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Abstract. We characterize Köthe echelon spaces (and, more generally, those
Fréchet spaces with an unconditional basis) which are Schwartz, in terms of the
convergence of the Cesàro means of power bounded operators de�ned on them.
This complements similar known characterizations of re�exive and of Fréchet-
Montel spaces with a basis. Every strongly convergent sequence of continuous
linear operators on a Fréchet-Schwartz space does so in a special way. We
single out this type of �rapid convergence� for a sequence of operators and
study its relationship to the structure of the underlying space. Its relevance
for Schauder decompositions and the connection to mean ergodic operators
on Fréchet-Schwartz spaces is also investigated.

1. Introduction

A continuous linear operator T acting in a Fréchet space X is called power
bounded (resp. mean ergodic, resp. uniformly mean ergodic) if the sequence
{Tn}∞n=1 of iterates (resp. the sequence of the Cesàro means { 1n

∑n
k=1 T

k}∞n=1) is
equicontinuous (resp. convergent for the strong operator toplogy τs, resp. conver-
gent for the uniform operator topology τb). J. von Neumann (1931) proved that
unitary operators in Hilbert spaces are mean ergodic. F. Riesz (1938) showed that
every power bounded operator in an Lp-space (1 < p < ∞) is mean ergodic. In
1939 E.R. Lorch extended this result to all re�exive Banach spaces. It quickly be-
came evident that there was an intimate connection between geometric properties
of the underlying Banach space X and mean ergodic operators on X. Concerning
the converse, in 1997 E.Yu.Emel'yanov showed that every Banach lattice with
the property that every power bounded operator on the space is mean ergodic is
necessarily re�exive, [13]. A major breakthrough came in 2001 when V.P. Fonf,
M. Lin and P. Wojtaszczyk, [14], established the following characterizations for
a Banach space X with a basis:

(i) X is �nite-dimensional if and only if every power bounded operator on X
is uniformly mean ergodic.

(ii) X is re�exive if and only if every power bounded operator on X is mean
ergodic.

This paper initiated an immediate interest for analogous questions in the setting
of Fréchet spaces.
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The result of Emel'yanov was extended in [10], where it was shown that a
Fréchet lattice X is re�exive if and only if every power bounded operator on X
is mean ergodic. An analogue of (i) is also presented in [10]. Namely, a discrete
Fréchet lattice X is Montel (i.e., bounded sets are relatively compact) if and
only if every power bounded operator lying in the centre Z(X) of X is uniformly
mean ergodic. Concerning further results along the lines of (i) and (ii) above,
it is known that a Fréchet space X with a basis is Montel if and only if every
power bounded operator on X is uniformly mean ergodic, [1, Theorem 1.3], and
that X is re�exive if and only if every power bounded operator on X is mean
ergodic, [1, Theorem 1.4]. For analogous results in the setting of locally convex
spaces we refer to [2]; see also [24], [25]. If the Fréchet space X is not assumed
to have a basis, then X is Montel if and only if every power bounded, mean
ergodic operator de�ned on any closed subspace of X is uniformly mean ergodic,
[1, Theorem 5.4], and X is re�exive if and only if every power bounded operator
de�ned on any closed subspace of X is mean ergodic, [1, Proposition 5.1].

In a conference in Trier (Germany) in 2008, where the above mentioned results
were presented for the �rst time, Prof. A. Pelczy«ski suggested that there should
be similar criteria available which characterize Fréchet-Schwartz spaces. In order
to be able to distinguish between �Montel and Schwartz� it is necessary to �nd an
appropriate (and stronger) notion of operator convergence than τb-convergence.
The aim of this paper is to present such a notion and to invoke it to address
Pelczynski's suggestion.

Let {Sk}∞k=1 be a sequence of continuous linear operators on a Fréchet space X,
whose topology is generated by a fundamental, increasing sequence of seminorms
{qn}∞n=1. Then {Sk}∞k=1 is called rapidly convergent if there exists a continuous
linear operator S on X such that, for every n ∈ N there exists m > n with

lim
k→∞

sup{qn((Sk − S)x) : qm(x) ≤ 1} = 0,

in which case we write Sk
(R)→ S for k → ∞. Whenever Sk

(R)→ S for k → ∞,
then also τb-limk→∞ Sk = S. However, since there exist Fréchet-Montel spaces
which fail to be Schwartz, τb-convergence of a sequence of operators need not
imply its rapid convergence: this follows from the fact that τs-convergence of a
sequence of operators in a Montel space implies its τb-convergence and from the
characterization presented in Corollary 3.4. Namely, a Fréchet space X 6= {0} is
Schwartz if and only if every sequence of operators in X which is τs-convergent
is also rapidly convergent.

An adequate response to Pelczy«ski's suggestion, via the notion of rapid con-
vergence, is presented in the �nal two sections. In Section 4 we introduce the
new notion of an operator being rapidly mean ergodic. A deep result of S.F.
Bellenot, [3], stating that each Fréchet-Schwartz space is a closed subspace of a
Fréchet-Schwartz space with an unconditional basis, plays a role in establishing
the main result of this section; see Theorem 4.6. Namely, let X be a Fréchet
space which is a closed subspace of a Fréchet space with an unconditional basis.
Then X is Schwartz if and only if every closed subspace Y of X has the property
that every power bounded operator on Y is rapidly mean ergodic. In the �nal
Section 5 this result is re�ned (see Theorem 5.6) for the important class of Fréchet
spaces λp(A), p ∈ [1,∞) ∪ {0}, known as Köthe echelon spaces, all of which have
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an unconditional basis. Indeed, it is shown that λp(A) is Schwartz if and only if
every power bounded operator on λp(A) is rapidly mean ergodic.

2. Preliminaries

Our notation for locally convex Hausdro� spaces, brie�y lcHs', is standard;
we refer to [17], [18], [20], [22], [26]. More detailed information on Fréchet and
Köthe echelon spaces can be found in [6], [7], [22]. A standard reference for mean
ergodic operators is [19]. We begin with some de�nitions and notation which will
facilitate the reading of the paper.

Let X be a lcHs and ΓX a system of continuous seminorms determining the
topology of X. The strong operator topology τs in the space L(X) of all continu-
ous linear operators from X into itself is determined by the family of seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is de�ned in L(X) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For X a Banach
space, τb is the operator norm topology in L(X). If X is metrizable and complete,
then X is called a Fréchet space. In this case ΓX can be taken countable. The
identity operator on a lcHs X is denoted by I. Of course, for T ∈ L(X) we de�ne
KerT := T−1({0}).

By Xσ we denote X equipped with its weak topology σ(X,X ′), where X ′ is
the topological dual space of X, and X ′σ denotes X ′ equipped with its weak�star
topology σ(X ′, X). Given T ∈ L(X), its dual operator T ′ : X ′ → X ′ is de�ned
by 〈x, T ′x′〉 = 〈Tx, x′〉 for all x ∈ X, x′ ∈ X ′. Note that T ′ ∈ L(X ′σ), [18, p.134].

Recall that a Fréchet space X with a basis of decreasing, absolutely convex
0-neighbourhoods {Un}∞n=1 is Schwartz if

∀n ∈ N ∃m > n ∀ε > 0 ∃Fε ⊆ X �nite such that Um ⊆ Fε + εUn, (2.1)

or, equivalently, if

∀n ∈ N ∃m > n ∀ε > 0 ∃Lε ⊆ X relatively compact such that Um ⊆ Lε + εUn,
(2.2)

[15, p.276]. Therefore, a Fréchet space X is Schwartz if and only if X can be
written as a projective limit via continuous linear linking operators Sn : Xn+1 →
Xn, for n ∈ N, with each Xn a Banach space, such that, for every n ∈ N, there
exists m > n with (Sm−1 ◦ . . . ◦ Sn) : Xm → Xn a compact operator. Further
details about Schwartz lcHs' can be found in [15], [20], [22].

