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Abstract. The classical spaces `p+, 1 ≤ p < ∞, and Lp−, 1 < p ≤ ∞,
are countably normed, re�exive Fréchet spaces in which the Cesàro operator
C acts continuously. A detailed investigation is made of various operator
theoretic properties of C (e.g., spectrum, point spectrum, mean ergodicity)
as well as certain aspects concerning the dynamics of C (e.g., hypercyclic,
supercyclic, chaos). This complements the results of [3], [4], where C was
studied in the spaces CN, Lploc(R

+) for 1 < p < ∞ and C(R+), which belong
to a very di�erent collection of Fréchet spaces, called quojections; these are
automatically Banach spaces whenever they admit a continuous norm.

1. Introduction

The Cesàro operator, whether acting on sequences or on functions, is based on
an averaging process. Many features of this classical operator (e.g., continuity,
spectrum, dynamics, mean ergodicity etc.) have been intensively studied in a
large variety of Banach spaces. Such investigations have also been extended
into the setting of Fréchet spaces, [11]. In [3] the Cesàro operator is analyzed
in the Fréchet sequence space ω := CN and in [4] it is studied in the Fréchet
function spaces Lploc(R

+), 1 < p < ∞, and in C(R+) when equipped with its
compact convergence topology in R+ := [0,∞). Each of the spaces ω, C(R+) and
Lploc(R

+) is a quojection Fréchet space. In such spaces special features arise which
are not available for Fréchet spaces in general. Our aim is to analyze the Cesàro
operator in the classical re�exive Fréchet sequence spaces `p+, 1 ≤ p < ∞, and
in the re�exive Fréchet function spaces Lp− := Lp−([0, 1]), 1 < p ≤ ∞. These are
(non�Montel) countably normed Fréchet spaces (i.e., which can be written as the
intersection of a decreasing sequence of Banach spaces with continuous inclusions)
and hence, they are �far way� from being quojections. For more features of `p+

and Lp− see [19] and [8], respectively. It is time to be more precise.
The discrete Cesàro operator C is de�ned on the linear space ω := CN (con-

sisting of all scalar sequences) by

C(x) := (x1,
x1 + x2

2
, . . . ,

x1 + x2 + . . .+ xi
i

, . . .), x = (xj)
∞
j=1 ∈ ω. (1.1)

It is a linear (algebraic) isomorphism of ω onto itself with C−1 : ω → ω given by

C−1(y) := (jyj − (j − 1)yj−1)
∞
j=1, y = (yj)

∞
j=1 ∈ ω, (1.2)

Key words and phrases. Cesàro operator, (uniformly) mean ergodic operator, hypercyclic oper-
ator, supercyclic operator, chaotic operator.
Mathematics Subject Classi�cation 2010: Primary: 47A10, 47A16, 47A35; Secondary: 46A04,
47B34, 47B38.

1



2 ANGELAA. ALBANESE, JOSÉ BONET AND WERNERJ. RICKER

where we set y0 := 0. The discrete Cesàro operator C is said to act in a vector
subspace X ⊆ ω if it maps X into itself. If X has a locally convex Hausdor�
topology, then the continuity of C : X → X also needs to be addressed.

Let p ∈ [1,∞). Recall that `p+ = ∩r>p`r is a Fréchet space with respect to
the coarser locally convex topology on `p+ for which the inclusion map `p+ ↪→ `r

is continuous for all r > p. So, if pn ↓ p (so that pn > p for all n ∈ N), then
`p+ = ∩∞n=1`

pn and its Fréchet topology is generated by the sequence of norms

‖x‖n :=

( ∞∑
i=1

|xi|pn
)1/pn

, x ∈ `p+, n ∈ N. (1.3)

Clearly the Banach space `p ⊆ `p+ continuously and `p+ ⊆ CN. It turns out (see
Section 2) that C acts continuously in each Fréchet space `p+, 1 ≤ p <∞, which

we denote by C(p+) : `p+ → `p+.
Analogously, for 1 < p ≤ ∞ the space Lp− = ∩1<r<pLr, which contains

