI − S) follows as in the last part of the proof (cf. p.154) of
Theorem 4.1 of [6] via (5.4) and the fact that (λIj −Sj) is bijective for all j ∈ N.
As X is a Fréchet space, we can conclude that (λI −S) ∈ L(X) and so λ ∈ ρ(S).
This establishes that σ(S) ⊆ ∪∞

j=1σ(Sj).

To verify the second containment in (5.2) we �rst observe that if µ ∈ ρ(S),
then (µI − S) is invertible in L(X) and hence, (µIj − Sj) ∈ L(Xj) is surjective
for all j ∈ N; this follows routinely from (5.4) and the fact that each operator Qj ,
for j ∈ N, is surjective. Suppose that ν ∈ ρ(S) \ ∩∞

j=1ρ(Sj). Then ν ̸∈ ρ(Sj0) for

some j0 ∈ N, i.e., (νIj0 − Sj0) is not invertible in L(Xj0). Since (νIj0 − Sj0) is
surjective, it follows that ν ∈ σpt(Sj0).

Now, let λ ∈ ∪∞
j=1σ(Sj). If λ ∈ σ(S), then there is nothing to prove. If

λ ̸∈ σ(S), then λ ∈ ρ(S). From the previous paragraph λ ∈ σpt(Sj0) for some
j0 ∈ N, i.e., λ ∈ ∪∞

j=1σ(Sj). This establishes the second containment in (5.2).

Thereby (5.2) has been proved.
To verify (5.3) let λ ∈ (∪∞

j=1σpt(Sj))
c, in which case (λjIj − Sj) is injective

for each j ∈ N. Suppose that x ∈ X satis�es (λI − S)x = 0 in which case (5.4)
implies that (λIj − Sj)Qjx = 0 for every j ∈ N. Hence, Qjx = 0 for every j ∈ N
and so x = 0. This shows that (λI − S) is injective and so λ ̸∈ σpt(S), i.e.,
λ ∈ (σpt(S))

c. Thereby (5.3) is established. �

A Fréchet space X is always a projective limit of continuous linear operators
Rj : Xj+1 → Xj , for j ∈ N, with each Xj a Banach space. If Xj and Rj can be
chosen such that each Rj is surjective and X is isomorphic to the projective limit
proj j∈N(Xj , Rj), then X is called a quojection, [9, Section 5]. Banach spaces and
countable products of Banach spaces are quojections. In [27] Moscatelli gave the
�rst examples of quojections which are not isomorphic to countable products of
Banach spaces. Concrete examples of quojection Fréchet spaces are ω = CN, the
spaces Lp

loc(Ω), for 1 ≤ p ≤ ∞, and C(m)(Ω) for m ∈ N0, with Ω ⊆ RN any
open set, all of which are isomorphic to countable products of Banach spaces.
We refer the reader to the survey paper [26] for further information. Under the
assumptions of Lemma 5.1 the Fréchet space X there is necessarily a quojection.
The same is true in Lemma 5.2 and Lemma 5.4 to follow.

Lemma 5.2. Let X be a Fréchet space and {Sn}∞n=1 ⊆ L(X). Suppose that
X = proj j∈N(Xj , Qj,j+1), with Xj a Banach space (having norm ∥ ∥j) and linking
maps Qj,j+1 ∈ L(Xj+1, Xj) which are surjective for all j ∈ N, and suppose, for

each j, n ∈ N, that there exists S
(j)
n ∈ L(Xj) satisfying

S(j)
n Qj = QjSn, (5.5)
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where Qj ∈ L(X,Xj), j ∈ N, denotes the canonical projection of X onto Xj (i.e.,
Qj,j+1 ◦Qj+1 = Qj). Then the following statements are equivalent.

(i) The limit τb-limn→∞ Sn =: S exists in Lb(X).

(ii) For each j ∈ N, the limit τb-limn→∞ S
(j)
n =: S(j) exists in Lb(Xj).