The following characterization of Fréchet-Schwartz spaces, due to Bonet, Lind-
ström, Valdivia, [9], is a version of the Josefson-Nissenzweig theorem for Fréchet
spaces. See also [8], [21].

Theorem 2.1. A Fréchet space X is Schwartz if and only if for each sequence
{x′k}∞k=1 ⊆ X ′ which satis�es limk→∞ x

′
k = 0 in X ′σ, there exists n ∈ N such that(

supx∈Un
|〈x, x′k〉|

)∞
k=1
∈ c0.
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A Schauder decomposition of a Fréchet space X is a sequence {Pj}∞j=1 ⊆ L(X)
of operators in X satisfying the following properties:

(S1) PiPj = Pmin{i,j}, for all i, j ∈ N,
(S2) τs-limj→∞ Pj = I, and
(S3) Pi 6= Pj if i 6= j;

see [11], [16]. According to (S1) each Pj , for j ∈ N, is a projection. Condition
(S2) implies that {Pj}∞j=1 is an equicontinuous subset of L(X). If the range

Pj(X) is a �nite-dimensional space for each j ∈ N, then {Pj}∞j=1 is said to be a
�nite-dimensional Schauder decomposition of X.

By setting Q1 := P1 and Qn := Pn − Pn−1 for n ≥ 2 we arrive at a sequence
of pairwise orthogonal projections (i.e., QnQm = 0 if n 6= m). Moreover, (S2)
implies that

∑∞
n=1Qn = I, with the series converging in Ls(X), and (S3) en-

sures that Qn 6= 0 for each n ∈ N. If the series
∑∞

n=1Qn = I is unconditionally
convergent in Ls(X), then {Pj}∞j=1 is called an unconditional Schauder decom-

position of X. The dual projections {P ′j}∞j=1 ⊆ L(X ′σ) always form a Schauder

decomposition of X ′σ, [16, p.378].
Inspired by the work of Benndorf, [5], Díaz introduced in [12] the following

notion: a Schauder decomposition {Pj}∞j=1 satis�es the property (S) if

∀n ∈ N ∃m > n with lim
j→∞

sup{qn((I − Pj)x) : qm(x) ≤ 1} = 0, (2.3)

with {qn}∞n=1 a fundamental, increasing sequence of continuous seminorms on X.
Let X be a Fréchet space. A sequence {ei}∞i=1 ⊆ X is called a basis for

X if for every x ∈ X there is a unique sequence (αi)
∞
i=1 of scalars such that

x =
∑∞

i=1 αixi. By setting 〈x, e′i〉 := αi we obtain a linear form e′i : X → C,
necessarily continuous, which is called the n-th coe�cient functional associated
to {ei}∞i=1. The functionals e′i, i ∈ N, are uniquely determined by {ei}∞i=1 and
{(ei, e′i)}∞i=1 is a biorthogonal sequence (i.e. 〈ei, e′j〉 = δij for i, j ∈ N). The

sequence {e′i}∞i=1 ⊆ X ′ is called the dual basis of {ei}∞i=1.

If {ei}∞i=1 ⊆ X is a basis for a Fréchet space X, then the projections P (j) ∈
L(X), for j ∈ N, de�ned by

P (j)x :=

j∑
i=1

〈x, e′i〉ei, x ∈ X, (2.4)

form a �nite-dimensional Schauder decomposition ofX (with P (j)(X) = span{ei}ji=1,
for j ∈ N).

We conclude this section with a fact which is surely known. Since we could not
�nd a reference, a proof is included.

Lemma 2.2. Let E be a �nite-dimensional lcHs and U be a closed, absolutely
convex 0-neighbourhood in E. Then there exist a subspace F of E with F ⊆ U
and a bounded (hence, relatively compact) subset B ⊆ E such that U ⊆ F +B.

Proof. De�ne F := ∩α>0αU . It is routine to verify that F is the largest subspace
of E which is contained in U . Of course, it may happen that F = {0}, eg. if U is
bounded. Since E is �nite-dimensional and F is the largest subspace of E lying in
U , we can write E = F ⊕G with G a subspace of X such that B := (2U)∩G does
not contain any non-zero subspace of E. The claim is that B is bounded (hence,
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relatively compact). Indeed, as B is a closed, absolutely convex 0-neighbourhood
of the �nite dimensional space G, we may (and will) assume that E is normed
via a norm ||.||. Suppose that B is unbounded in E. Then there is a sequence
{wj}∞j=1 in B such that 1 < ||wj ||, for all j, with {||wj ||}∞j=1 increasing to ∞ as

j →∞. Set uj := wj/||wj ||, for j ∈ N. Since B is absolutely convex, uj ∈ B for
each j ∈ N. As the unit sphere of G is compact, there exists u ∈ G, with ||u|| = 1,
which is the limit of some subsequence of {uj}j=1. Denote this subsequence in
the same way. Suppose, for the moment, that λu ∈ B whenever λ > 1. Since
B is absolutely convex, it would follow that the linear span of {u} (a non-trivial
subspace) is contained in B; a contradiction! So, �x λ > 1. Select j0 ∈ N such
that λ < ||wj || for all j > j0. Thus, λuj = (λ/||wj ||)wj ∈ B for each j > j0. On
the other hand, λuj → λu as j →∞. Therefore λu belongs to the closed set B.
This proves the claim.

It remains to show that U ⊆ F +B. Let x ∈ U . Then x = f + g with f ∈ F ,
g ∈ G and so g = x − f ∈ U − U ⊆ 2U . Hence, g ∈ B which shows that
x ∈ F +B. �

3. Rapid convergence of operators on Fréchet-Schwartz spaces

Throughout this section, X is a Fréchet space with a fundamental, increas-
ing sequence of seminorms ΓX = {qn}∞n=1. For each n ∈ N, set Un := {x ∈
X : qn(x) ≤ 1}.

A sequence of operators {Sk}∞k=1 ⊆ L(X) is said to be rapidly convergent to
S ∈ L(X) if

∀n ∈ N ∃m > n with lim
k→∞

sup
x∈Um

qn((Sk − S)x) = 0. (3.1)

In such a case we write Sk
(R)→ S in L(X) as k →∞ or (R)-limk→∞ Sk = S. It is

routine to verify that Sk
(R)→ S in L(X) as k →∞ if and only if

∀n ∈ N ∃m > n ∃α = (αk)k ∈ c0 with qn((Sk−S)x) ≤ αkqm(x) ∀x ∈ X. (3.2)

Clearly, Sk
(R)→ S as k →∞ if and only if (Sk − S)

(R)→ 0 as k →∞.

Remark 3.1. If {Sk}∞k=1 ⊆ L(X) satis�es Sk
(R)→ S for k →∞, then it is routine

to check that necessarily τb-limk→∞ Sk = S. Hence, also τs-limk→∞ Sk = S. In
particular, the limit of a rapidly convergent sequence in L(X) is unique.

Rapidly convergent sequences of operators are easy to exhibit.

Example 3.2. Let X be a Fréchet space which is the product of a sequence of
Fréchet spaces, i.e., X =

∏∞
i=1Xi with each Xi a Fréchet space. For each i ∈ N,

let ΓXi = {q(i)n }∞n=1 be a fundamental, increasing sequence of seminorms for Xi.
Then the sequence of seminorms given by

pn(x) :=

n∑
i=1

q(i)n (xi), x = (xi)i ∈ X,

for each n ∈ N, de�nes the lc-topology of X.
Consider the sequence of operators {P (k)}∞k=1 ⊆ L(X), where

P (k)x := (x1, . . . , xk, 0, 0, . . .), x = (xi)i ∈ X,
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i.e., P (k) is the projection of X onto
∏k
i=1Xi. Then (R)-limk→∞ P

(k) = I.