Lp := Lp([0, 1]) continuously, is a Fréchet space with respect to the coarser locally
convex topology on Lp− for which the inclusion map Lp− ↪→ Lr is continuous for
each 1 < r < p. So, if 1 < pn ↑ p (so that 1 < pn < p for all n ∈ N), then
Lp− = ∩∞n=1L

pn and its Fréchet topology is generated by the sequence of norms

‖f‖n :=

(∫ 1

0
|f(t)|pn dt

)1/pn

, f ∈ Lp−, n ∈ N. (1.4)

The Cesàro operator C is de�ned pointwise by

Cf(x) :=
1

x

∫ x

0
f(t) dt, x ∈ (0, 1], (1.5)

for each f ∈ L1. It turns out (see Section 3) that C acts continuously in each

Fréchet space Lp−, 1 < p ≤ ∞, which we denote by C(p−) : Lp− → Lp−.
An analysis of the operator C(p+) (resp., C(p−)) is carried out in Section 2 (resp.,

Section 3). To explain this in more detail we require some further notation and
de�nitions. Let X be a locally convex Hausdor� space (brie�y, lcHs) and ΓX be
a system of continuous seminorms determining the topology of X. The strong
operator topology τs in the space L(X) of all continuous linear operators from X
into itself is determined by the seminorms qx(S) := q(Sx), for S ∈ L(X), for each
x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the collection
of all bounded subsets of X. The topology τb of uniform convergence on bounded
sets is de�ned in L(X) via the seminorms qB(S) := supx∈B q(Sx), for S ∈ L(X),
for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For X a Banach
space, τb is the operator norm topology in L(X). If ΓX can be taken countable
and X is complete, then X is called a Fréchet space. The identity operator on
a lcHs X is denoted by I. Finally, the dual operator of T ∈ L(X) is denoted by
T ′ : X ′ → X ′, where X ′ = L(X,C) is the topological dual space of X. The strong
topology in X (resp. X ′) is denoted by β(X,X ′) (resp. β(X ′, X)) and we write
Xβ (resp. X ′β). If X is a Fréchet space, then Xβ = X. As a general reference for

lcHs' see [18].
We say that T ∈ L(X), with X a lcHs, is power bounded if {Tn}∞n=1 is an

equicontinuous subset of L(X). For a Banach space X, this means precisely that
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supn∈N ‖Tn‖op <∞. Given T ∈ L(X), we can consider its sequence of averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (1.6)

called the Cesàro means of T . Then T is called mean ergodic (resp., uniformly
mean ergodic) if {T[n]}∞n=1 is a convergent sequence in Ls(X) (resp., in Lb(X)). It

follows from (1.6) that T
n

n = T[n]−n−1
n T[n−1], for n ≥ 2. Hence, τs-limn→∞

Tn

n = 0
whenever T is mean ergodic. A relevant text is [13].

Concerning the dynamics of a continuous linear operator T de�ned on a sep-
arable lcHs X, recall that T is hypercyclic if there exists x ∈ X whose or-
bit {Tnx : n ∈ N0} is dense in X. If, for some x ∈ X, the projective orbit
{λTnx : λ ∈ C, n ∈ N0} is dense in X, then T is called supercyclic. Fi-
nally, T is called chaotic if it is hypercyclic and the set of its periodic points
{u ∈ X : ∃n ∈ N with Tnu = u} is dense in X. As general references we refer to
[5], [11].