In this case, the operators S ∈ L(X) and S(j) ∈ L(Xj), for j ∈ N, satisfy

Sx = (S(j)xj)j , x = (xj)j ∈ X. (5.6)

Proof. For each j ∈ N, de�ne qj(x) := ∥Qjx∥j for x ∈ X. Then {qj}∞j=1 ⊆ ΓX is a

fundamental sequence generating the lc�topology ofX (asX = proj j∈N(Xj , Qj,j+1)).
(i)⇒(ii). The existence in Lb(X) of the stated limit S ∈ L(X) ensures the

existence (in the norm of Xj) of

lim
n→∞

S(j)
n Qjx = lim

n→∞
QjSnx = QjSx, (5.7)

for all j ∈ N and x ∈ X, via the continuity of Qj and (5.5). In fact, the weaker
requirement that Sn → S in Ls(X) su�ces for this.

Fix j ∈ N. De�ne S(j) on Xj = Qj(X) by S(j)(Qjx) := QjSx, for x ∈ X.

Then S(j) ∈ L(Xj). Indeed, S
(j) is well de�ned because if Qjx = Qjx

′ for some

x, x′ ∈ X, then Qj(x−x′) = 0 and so, via (5.5), 0 = S
(j)
n Qj(x−x′) = QjSn(x−x′)

for all n ∈ N. Passing to the limit for n → ∞, it follows that 0 = QjS(x − x′),

i.e., QjSx = QjSx
′. Clearly, S(j) is linear as both Qj and S are linear. Finally,

since S(j)u = limn→∞ S
(j)
n u, for each u ∈ Xj (c.f. (5.7)) and {S(j)

n }∞n=1 ⊆ L(Xj)
with Xj a Banach space, it follows from the Uniform Boundedness Principle that

S(j) is continuous and hence, S
(j)
n → S(j) in Ls(Xj) for n→ ∞. It is routine (via

(5.5)) to check that S(j)Qj = QjS.
As noted above, X is necessarily a quojection and so there exists B ∈ B(X)

such that Uj ⊆ Qj(B), [13, Proposition 1], where Uj is the closed unit ball of Xj .
So, by (5.5) we have

sup
u∈Uj

∥(S(j)
n − S(j))u∥j ≤ sup

x∈B
∥(S(j)

n − S(j))Qjx∥j

= sup
x∈B

∥(Qj(Sn − S)x∥j = sup
x∈B

qj((Sn − S)x)

for all n ∈ N. Since supx∈B qj((Sn − S)x) → 0 for n → ∞ (by assumption), it

follows that supu∈Uj
∥(S(j)

n −S(j))u∥j → 0 for n→ ∞, i.e., τb-limn→∞ S
(j)
n = S(j).

Since j ∈ N is arbitrary, the proof is complete.
(ii)⇒(i). Fix x = (xj)j ∈ X = proj j∈N(Xj , Qj,j+1) and set Sx := (S(j)xj)j .

Then Sx ∈ X. Indeed, Qjx = xj for all j ∈ N and so, via (5.5), we have

Qj,j+1Sj+1xj+1 = lim
n→∞

Qj,j+1S
(j+1)
n Qj+1x = lim

n→∞
Qj,j+1Qj+1Snx

= lim
n→∞

QjSnx = lim
n→∞

S(j)
n Qjx = S(j)xj ,

for all j ∈ N, i.e., Sx ∈ X. Clearly, the linearity of the S(j)'s imply the linearity
of the map S : x 7→ Sx, for x ∈ X. Moreover, the continuity of S is a consequence
of X = proj j∈N(Xj , Qj,j+1). Next, �x j ∈ N and B ∈ B(X). Again via (5.5) we
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have

sup
x∈B

qj((Sn − S)x) = sup
x∈B

∥(Qj(Sn − S)x∥j = sup
x∈B

∥(S(j)
n − S(j))Qjx∥j

= sup
u∈Qj(B)