Indeed, for any �xed n ∈ N, we have pn((I−P (k))x) = 0 for all x ∈ X and k > n.

We proceed to analyze the relationship between the rapid convergence of se-
quences of operators on a Fréchet space X and the fact that X is Schwartz.

Proposition 3.3. Let X be a Fréchet-Schwartz space. If {Sk}∞k=1 ⊆ L(X) satis-
�es τs-limk→∞ Sk = S for some S ∈ L(X), then also (R)-limk→∞ Sk = S.

Proof. It su�ces to consider the case when S = 0. Since {Sk}∞k=1 converges to 0
in Ls(X) and X is Fréchet, {Sk}∞k=1 is equicontinuous in L(X). Let n ∈ N. Then
there exists r(n) > n such that

Sk(Ur(n)) ⊆ Un, k ∈ N. (3.3)

As X is Schwartz, (2.1) implies that there exists m > r(n) satisfying

∀ε > 0 ∃x1, . . . , xp(ε) ∈ X such that Um ⊆ ∪p(ε)i=1

(
xi +

ε

2
Ur(n)

)
. (3.4)

To prove that (R)-limk→∞ Sk = 0 we need to show that

lim
k→∞

sup
x∈Um

qn(Skx) = 0. (3.5)

To verify (3.5), let ε > 0 and choose x1, . . . , xp(ε) ∈ X according to (3.4). For
each i = 1, . . . , p(ε) we have Skxi → 0 in X as k →∞. Hence, there exists k0 ∈ N
such that

Skxi ∈
ε

2
Un, k ≥ k0, i = 1, . . . , p(ε). (3.6)

Let x ∈ Um. By (3.4) there exists some j ∈ {1, . . . , p(ε)} such that x ∈ xj+ ε
2Ur(n).

So, for every k ≥ k0 we deduce, via (3.3) and (3.6), that

Skx ∈ Skxj +
ε

2
Sk(Ur(n)) ⊆

ε

2
Un +

ε

2
Un = εUn.

That is, supx∈Um
qn(Skx) ≤ ε for all k ≥ k0. This veri�es (3.5) and completes

the proof. �

An immediate application is the following result.

Corollary 3.4. A Fréchet space X 6= {0} is Schwartz if and only if every τs-
convergent sequence in L(X) is also rapidly convergent in L(X).

Proof. The necessity of the condition is clear from Proposition 3.3.
Conversely, assume that the stated condition holds. Fix a sequence {x′k}∞k=1 ⊆

X ′ satisfying limk→∞ x
′
k = 0 in X ′σ. Select any a ∈ X \ {0} and choose n ∈

N such that qn(a) > 0. De�ne now a sequence {Sk}∞k=1 ⊆ L(X) by setting
Skx := 〈x, x′k〉a, for x ∈ X and k ∈ N. Clearly, τs-limk→∞ Sk = 0. By assump-
tion also (R)-limk→∞ Sk = 0 and hence, via (3.1), there is m > n such that(
supx∈Um

qn(Skx)
)
k
∈ c0. But, supx∈Um

qn(Skx) = qn(a) supx∈Um
|〈x, x′k〉|, for

each k ∈ N, with qn(a) 6= 0, from which it follows that
(
supx∈Um

|〈x, x′k〉|
)
k
∈ c0.

So, X is Schwartz by Theorem 2.1. �

Note that a Schauder decomposition {Pj}∞j=1 of X satis�es the property (S) if

and only if Pj
(R)→ I in L(X) for j →∞; see (2.3) and (3.1).

The following result is essentially Lemma 1 of [5].
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Proposition 3.5. Let X be a Fréchet-Schwartz space and {Pj}∞j=1 ⊆ L(X) be

any Schauder decomposition of X. Then each closed subspace Pj(X) of X is
Schwartz, j ∈ N, and (R)-limj→∞ Pj = I.

Proof. Every closed subspace of a Fréchet-Schwartz space is also a Fréchet-Schwartz
space, [15, �15, Proposition 6]. So, Pj(X) is a Fréchet-Schwartz space, for each
j ∈ N. Moreover, by (S3) we have that Pj → I in Ls(X) as j → ∞ and so
Proposition 3.3 implies that (R)-limj→∞ Pj = I. �

The converse of Proposition 3.5 holds for certain kinds of Schauder decompo-
sition (cf. the next result) but, not in general; see Example 5.1.

Proposition 3.6. Let X be a Fréchet space and {Pj}∞j=1 ⊆ L(X) be a �nite-

dimensional Schauder decomposition. If (R)-limj→∞ Pj = I, then X is Schwartz.

Proof. Since {Pj}∞j=1 is equicontinuous, we can select a basis of decreasing, ab-

solutely convex 0-neighbourhoods {Un}∞n=1 of X such that Pj(Un) ⊆ Un for each
j, n ∈ N. To show that X is Schwartz, by (2.2) it su�ces to verify that

∀n ∈ N ∃m > n ∀ε > 0 ∃Lε ⊆ X relatively compact with Um ⊆ Lε+εUn. (3.7)

So, �x n ∈ N. Since Pj
(R)→ I for j → ∞, by (3.1) there exists m > n such that

limj→∞ supx∈Um
qn((I − Pj)x) = 0. Hence, given any ε > 0, there exists j0 ∈ N

such that supx∈Um
qn((I − Pj0)x) < ε/2. It follows that

x− Pj0x = (I − Pj0)x ∈ ε

2
Un, x ∈ Um. (3.8)

Applying Lemma 2.2 with E := Pj0(X) and U := Um ∩ E we can conclude that
there exists a �nite-dimensional subspace F of Pj0(X) contained in Um and a
relatively compact subset B of Pj0(X) such that

Um ∩ Pj0(X) ⊆ F +B. (3.9)

Since F ⊆ Um and F is a subspace, we have 2
εF = F ⊆ Um, i.e., F ⊆ ε

2Um and so
(3.9) yields Um ∩Pj0(X) ⊆ ε

2Um +B. Hence, for each x ∈ Um it follows from the
previous inclusion, from the inclusion Pj0(Um) ⊆ Um ⊆ Un and from (3.8) that

x = (x− Pj0x) + Pj0x ∈
ε

2
Un + Pj0(Um)

⊆ ε

2
Un + (Um ∩ Pj0(X)) ⊆ ε

2
Un +

ε

2
Um +B ⊆ B + εUn.

This establishes (3.7) with Lε := B and completes the proof. �

The following fact is an immediate consequence of Propositions 3.5 and 3.6.