For a Fréchet space X and T ∈ L(X), the resolvent set ρ(T ) of T consists of all
λ ∈ C such that R(λ, T ) := (λI − T )−1 exists in L(X). The set σ(T ) := C \ ρ(T )
is called the spectrum of T . The point spectrum σpt(T ) of T consists of all λ ∈ C
such that (λI − T ) is not injective. If we need to stress the space X, then we
also write σ(T ;X), σpt(T ;X) and ρ(T ;X). Whenever λ, µ ∈ ρ(T ) we have the
resolvent identity R(λ, T )−R(µ, T ) = (µ−λ)R(λ, T )R(µ, T ). Unlike for Banach
spaces, it may happen that ρ(T ) = ∅ or that ρ(T ) is not open in C. This is why
some authors prefer the subset ρ∗(T ) of ρ(T ) consisting of all λ ∈ C for which
there exists δ > 0 such that each µ ∈ B(λ, δ) := {z ∈ C : |z − λ| < δ} belongs
to ρ(T ) and the set {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous in L(X). If X
is a Fréchet space, then it is enough that this set is bounded in Ls(X). The
advantage of ρ∗(T ), whenever it is non�empty, is that it is open and the resolvent
map R : λ 7→ R(λ, T ) is holomorphic from ρ∗(T ) into Lb(X), [2, Proposition 3.4].
De�ne σ∗(T ) := C \ ρ∗(T ), which is a closed set containing σ(T ). If T ∈ L(X)
with X a Banach space, then σ(T ) = σ∗(T ). In [2, Remark 3.5(vi), p.265] an
example of a continuous linear operator T on a Fréchet space X is presented such
that σ(T ) ⊂ σ∗(T ) properly. For the Cesàro operator this turns out not to be
the case.

The mean ergodic properties and the dynamics of the Cesàro operators C(p+),
1 ≤ p <∞ (resp., C(p−), 1 < p ≤ ∞) are presented in Section 2 (resp., Section 3)
as is the precise connection between the two notions of spectra σ(·) and σ∗(·). Of
interest is the fact that both of the spectra σ(C(1+)) and σ∗(C(1+)) are unbounded

subsets of C, whereas the spectra of C(p+), 1 < p <∞, and C(p−), 1 < p ≤ ∞, are
bounded subsets of C. For purposes of comparison, the �nal Section 4 is devoted
to an analysis of the two notions of spectra for the Cesàro operator acting in
the quojection spaces ω, C(R+) and Lploc(R

+), 1 < p < ∞. It turns out that
σ(·) and σ∗(·) coincide for C : C(R+)→ C(R+) and for C : Lploc(R

+)→ Lploc(R
+),

which suggests that this may always be true whenever C acts in an appropriate
quojection Fréchet space. That this is not so is illustrated by C : ω → ω, for which
it is shown that σ(C) ⊂ σ∗(C) properly.
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2. The Cesàro operator on the space `p+, 1 ≤ p <∞.

Fix 1 < p < ∞. It is known that the discrete Cesàro operator maps the
Banach space `p continuously into itself, which we denote by C(p) : `p → `p, and
that ‖C(p)‖op = q, where 1

p + 1
q = 1, [12, Theorem 326, p.239]. Consequently, the

Cesàro operator maps the Fréchet space `p+, 1 < p <∞, continuously into itself.
In fact, for a sequence pn ↓ p (so that pn > p for all n ∈ N), consider the norms

(1.3) and, for each n ∈ N, let Cn := C(pn) ∈ L(`pn). If we denote by in : `p+ ↪→ `pn

and in,n+1 : `pn+1 ↪→ `pn the canonical inclusion maps (which clearly have dense

range), then in ◦C(p+) = Cn ◦ in and also in,n+1 ◦Cn+1 = Cn ◦ in,n+1 for all n ∈ N.
Hence, for every n ∈ N, we have

‖C(p+)x‖n = ‖inC(p+)x‖n = ‖Cninx‖n = ‖Cnx‖n ≤ q‖x‖n, x ∈ `p+.
According to [14, p.123], the dual operator (C(p))′ : `q → `q is given by

(C(p))′(x) =

( ∞∑
h=i

xh
h

)∞
i=1

, x = (xk)
∞
k=1 ∈ `q, 1 < p <∞. (2.1)

The following result will be useful to study the spectrum of C(p+).

Lemma 2.1. Let X =
⋂
n∈NXn be a Fréchet space which is the intersection

of a sequence of Banach spaces (Xn, ||.||n), n ∈ N, satisfying Xn+1 ⊂ Xn with
||x||n ≤ ||x||n+1 for each n ∈ N and each x ∈ Xn+1. Let T ∈ L(X) satisfy the
following condition:

(A) For each n there exists Tn ∈ L(Xn) such that the restriction of Tn to X
(resp. of Tn to Xn+1) coincides with T (resp. with Tn+1).