∥(S(j)
n − S(j))u∥j

for all n ∈ N. Since Qj(B) ∈ B(Xj), it follows from the assumption (ii) that

supu∈Qj(B) ∥(S
(j)
n − S(j))u∥j → 0 for n → ∞. Accordingly, for each j ∈ N and

each B ∈ B(X) we have limn→∞ supx∈B qj((Sn − S)x) = 0, i.e., (i) holds. �

Remark 5.3. A careful examination of the proof of Lemma 5.2 shows that the
equivalence (i)⇔(ii) remains valid if τb is replaced with τs.

Lemma 5.4. Let X = proj j∈N(Xj , Qj.j+1) be a Fréchet space and operators
S ∈ L(X) and Sj ∈ L(Xj), for j ∈ N, be given which satisfy the assumptions of
Lemma 5.1 (with Qj ∈ L(X,Xj), j ∈ N, denoting the canonical projection of X
onto Xj and ∥ ∥j being the norm in the Banach space Xj).

(i) S ∈ L(X) is power bounded if and only if each Sj ∈ L(Xj), j ∈ N, is
power bounded.

(ii) S ∈ L(X) is uniformly mean ergodic if and only if each Sj ∈ L(Xj),
j ∈ N, is uniformly mean ergodic.

(iii) S ∈ L(X) is mean ergodic if and only if each Sj ∈ L(Xj), j ∈ N, is mean
ergodic.

Proof. Let {qj}∞j=1 ⊆ ΓX be the fundamental sequence of seminorms generating
the lc-topology of X as given in the proof of Lemma 5.2.

(i) Suppose that each Sj ∈ L(Xj), j ∈ N, is power bounded, i.e., there exists
Mj > 0 such that

∥Sn
j u∥j ≤Mj∥u∥j , u ∈ Xj , n ∈ N.

It follows from (5.1) that Sn
j Qj = QjS

n for all j, n ∈ N. Fix j ∈ N. Then, for
each n ∈ N and x ∈ X we have

qj(S
nx) = ∥QjS

nx∥j = ∥Sn
j Qjx∥j ≤Mj∥Qjx∥j =Mjqj(x).

Since {qj}∞j=1 generate the lc-topology of the Fréchet space X, it follows that

{Sn}∞n=1 ⊆ L(X) is equicontinuous, i.e., S is power bounded.
Conversely, suppose that S is power bounded. Fix j ∈ N and let Uj be the

closed unit ball of Xj . Since X is a quojection, there exists B ∈ B(X) with Uj ⊆
Qj(B). Moreover, the power boundedness of S implies that C := ∪n∈NS

n(B) ∈
B(X) and hence, there exists M > 0 such that qj(z) ≤ M for every z ∈ C. Let
u ∈ Uj . Then u = Qjx for some x ∈ B and so

∥Sn
j u∥j = ∥Sn

j Qjx∥j = ∥QjS
nx∥j = qj(S

nx) ≤M,

for every n ∈ N. This implies that the operator norms satisfy ∥Sn
j ∥op ≤ M , for

n ∈ N. Accordingly, Sj ∈ L(Xj) is power bounded.

(ii) For each n ∈ N de�ne S̃n := S[n] ∈ L(X) and S̃
(j)
n := (Sj)[n] ∈ L(Xj), for

j ∈ N. It follows from (5.1) that S̃
(j)
n Qj = QjS̃n, for j, n ∈ N. Accordingly, we

can apply Lemma 5.2 (with S̃n in place of Sn and S̃
(j)
n in place of S

(j)
n ) to conclude
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that S is uniformly mean ergodic if and only if each Sj , j ∈ N, is uniformly mean
ergodic.

(iii) Apply the same argument as in part (ii) but now apply Lemma 5.2 with
τs in place of τb; see Remark 5.3. �
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