Corollary 3.7. Let X be a Fréchet space with basis {ei}∞i=1 and let P (j) be the
projection de�ned via (2.4), for each j ∈ N. Then X is Schwartz if and only if

(R)-limj→∞ P
(j) = I.
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4. Power bounded operators on Fréchet-Schwartz spaces

Let X be a lcHs and T ∈ L(X), in which case we de�ne T[0] := I and

T[k] :=
1

k

k∑
m=1

Tm, k ∈ N. (4.1)

The operator T[k] is the k-th Cesàro mean of T . Observe that

(I − T )T[k] = T[k](I − T ) =
1

k
(T − T k+1), k ∈ N, (4.2)

and that
1

k
· T k = T[k] −

(k − 1)

k
T[k−1], k ∈ N. (4.3)

Suppose that T[k] → P in Ls(X) as k → ∞. According to (4.3) we have that

τs-limk→∞
Tk

k = 0. Moreover, if X is a Fréchet space, then P is a projection

satisfying TP = PT = T with KerP = (I − T )(X) and P (X) = Ker(I − T ). In
addition,

X = Ker(I − T )⊕ (I − T )(X), (4.4)

[1, Theorem 2.4], [27, Chap.VIII, �3, p.213]. Recall that T ∈ L(X) is power
bounded if the sequence {Tn}∞n=1 is equicontinuous in L(X) and that T ∈ L(X)
is mean ergodic (resp. uniformly mean ergodic) if the sequence of Cesàro means
{T[k]}∞k=1 is convergent in Ls(X) (resp. in Lb(X)); see [1], [19], for more details.
Finally, for X a Fréchet space, an operator T ∈ L(X) is said to be rapidly mean
ergodic, brie�y (R)-mean ergodic, if the sequence {T[k]}∞k=1 is rapidly convergent
in L(X). Rapid mean ergodicity always implies uniform mean ergodicity; see
Remark 3.1.

Our purpose now is to investigate the connection between the power bounded-
ness of an operator on a Fréchet-Schwartz space and the rapid convergence of its
Cesàro means.

Proposition 4.1. Let X be a Fréchet-Schwartz space. If T ∈ L(X) is power
bounded, then T is rapidly mean ergodic.

Proof. Since X is Montel, [22, Remark 24.24], and T is power bounded, we can
apply [1, Theorem 2.4 and Proposition 2.8] to conclude that there is a projection
P ∈ L(X) such that T[k] → P in Lb(X) for k →∞. By Proposition 3.3 it follows
that (R)-limk→∞ T[k] = P . �

Remark 4.2. Let X be a Fréchet space with a basis. If X is not Montel,
then there exists a power bounded operator T ∈ L(X) such that {T[k]}∞k=1 does
not converge in Lb(X), [1, Theorem 1.3]. Hence, {T[k]}∞k=1 cannot be rapidly
convergent; see Remark 3.1.

The next result follows from a deep theorem of Bellenot, [4, Theorem 3.2].

Proposition 4.3. Let X be a Fréchet space which is a closed subspace of a Fréchet
space with an unconditional basis. If X is not Schwartz, then there exist a closed
subspace Y of X with an unconditional basis (say, {ei,j}∞i,j=1 ⊆ Y ), an increas-

ing, fundamental sequence of seminorms {‖ · ‖k}∞k=1 in X, and positive numbers
{bk,i : k ≤ i, i ∈ N} satisfying 1 < bk,i‖ei,j‖k < 2 for each k ≤ i and j ∈ N.
Moreover, Y is not Schwartz.



CHARACTERIZING FRÉCHET-SCHWARTZ SPACES 9

Proof. We refer to [4, Theorem 3.2(II) and Corollary 3.4], together with the fol-
lowing comments.

In the notation of De�nition 3.1 of [4], we use the partition {Ai}∞i=1 of N given
there (with each Ai in�nite) to write N × N = ∪∞i=1Ai for the representation
Ai = {(i, j) : j ∈ N}, for i ∈ N. The obliquely normalized basic sequence {xn}∞n=1

in [4, De�nition 3.1] can then be written as {ei,j}∞i,j=1. Since the basic sequence

{xn}∞n=1 is unconditional (cf. [4, Corollary 3.4]), the reordering {ei,j}∞i,j=1 of

{xn}∞n=1 is permissible.
That Y is not Schwartz is noted immediately prior to Theorem 3.2 in [4]. �

LetX be a Fréchet space with an unconditional basis {ei}∞i=1 and corresponding
dual basis {e′i}∞i=1. For each �nite subset F ⊆ N, de�ne PF : x 7→ PFx :=∑

i∈F 〈x, e′i〉ei, for x ∈ X and, for each j ∈ N, set P (j) := P{1,...,j}. Clearly,
PF ∈ L(X) is a �nite-rank projection on X. Moreover, since the basis {ei}∞i=1 is
unconditional, the family of operators {PF : F ⊆ N �nite} is a bounded subset of
Ls(X) and hence, is equicontinuous (as X is a Fréchet space). Furthermore, by
[20, Theorem 14.6.1] the set {PFx : F ⊆ N �nite} is precompact in X, for each
x ∈ X.

Let {‖ · ‖k}∞k=1 be a fundamental, increasing sequence of continuous seminorms
for X. For �xed k ∈ N, set

qk(x) := sup{‖PFx‖k : F ⊆ N �nite}, x ∈ X. (4.5)

The supremum is �nite because {PFx : F ⊆ N �nite} ∈ B(X) for each x ∈ X.

Clearly, qk is a seminorm on X. Since x = limj→∞ P
(j)x for all x ∈ X, it follows

that ‖x‖k = limj→∞ ‖P (j)x‖k ≤ qk(x) for all x ∈ X. On the other hand, as
{PF : F ⊆ N �nite} is equicontinuous, there exist l(k) > k and Ck > 0 such that

‖PFx‖k ≤ Ck‖x‖l(k), x ∈ X, F ⊆ N �nite,

and hence, qk(x) ≤ Ck‖x‖l(k), for x ∈ X. Since k ∈ N is arbitrary, we deduce
that {qk}∞k=1 is also a fundamental, increasing sequence of seminorms in X. In
particular, for each i, k ∈ N, observe that qk(ei) = ‖ei‖k because PF ei = 0 if
i 6∈ F and PF ei = ei if i ∈ F .
Lemma 4.4. Let Y be a Fréchet space with an unconditional basis {ei}∞i=1 and
corresponding dual basis {e′i}∞i=1. Let {λi}∞i=1 be a sequence of numbers satisfying
|λi| ≤ 1, for i ∈ N. Then the diagonal operator Tλ : Y → Y given by

Tλx :=
∞∑
i=1

λi〈x, e′i〉ei, x ∈ Y, (4.6)

belongs to L(Y ) and is power bounded.
Moreover, τs-limn→∞(Tλ)n = 0 whenever |λi| < 1 for all i ∈ N.

Proof. Let {‖ · ‖k}∞k=1 be a fundamental, increasing sequence of seminorms on
Y . By the comments immediately prior to the lemma (keeping the same nota-
tion), the seminorms {qk}∞k=1 given by (4.5) also form a fundamental, increasing
sequence of seminorms on Y . Clearly,

qk(PFx) ≤ qk(x), x ∈ X, k ∈ N, F ⊆ N �nite. (4.7)

For x ∈ Y , the series
∑∞

i=1〈x, e′i〉ei converges unconditionally to x in Y . So, by
[23, �4, Theorem], the series

∑∞
i=1 µi〈x, e′i〉ei converges in Y for all µ = (µi)i ∈ `∞.
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Accordingly, the operator Tλ : Y → Y speci�ed by (4.6) is well de�ned and linear.

Moreover, as Tλx = limj→∞
∑j

i=1 λi〈x, e′i〉ei, for x ∈ Y , we can apply the Banach-
Steinhaus theorem to conclude that Tλ ∈ L(Y ).

Fix n ∈ N. Clearly, |λni | ≤ 1 for all i ∈ N. Hence, given j ∈ N and k ∈ N, we
can apply the inequality (I) on p.115 of [23] to obtain, for each x ∈ Y , via (4.7),
that

qk

(
j∑
i=1

λni 〈x, e′i〉ei

)
≤ 4 sup

F⊆{1,...,j}
qk

(∑
i∈F
〈x, e′i〉ei

)
= 4 sup

F⊆{1,...,j}
qk(PFx) ≤ 4qk(x). (4.8)

Since (Tλ)nx = limj→∞
∑j

i=1 λ
n
i 〈x, e′i〉ei, for all x ∈ Y , it follows from (4.8), for

every k ∈ N, that

qk((Tλ)nx) = lim
j→∞

qk

(
j∑
i=1

λni 〈x, e′i〉ei

)
≤ 4qk(x), x ∈ Y.