Then σ(T ;X) ⊆
⋃
n∈N σ(Tn;Xn) and R(λ, T ) coincides with the restriction of

R(λ, Tn) to X for each n ∈ N and each λ ∈
⋂
n∈N ρ(Tn;Xn).

Moreover, if
⋃
n∈N σ(Tn;Xn) ⊆ σ(T ;X), then

σ∗(T ;X) = σ(T ;X).

Proof. Let λ ∈ ∩∞n=1ρ(Tn;Xn). To show that (λI − T ) : X → X is injective,
suppose that (λI − T )x = 0 for some x ∈ X. Then condition (A) yields (λI −
T1)x = 0 in X1. Since λ ∈ ρ(T1;X1), this implies that x = 0.

To check that (λI − T ) : X → X is surjective, �x y ∈ X. For each n there is
xn ∈ Xn satisfying (λI − Tn)xn = y in Xn. By condition (A), for each n ∈ N the
restriction of Tn to Xn+1 is Tn+1. Hence, y = (λI − Tn)xn = (λI − Tn)xn+1 with
the equality holding in Xn. Since λ ∈ ρ(Tn;Xn), this yields xn = xn+1 for each
n ∈ N and so x1 ∈ X with (λI − T )x1 = y . Consequently, λ ∈ ρ(T ;X).

Since σ(T ;X) ⊆ σ∗(T ;X) with σ∗(T ;X) closed, we always have σ(T ;X) ⊆
σ∗(T ;X). Suppose now that

⋃
n∈N σ(Tn;Xn) ⊆ σ(T ;X). Let λ ∈ C \ σ(T ;X) in

which case there exists ε > 0 such that B(λ, ε)∩σ(T ;X) = ∅. By our assumption
we also have B(λ, ε) ⊆ ρ(Tn;Xn) for each n ∈ N. Suppose there exists x ∈ X
such that {R(µ, T )x : µ ∈ B(λ, ε)} is an unbounded subset of X. Then there
is n0 ∈ N such that the set {R(µ, Tn0)x : µ ∈ B(λ, ε)} is unbounded in Xn0 (as
X ⊆ Xn0 and R(µ, T ) is the restriction of R(µ, Tn0) to X for µ ∈ B(λ, ε)). This
is a contradiction as B(λ, ε) ⊆ ρ(Tn0 ;Xn0) with Xn0 a Banach space. �

Theorem 2.2. Let 1 < p <∞ and q satisfy 1
p + 1

q = 1. Then
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(i) σ(C(p+)) =
{
λ ∈ C :

∣∣λ− q
2

∣∣ < q
2

}
∪ {0}.

(ii) σpt(C
(p+)) = ∅ and

{
λ ∈ C :

∣∣λ− q
2

∣∣ < q
2

}
⊆ σpt((C(p+))′).

(iii) σ∗(C(p+)) =
{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
= σ(C(p+)).

Moreover, for every non-zero λ ∈ σ(C(p+)) the subspace (λI−C(p+))(`p+) is closed

in `p+ with codim(λI − C(p+))(`p+) = 1.

Proof. Fix pn ↓ p. Then the conjugate indices satisfy qn ↑ q (with qn < q for all
n ∈ N). Moreover, for every n ∈ N, it is known that

σ(Cn) =
{
λ ∈ C :

∣∣∣λ− qn
2

∣∣∣ ≤ qn
2

}
and σpt(Cn) = ∅, (2.2)

and, if λ ∈ C satis�es
∣∣λ− qn

2

∣∣ < qn
2 , then (λI − Cn)(`pn) is closed in `pn with

codim(λI − Cn)(`pn) = 1; see [14, Theorem 1] and [10, Theorems 1& 2], respec-

tively. Clearly σpt(C
(p+)) ⊆ σpt(Cn), for all n ∈ N, and so the �rst statement in

part (ii) follows at once. Since qn < q for all n ∈ N, it is clear via (2.2) that

σ(Cn) ⊂
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
∪ {0}, n ∈ N.