By the arbitrariness of n ∈ N, it follows that Tλ is power bounded.
Finally, assume that |λi| < 1 for each i ∈ N. This ensures that (Tλ)nei =

λni ei → 0 in Y for n→∞. Since {(Tλ)n}∞n=1 is equicontinuous and span{ei : i ∈
N} is dense in Y , it follows that (Tλ)nx→ 0 in Y as n→∞, for each x ∈ Y . �

Proposition 4.5. Let Y be a Fréchet space with a fundamental, increasing se-
quence of seminorms {‖ · ‖k}∞k=1 and an unconditional basis {ei,j}∞i,j=1 such that

there exist positive numbers {bk,i : k ≤ i, i ∈ N} satisfying 1 < bk,i‖ei,j‖k < 2 for
each k ≤ i and j ∈ N. Then there exists a power bounded operator T ∈ L(Y )
such that τs-limn→∞ T

n = 0 but T is not rapidly mean ergodic.

Proof. By assumption the basis {ei,j}∞i,j=1 is unconditional. In the notation of

the discussion prior to Lemma 4.4, via (4.5) we have that {qk}∞k=1 is also a fun-
damental, increasing sequence of seminorms for Y and qk(ei,j) = ‖ei,j‖k for each
k ∈ N and (i, j) ∈ N× N.

Set λ := (λij)i,j∈N with λij := 1−2−j , for i, j ∈ N. By Lemma 4.4 the diagonal
operator T ∈ L(Y ) given by

Tx :=
∞∑

i,j=1

λij〈x, e′i,j〉ei,j , x ∈ Y,

is power bounded and τs-limn→∞ T
n = 0. It remains to show that the sequence

{T[m]}∞m=1 is not rapidly convergent to 0. For this, it su�ces to show that the
sequence {supx∈Uk

q1(T[m]x)}∞m=1 fails to converge to 0 for each k ∈ N. So, �x
k ∈ N. Then, for every m, j ∈ N, we have

T[m]ek,j =
1

m

m∑
l=1

T l(ek,j) =

(
1

m

m∑
l=1

(λkj)
l

)
ek,j

=

(
1

m
λkj

1− (λkj)
m

1− λkj

)
ek,j .



CHARACTERIZING FRÉCHET-SCHWARTZ SPACES 11

For m = 2s, j = s, with s ∈ N, it follows that

T[2s]ek,s =

(
1

2s
(1− 2−s)

1− (1− 2−s)2
s

2s

)
ek,s

= (1− 2−s)[1− (1− 2−s)2
s
]ek,s, s ∈ N. (4.9)

Since qk(ek,s/‖ek,s‖k) = 1, the element zk,s := ek,s/‖ek,s‖k ∈ Uk. Moreover, the

sequence {1− (1− 2−s)2
s}∞s=1 converges to (1− e−1) for s→∞ and so, via (4.9),

we obtain, for all s large enough, that

q1(T[2s]zk,s) = (1− 2−s)[1− (1− 2−s)2
s
]q1(zk,s) ≥

1

4

(
1− 1

e

)
q1(ek,s)

‖ek,s‖k

=
1

4

(
1− 1

e

)
‖ek,s‖1
‖ek,s‖k

. (4.10)

But, ‖ek,s‖1 > 1/b1,k and ‖ek,s‖k < 2/bk,k for all s ∈ N. So, from (4.10) it follows,
for all s ∈ N large enough, that

q1(T[2s]zk,s) ≥
1

4

(
1− 1

e

)
bk,k
2b1,k

.

Accordingly, {supx∈Uk
q1(T[m]x)}∞m=1 cannot converge to 0. �

We can now establish one of the main results of this note.

Theorem 4.6. Let X be a Fréchet space which is a closed subspace of a Fréchet
space with an unconditional basis. Then X is Schwartz if and only if every closed
subspace Y of X has the property that every power bounded operator on Y is
rapidly mean ergodic.

Proof. Suppose that X is Schwartz and Y is any closed subspace of X. Then Y
is also Schwartz. Hence, every power bounded operator in L(Y ) is rapidly mean
ergodic; see Proposition 4.1.

Conversely, assume that X is not Schwartz. By Proposition 4.3 there exists
a closed subspace Y of X with an unconditional basis {ei,j}∞i,j=1 satisfying the
assumptions of Proposition 4.5. So, by Proposition 4.5 there exists a power
bounded operator T ∈ L(Y ) which is not rapidly mean ergodic. �

Remark 4.7. In [3] Bellenot exhibited Fréchet-Montel spaces which cannot be a
closed subspace of any Fréchet space with an unconditional basis. Moreover, he
proved that every Fréchet-Schwartz space is a closed subspace of some Fréchet-
Schwartz space with an unconditional basis.

5. Power bounded operators on Schwartz Köthe echelon spaces

The aim of this section is to present a re�nement of Theorem 4.6 when X is a
Köthe echelon space λp(A), for p ∈ [1,∞) ∪ {0}. All members of this important
and classical class of Fréchet spaces possess an unconditional basis.

A sequence A = (an)n of functions an : I → [0,∞), with I a non-void set, is
called a Köthe matrix on I if 0 ≤ an(i) ≤ an+1(i), for all i ∈ I and n ∈ N, and if
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for each i ∈ I there is n ∈ N such that an(i) > 0. To each p ∈ [1,∞) we associate
the linear space

λp(A, I) :=
{
x ∈ CI : q(p)n (x) :=

(∑
i∈I
|an(i)xi|p

)1/p
<∞, ∀n ∈ N

}
. (5.1)

We will also require the linear space

λ∞(A, I) := {x ∈ CI : q(∞)
n (x) := sup

i∈I
an(i)|xi| <∞, ∀n ∈ N} (5.2)

and its closed subspace (equipped with the relative topology)

λ0(A, I) := {x ∈ CI : lim
i
an(i)xi = 0, ∀n ∈ N}.

The seminorms generating the topology of λ0(A, I) are, of course, the restrictions

q
(0)
n of q

(∞)
n to λ0(A, I), for n ∈ N.

Elements x ∈ CI are denoted by x = (xi)i. The spaces λp(A, I), for p ∈ [1,∞],
are called Köthe echelon spaces (of order p); they are all Fréchet spaces (separable
if I is countable and p 6=∞ and re�exive if p 6∈ {0, 1,∞}) relative to the increasing
sequence of seminorms q

(p)
1 ≤ q

(p)
2 ≤ . . .. In case I = N or I = N× N, we simply

write λp(A). In this case λp(A), for p 6= ∞, has an unconditional basis. For the
theory of such spaces we refer to [6], [7], [17], [22].

We begin with an example showing that in Proposition 3.6 it is not possible to
remove the �nite-dimensionality of the Schauder decomposition {Pj}∞j=1, even if

one replaces this condition with the requirement that each closed subspace Pj(X),
for j ∈ N, is nuclear.

Example 5.1. Consider the Köthe matrix A = (an)n on N× N with entries

an(i, j) =

{
(nj)n if i < n
ni if i ≥ n . (5.3)

Then the Köthe echelon space λ1(A) is Fréchet-Montel but not Fréchet-Schwartz;
see [22, Example 27.21, p.338]. For each k ∈ N, let Pk ∈ L(λ1(A)) be given
by Pk(xij)i,j := (yij)i,j where yij := xij if i ≤ k and yij := 0 if i > k, i.e.,
Pk is the projection of λ1(A) onto its �rst k-rows. Then {Pk}∞k=1 is a Schauder
decomposition of λ1(A) but, surely not �nite-dimensional.

The claim is that Pk(λ1(A)) ⊆ λ1(A) is a nuclear Fréchet space for each k ∈ N.
To establish this it su�ces to show that each sectional subspace

Qs(λ1(A)) := {x ∈ λ1(A) : xij = 0 if i 6= s}, s ∈ N,

is nuclear, because of the �nite direct sum Pk(λ1(A)) = ⊕ks=1Qs(λ1(A)), [22,
Proposition 28.7].

So, �x s ∈ N. If n > s, then an(s, j) = (nj)n, for each j ∈ N, and hence,

∞∑
j=1

an(s, j)

an+2(s, j)
=

∞∑
j=1

nn

(n+ 2)n+2

jn

jn+2
=

nn

(n+ 2)n+2

∞∑
j=1

1

j2
<∞. (5.4)

Recalling that our Köthe matrix A = (an)n is on N× N (rather than on N as in
[22]) it follows from the Gröthendieck-Pietsch criterion, [22, Proposition 28.16],
and (5.4) that Qs(λ1(A)) is indeed nuclear. As already noted, the nuclearity of
Pk(λ1(A)), for k ∈ N, follows.
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It remains to prove that Pk
(R)→ I in L(λ1(A)) as k → ∞. To see this, recall

that the n-th seminorm qn := q
(1)
n of λ1(A), for n ∈ N, is given by qn(x) :=∑∞

i,j=1 an(i, j)|xij |, for x ∈ λ1(A); see (5.1). Fix any n ∈ N and set m := 2n.

Then, for any k ≥ m, we have via (5.3) that

qn((I − Pk)x) =
∑
i≥k+1

∞∑
j=1

an(i, j)|xij | =
∑
i≥k+1

∞∑
j=1

ni|xij |

=
∑
i≥k+1

2−i
∞∑
j=1

(2n)i|xij | ≤

 ∑
i≥k+1

2−i

 qm(x), (5.5)

because i ≥ k ≥ 2n yields
∞∑
j=1

(2n)i|xij | =
∞∑
j=1

a2n(i, j)|xij | ≤
∞∑

i,j=1

a2n(i, j)|xij | = qm(x).

It is then clear from (5.5) that

sup
x∈Um

qn((I − Pk)x) ≤
∑
i≥k+1

2−i = 2−k, k ≥ m,

which implies that limk→∞ supx∈Um
qn((I − Pk)x) = 0. Since n is arbitrary, this

means precisely that Pk
(R)→ I in L(λ1(A)) as k →∞.

Our purpose is to characterize those Köthe echelon spaces which are Schwartz,
in terms of the behaviour of the Cesàro means of power bounded operators de�ned
on them. This is obtained in Theorem 5.6 below, a result which improves Theorem
4.6 for the case of Köthe echelon spaces. For characterizing the property of being
Schwartz, Theorem 4.6 also provides a version of analogous results characterizing
Montel and re�exive Fréchet spaces; see [1, Proposition 5.1 and Theorem 5.4].

We �rst require the following result, which is implicit in [26, pp.223-224]. We
include a proof for the sake of completeness.

Lemma 5.2. Let A = (an)n∈N be a Köthe matrix on N which satis�es the fol-
lowing two conditions.

(M) For each n ∈ N and each in�nite subset H ⊆ N there exists m > n such

that infi∈H
an(i)
am(i) = 0.

(not-S) There exists n0 ∈ N such that a1
am
6∈ c0 for every m > n0.

Then there exist an in�nite family {Ii}∞i=1 of pairwise disjoint, in�nite subsets of
N, with each Ii represented as Ii = {(i, j) : j ∈ N}, and an increasing sequence
{mj}∞j=1 ⊆ N beginning with m1 = 2 satisfying:

(1) for each i > 2 there exists εi > 0 such that a1(i, j) > εiami(i, j) for all
(i, j) ∈ Ii with j ∈ N, and

(2) for each i ∈ N we have limj→∞
ami (i,j)

ami+1 (i,j)
= 0.

Proof. Choose n0 according to (not-S). Deleting �nitely many n's, if necessary, we
may assume that n0 = 1 and that an > 0 on N for all n ∈ N. Since a1

a2
6∈ c0, there

exist ε1 > 0 and an increasing sequence J1 = {l1s}∞s=1 ⊆ N such that a1(l1s)
a2(l1s)

> ε1
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for all s ∈ N. By condition (M) there exist m2 > m1 := 2 and an in�nite
subset I1 of J1, which can be represented as I1 = {(1, j) : j ∈ N}, such that

limj→∞
a2(1,j)
am2 (1,j)

= 0. Since 0 < a1 ≤ a2 on N, we have 0 < a1
am2
≤ a2

am2
on N and

hence, also limj→∞
a1(1,j)
am2 (1,j)

= 0. By (not-S), also a1
am2
6∈ c0. So, there exist ε2 > 0

and an increasing sequence J2 = {l2s}∞s=1 ⊆ N \ I1 such that a1(l2s)
am2 (l

2
s)
> ε2 for all

s ∈ N. Then, by condition (M) there existm3 > m2 and an in�nite subset I2 of J2,

which can be represented as I2 = {(2, j) : j ∈ N}, such that limj→∞
am2 (2,j)

am3 (2,j)
= 0.

Note that 0 < a1
am3
≤ a1

am2
on I1 (as am2 ≤ am3) and 0 < a1

am3
≤ am2

am3
on I2 (as

a1 ≤ am2). Since I1 ∩ I2 = ∅, with a1
am2
→ 0 on I1 and

am2
am3
→ 0 on I2, it follows

that limk→∞, k∈(I1∪I2)
a1(k)
am3 (k)

= 0. Again by (not-S), also a1
am3
6∈ c0. So, there

exist ε3 > 0 and an increasing sequence J3 = {l3s}∞s=1 ⊆ N \ (I1 ∪ I2) such that
a1(l3s)
am3 (l

3
s)
> ε3 for all s ∈ N. Then, by condition (M) there exist m4 > m3 and an

in�nite subset I3 of J3, which can be represented as I3 = {(3, j) : j ∈ N}, such
that limj→∞

am3 (3,j)

am4 (3,j)
= 0.

Proceeding by induction, the proof follows. �

Let us return to the spaces λp(A) with p ∈ [1,∞) ∪ {0}.

Corollary 5.3. Let A = (an)n∈N be a Köthe matrix on N. If the Köthe echelon
space λp(A), with p ∈ [1,∞) ∪ {0}, is Montel but not Schwartz, then there exists
a sectional subspace λp(A, I) of λp(A), with I = {(i, j) : i, j ∈ N}, possessing the
following two properties.

(1) For each i ≥ 2 there exists εi > 0 such that a1(i, j) > εiai(i, j) for all
j ∈ N.

(2) For each i ∈ N we have limj→∞
ai(i,j)
ai+1(i,j)

= 0.

Moreover, λp(A, I) is Montel.