According to Lemma 2.1, with Xn := `pn and Tn := Cn, for n ∈ N, we have that

σ(C(p+)) ⊂
⋃
n∈N

σ(Cn) =
{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
∪ {0},

and that R(λ,C(p+)) coincides with the restriction of R(λ,Cn) to `p+ for each
n ∈ N and each λ ∈

⋂
n∈N ρ(Cn).

Since C : ω → ω is a bicontinuous (algebraic) isomorphism, it is clear that

C(p+) is injective. Moreover, C(p+) has dense range in `p+, which follows from the
identities er = rC(p+)(er − er+1), for r ∈ N (as C(p+)er =

∑∞
i=r

1
i ei, for r ∈ N).

Here, er ∈ ω is the element with 1 in the r-th coordinate and 0 elsewhere, for each
r ∈ N, in which case {er}∞r=1 ⊆ `s for all 1 ≤ s ≤ ∞. But, C(p+) is not surjective
in `p+. Indeed, y :=

∑∞
i=1

1
(2i−1)e2i−1 ∈ `p+. However, by (1.2), the vector

C−1(y) = (1,−1, 1,−1, 1,−1, ...) ∈ `∞ \ c0. This establishes that 0 ∈ σ(C(p+)).
Fix λ ∈ C with

∣∣λ− q
2

∣∣ < q
2 . Since qn ↑ q, it follows that

∣∣λ− qn
2

∣∣ < qn
2

for all n ≥ n0 and some n0 ∈ N. So, as noted above, for every n ≥ n0 the
operator (λI−Cn) is injective with range (λI−Cn)(`pn) closed in `pn and satis�es

codim(λI − Cn)(`pn) = 1. This yields that (λI − C(p+))(`p+) is also a proper

closed subspace of `p+. Indeed, let {yj}∞j=1 ⊆ (λI − C(p+))(`p+) be a sequence

which converges to some y in `p+. For each j ∈ N, let xj ∈ `p+ satisfy yj =

(λI − C(p+))xj . So, for every j ∈ N, it follows that

yj = inyj = in(λI − C(p+))xj = (λI − Cn)inxj = (λI − Cn)xj ∈ (λI − Cn)(`pn),

with yj → y in `pn for each n ≥ n0. The closedness of (λI − Cn)(`pn) in `pn

implies that y ∈ (λI − Cn)(`pn), i.e., y = (λI − Cn)zn for some zn ∈ `pn and all
n ≥ n0. As `pn+1 ⊆ `pn , we have zn+1 ∈ `pn and so, for n ≥ n0, it follows that

(λI − Cn)zn+1 = (λI − Cn)in,n+1zn+1 = in,n+1(λI − Cn+1)zn+1

= in,n+1y = y = (λI − Cn)zn.

The injectivity of the maps (λI − Cn) for n ≥ n0, then yields that zn+1 = zn for
all n ≥ n0. Setting z = zn0 , it follows that z = zn ∈ `pn for all n ≥ n0 and so
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z ∈ `p+ with (λI − C(p+))z = y. Thus, (λI − C(p+))(`p+) is a closed subspace of

`p+. Suppose that (λI − C(p+))(`p+) = `p+. Then

`p+ = (λI − C(p+))(`p+) ⊆ (λI − Cn0)(`pn0 ),

with (λI − Cn0)(`pn0 ) closed in `pn0 . The density of `p+ in `pn0 implies that

(λI−Cn0)(`pn0 ) = `pn0 ; a contradiction. So, the closed subspace (λI−C(p+))(`p+)

of `p
+
is proper. In particular, λ ∈ σ(C(p+)). This establishes part (i).