Proof. Since λp(A) is Montel but not Schwartz, the Köthe matrix A satis�es the
condition (M), [22, Theorem 27.9], and the condition (not-S), [22, Proposition
27.10], given in Lemma 5.2. So, by Lemma 5.2 there exist an in�nite family
{Ii}∞i=1 of pairwise disjoint in�nite subsets of N, where Ii can be represented as
Ii = {(i, j) : j ∈ N}, and an increasing sequence {mj}∞j=1 ⊆ N beginning with

m1 = 2 such that both conditions (1) and (2) of Lemma 5.2 are satis�ed.
Set I := ∪∞i=1Ii = {(i, j) : i, j ∈ N} and pass to the subsequence {amj}∞j=1 of

{an}∞n=1. Then the sectional subspace λp(A, I) of λp(A) satis�es conditions (1)
and (2) in the statement of this corollary. �

Lemma 5.4. Let p ∈ [1,∞)∪ {0} and A = (an)n∈N be a Köthe matrix on N×N
such that the Köthe echelon space λp(A) is Montel. If A satis�es

∀n ≥ 2 ∃εn > 0 ∀j ∈ N a1(n, j) ≥ εnan(n, j), (5.6)

then there exists a power bounded operator T ∈ L(λp(A)) satisfying τb-limn→∞ T
n =

0 but {T[k]}∞k=1 is not rapidly convergent to 0.

Proof. Set λj := 1− 2−j , for j ∈ N, and de�ne Tx := (λjxij)i,j , for x = (xij)i,j ∈
λp(A). Then T : x 7→ Tx belongs to L(λp(A)) and is power bounded. Indeed,
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given n ∈ N, we have for each m ∈ N and x ∈ λp(A), that q
(p)
m (Tnx) ≤ q(p)m (x), as

0 < (λj)
n < 1 for all j ∈ N; see (5.1) and (5.2). So, {Tn}∞n=1 is equicontinuous.

For each i, j ∈ N, set ei,j := (δhiδkj)h,k, where δrs = 0 if r 6= s and δrs = 1
if r = s. Then, for each n ∈ N and (i, j) ∈ N × N, we have Tnei,j = (λj)

nei,j .
In particular, limn→∞ T

nei,j = 0 in λp(A) for each i, j ∈ N. Since {Tn}∞n=1

is equicontinuous and span{ei,j : i, j ∈ N} is dense in λp(A), it follows that τs-
limn→∞ T

n = 0. Since λp(A) is Montel, we also have that τb-limn→∞ T
n = 0.

Accordingly, also the arthmetic means {T[k]}∞k=1 of {Tn}∞n=1 converge to 0 in
Lb(λp(A)), i.e., T is uniformly mean ergodic with limit projection P = 0.

It remains to show that {T[k]}∞k=1 is not rapidly convergent to 0 in L(λp(A)).

For this it su�ces to show that the sequence {supx∈Um
q
(p)
1 (T[k]x)}∞k=1 fails to

converge to 0 for each m ≥ 2, where Um := {x ∈ λp(A) : q
(p)
m (x) ≤ 1}.

So, �x any m ∈ N with m ≥ 2. For each j, k ∈ N, we have

T[k]em,j =
1

k

k∑
l=1

T l(em,j) =

(
1

k

k∑
l=1

λlj

)
em,j

=

(
1

k
λj

1− λkj
1− λj

)
em,j . (5.7)

If we take k := 2s and j := s for each s ∈ N, then from (5.7) it follows that

T[2s]em,s =

[
1

2s
(1− 2−s)

1− (1− 2−s)2
s

2−s

]
em,s

= (1− 2−s)[1− (1− 2−s)2
s
]em,s. (5.8)

Note that q
(p)
m

(
em,s

am(m,s)

)
= 1 and so zm,s :=

em,s

am(m,s) ∈ Um, for every s ∈ N. Since
the sequence {[1− (1− 2−s)2

s
]}∞s=1 converges to (1− e−1) for s → ∞, it follows

via (5.8) and (5.6) that, for all s ∈ N large enough, we have

q
(p)
1 (T[2s]zm,s) =

1

am(m, s)
(1− 2−s)[1− (1− 2−s)2

s
]q

(p)
1 (em,s)

≥ 1

4
(1− e−1) a1(m, s)

am(m, s)
≥ 1

4
(1− e−1)εm.

This shows that the sequence {supx∈Um
q
(p)
1 (T[k]x)}∞k=1 cannot converge to 0.

Since m ≥ 2 is arbitrary, the proof is complete. �

Remark 5.5. Corollary 5.3 ensures that there exist Köthe matrices A which
satisfy the assumptions required in Lemma 5.4. For explicit examples, see [17,
Ch. 31, �5], [22, Example 27.21].

Theorem 5.6. Let p ∈ [1,∞) ∪ {0} and A = (an)n∈N be a Köthe matrix on
N. Then the Köthe echelon space λp(A) is Schwartz if and only if every power
bounded operator on λp(A) is rapidly mean ergodic.

Proof. If λp(A) is Schwartz, then the desired conclusion follows from Proposition
4.1.

Conversely, suppose that λp(A) is not Schwartz.
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Case (I). λp(A) is not Montel. Then it follows from [1, Propositions 2.9 and
2.13] that there exists a power bounded operator T ∈ L(λp(A)) which is not
uniformly mean ergodic and hence, by Remark 3.1, also not rapidly mean ergodic.

Case (II). λp(A) is Montel. Then, by Corollary 5.3, there exists a sectional
subspace λp(A, I) of λp(A), with I = N × N, satisfying condition (5.6). So,
by Lemma 5.4 there exists T ∈ L(λp(A, I)) which is power bounded, satis�es
τb-limn→∞ T

n = 0 but, T is not rapidly mean ergodic.
Since λp(A, I) is a sectional (hence, complemented) subspace of λp(A), using

the operator T it is routine to construct S ∈ Lb(λp(A)) which is power bounded
but not rapidly mean ergodic. �

We conclude with some comments regarding the spaces λ∞(A). First, the
canonical unit vectors {ei}∞i=1 form an unconditional basis of λ∞(A) if and only if
λ∞(A) is Montel if and only if λ∞(A) = λ0(A), [11, Proposition 2.3]. Moreover,
there exist Köthe matrices A such that λ∞(A) is Montel but not Schwartz, [22,

Example 27.21]. In this case, the projections {P (j)}∞j=1 de�ned via (2.4) form

a �nite-dimensional, unconditional Schauder decomposition of λ∞(A) with τb-

limj→∞ P
(j) = I (as λ∞(A) is Montel) but, {P (j)}∞j=1 is not rapidly convergent

to I in L(λ∞)(A); see Corollary 3.7. It is also known that there exist Köthe
matrices A such that λ∞(A) is not Montel, non-normable and satis�es the den-
sity condition, [11, pp.90-91]. Then {ei}∞i=1 fails to be an unconditional basis of
λ∞(A). Nevertheless, for such A, the space λ∞(A) admits a non-trivial, uncon-
ditional Schauder decomposition, [11, Proposition 4.4].

Even though {ei}∞i=1 may not be a basis for λ∞(A), in general, we can always
de�ne a linear functional e′i : λ∞(A)→ C via

〈x, e′i〉 := xi, x = (xj)j ∈ λ∞(A),

for each i ∈ N. For a �xed n ∈ N, we have for each i ∈ N, that

|〈x, e′i〉| ≤

{
q
(∞)
n (x) if an(i) = 0, x ∈ λ∞(A)

(an(i))−1q
(∞)
n (x) if an(i) > 0, x ∈ λ∞(A)

from which it is clear that e′i is continuous. Moreover, the �nite-rank projections

{P (j)}∞j=1 ⊆ L(λ∞(A)) as given by (2.4) are then well de�ned and satisfy both

(S1), (S3) in the de�nition of a Schauder decomposition. In relation to the next
result, see also [22, Proposition 27.10].

Proposition 5.7. The Köthe echelon space λ∞(A) is Schwartz if and only if

(R)-limj→∞ P
(j) = I.

Proof. If λ∞(A) is Schwartz, then it is also Montel. By the comments prior to
the proposition we have λ∞(A) = λ0(A) with {ei}∞i=1 an unconditional basis. In

particular, {P (j)}∞j=1 is then a Schauder decomposition of λ∞(A) and so (R)-

limj→∞ P
(j) = I in L(λ∞(A)); see Proposition 3.5.

Conversely, suppose that (R)-limj→∞ P
(j) = I in L(λ∞(A)). By Remark 3.1

also τs-limj→∞ P
(j) = I and so {P (j)}∞j=1 is a (�nite-dimensional) Schauder de-

composition of λ∞(A). Then Proposition 3.6 implies that λ∞(A) is Schwartz. �

We conclude with the following analogue of Theorem 5.6.
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Proposition 5.8. The Köthe echelon space λ∞(A) is Schwartz if and only if
every power bounded operator on λ∞(A) is rapidly mean ergodic.

Proof. If λ∞(A) is Schwartz, the desired conclusion follows from Proposition 4.1.
Conversely, suppose that λ∞(A) is not Schwartz.
Case (I). λ∞(A) is not Montel. By the equivalence (1)⇔ (6) in [22, Theorem

27.9], with p = ∞, there is an in�nite set J ⊆ N, a constant K > 0 and n ∈ N
such that am(i) ≤ Kan(i) for all i ∈ J and m ≥ n. Since the sequence {ak}∞k=1
is increasing (pointwise on N), we also have an(i) ≤ am(i) for all i ∈ J and
m ≥ n. So, the complemented, sectional subspace λ∞(A, J) is isomorphic to
`∞(an|J) ' `∞. The operator S ∈ L(`∞) de�ned by Sx := (x2, x3, x4, . . .),
for x = (xi)i ∈ `∞, is power bounded but not uniformly mean ergodic. By
Remark 3.1, S is not rapidly mean ergodic. Using S it is routine to construct
T ∈ L(λ∞(A)) which is power bounded but not rapidly mean ergodic.

Case (II). λ∞(A) is Montel. Then λ∞(A) = λ0(A) with λ0(A) Montel. By
Case (II) in the proof of Theorem 5.6 (with p = 0) there exists a power bounded
operator in L(λ0(A)) = L(λ∞(A)) which is not rapidly mean ergodic. �

Acknowledgements. The research of the �rst two authors was partially sup-
ported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain).
The second author gratefully acknowledges the support of the Alexander von
Humboldt Foundation.

References

[1] A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodic operators in Fréchet spaces. Ann.
Acad. Sci. Fenn. Math. 34 (2009), 401�436.

[2] A.A. Albanese, J. Bonet, W.J. Ricker, On mean ergodic operators. In: Vector Measures,
Integration and Related Topics, G.P. Curbera et. al. (Eds), Operator Theory: Advances
and Applications 201, Birkhäuser Verlag, Basel, 2010, pp. 1�20.

[3] S.F. Bellenot, Each Schwartz-Fréchet space is a subspace of a Schwartz-Fréchet space with

an unconditional basis. Compositio Math. 42 (1980/81), 273�278.
[4] S.F. Bellenot, Basic sequences in non-Schwartz Fréchet spaces. Trans. Amer. Math. Soc.

258 (1980), 199�216.
[5] A. Benndorf, On the relation of the bounded approximation property and a �nite-

dimensional decomposition in nuclear Fréchet spaces. Studia Math. 75 (1983), 103�119.
[6] K.D. Bierstedt, J. Bonet, Some aspects of the modern theory of Fréchet spaces. Rev. R.

Acad. Cienc. Exactas Fis. Nat. Ser. A. Math. RACSAM 97 (2003), 159�188.
[7] K.D. Bierstedt, R.G. Meise, W.H. Summers, Köthe sets and Köthe sequence spaces. In:

�Functional Analysis, Holomorphy and Approximation Theory� (Rio de Janeiro, 1980),
North Holland Math. Studies 71 (1982), pp. 27�91.

[8] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull. 34
(1991), 301�304.

[9] J. Bonet, M. Lindström, M. Valdivia, Two theorems of Josefson-Nissenzweig type for

Fréchet spaces. Proc. Amer. Math. Soc. 117 (1993), 363�364.
[10] J. Bonet, B. de Pagter, W.J. Ricker, Mean ergodic operators and re�exive Fréchet lattices.

Proc. Roc. Soc. Edinburgh 141A (2011), 897-920.
[11] J. Bonet, W.J. Ricker, Schauder decompositions and the Grothendieck and Dunford- Pettis

properties in Köthe echelon spaces of in�nite order. Positivity 11 (2007), 77-93.
[12] J.C. Díaz, On non-primary Fréchet Schwartz spaces. Studia Math. 126 (1997), 291�307.
[13] E. Yu. Emel'yanov, Banach lattices on which every power bounded operator is mean ergodic.

Positivity 1 (1997), 291-296.



18 A.A. Albanese, J. Bonet and W. J. Ricker

[14] V.P. Fonf, M. Lin, P. Wojtaszczyk, Ergodic characterizations of re�exivity in Banach spaces.

J. Funct. Anal. 187 (2001), 146-162.
[15] J. Horváth, Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley Publishing

Co., Reading, Mass.-London-Don Mills, Ont. 1966.
[16] N.J. Kalton, Schauder decompositions in locally convex spaces. Proc. Camb. Phil. Soc. 68

(1970), 377- 392.
[17] G. Köthe, Topological Vector Spaces I. 2nd Rev. Ed., Springer Verlag, Berlin-Heidelberg-

New York, 1983.
[18] G. Köthe, Topological Vector Spaces II. Springer Verlag, Berlin-Heidelberg-New York, 1979.
[19] U. Krengel, Ergodic Theorems. de Gruyter Studies in Mathematics, 6. Walter de Gruyter

Co., Berlin, 1985.
[20] H. Jarchow, Locally Convex Spaces. B.G. Teubner, Stuttgart, 1981.
[21] M. Lindström, T. Schlumprecht, A Josefson-Nissenzweig theorem for Fréchet spaces. Bull.

London Math. Soc. 25 (1993), 55�58.
[22] R. Meise, D. Vogt, Introduction to Functional Analysis. Oxford Graduate Texts in Mathe-

matics, 2. The Clarendon Press. Oxford University Press, New York, 1997.
[23] C.W. McArthur, J.R. Retherford, Some applications of an inequality in locally convex

spaces. Trans. Amer. Math. Soc. 137 (1969), 115�123.
[24] K. Piszczek, Quasi-re�exive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361

(2010), 224-233.
[25] K. Piszczek, Barrelled spaces and mean ergodicity. Rev. R. Acad. Cienc. Exactas Fis. Nat.

Ser. A. Math. RACSAM 104 (2010), 5-11.
[26] M. Valdivia, Topics in Locally Convex Spaces. North-Holland Mathematics Studies, 67,

North�Holland Publishing Co., Amsterdam-New York, 1982.
[27] K. Yosida, Functional Analysis. Sixth Edition, Springer�Verlag, Berlin, 1980.

Angela A. Albanese, Dipartimento di Matematica e Fisica �E. De Giorgi�, Uni-

versità del Salento- C.P.193, I-73100 Lecce, Italy

E-mail address: angela.albanese@unisalento.it

José Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA,

Universidad Politécnica de Valencia, E-46071 Valencia, Spain

E-mail address: jbonet@mat.upv.es

Werner J. Ricker, Math.-Geogr. Fakultät, Katholische Universität Eichstätt-

Ingolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku-eichstaett.de