Next, we prove that codim(λI−C(p+))(`p+) = 1, still assuming that
∣∣λ− q

2

∣∣ < q
2

and hence,
∣∣λ− qn0

2

∣∣ < qn0
2 for some n0 ∈ N. Observe that the dual operator

(C(p+))′ : `q− → `q− (with `q− := ∪∞n=1`
qn being the strong dual (`p+)′β of `p+)

is given by the same formula as in (2.1). So, if (C(p+))′u = λu for some u ∈ `q−
with u 6= 0, then ui+1 = u1

∏i
h=1

(
1− 1

λh

)
for all i ∈ N, [14, p.125]. This

shows that each eigenvalue of (C(p+))′ (if it exists) is necessarily simple, i.e.,

dim Ker(λI− (C(p+))′) = 1. But,
∣∣λ− qn0

2

∣∣ < qn0
2 implies, via [14, Theorem 1(b)],

that there exists a non-zero vector u ∈ `qn0 ⊆ `q− such that (Cn0)′u = λu and

so (C(p+))′u = λu. Accordingly, since dim Ker(λI − (C(p+))′) = 1 and (`p+/(λI −
C(p+))(`p+))′ ' Ker(λI−(C(p+))′) (algebraically; actually, also isomorphically), it

follows that codim (λI −C(p+))(`p+) = 1. Along the way it has also been veri�ed

that λ ∈ σpt((C(p+))′), i.e.,
{
λ ∈ C :

∣∣λ− q
2

∣∣ < q
2

}
⊆ σpt((C

(p+))′). So part (ii) is
completely veri�ed.

Finally, part (iii) follows from Lemma 2.1 as it was shown above in the proof

of part (i) that σ(C(p+)) =
⋃
n∈N σ(Cn). �

Theorem 2.3. The Cesàro operator C(p+) : `p+ → `p+, 1 < p <∞, is not mean
ergodic, not power bounded and not supercyclic.

Proof. By Theorem 2.2(ii) the number (1+q)
2 > 1 belongs to σpt((C

(p+))′) and so

there exists a non-zero vector u ∈ `q− satisfying (C(p+))′u = (1+q)
2 u. Choose any

x ∈ `p+ such that 〈x, u〉 6= 0. Then

〈 1
n

(C(p+))nx, u〉 =
1

n
〈x, ((C(p+))′)nu〉 =

1

n

(
(1 + q)

2

)n
〈x, u〉, n ∈ N,

and so the set
{

1
n(C(p+))nx : n ∈ N

}
is unbounded in `p+. In particular, the

sequence
{

1
n(C(p+))n

}∞
n=1

does not converge to 0 in Ls(`p+), thereby violating a

necessary condition for C(p+) to be mean ergodic; see Section 1. Since the power
boundedness of C(p+) would imply that 1

n(C(p+))n → 0 in Ls(`p+) for n→∞, it

also follows that C(p+) is not power bounded.
Suppose that C(p+) is supercyclic. As `p+ is dense in the Fréchet space ω (see

Section 4) and C(p+) coincides with the restriction of C : ω → ω to `p+, it follows
that C : ω → ω is supercyclic. This contradicts Proposition 4.3 below. �

Since the Cesàro operator fails to map `1 into `1 (e.g., Ce1 =
(
1
n

)∞
n=1

/∈ `1) it
is to be expected that the situation is di�erent for p = 1. Let pn ↓ 1 and equip
`1+ = ∩∞r>1`

r with the lc-topology generated by the norms (1.3). Then `1+ is
a re�exive Fréchet space with strong dual `∞− := ∪q≥1`q. The same argument

given prior to Lemma 2.1 shows that the Cesàro operator C(1+) : `1+ → `1+

is continuous. Unlike for p > 1, the spectra σ(C(1+)) and σ∗(C(1+)) are now
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unbounded subsets of C. The following result should be compared with Theorem
2.2.

Theorem 2.4. For p = 1 the following assertions hold.

(i) σ(C(1+)) = {λ ∈ C : Reλ > 0} ∪ {0}.
(ii) σpt(C

(1+)) = ∅ and {λ ∈ C : Reλ > 0} ⊆ σpt((C(1+))′).

(iii) σ∗(C(1+)) = σ(C(1+)).

Moreover, for every non-zero λ ∈ σ(C(1+)) the subspace (λI−C(1+))(`1+) is closed

in `1+ with codim(λI − C(1+))(`1+) = 1.

Proof. Fix pn ↓ 1. Then the conjugate indices satisfy qn ↑ ∞ (with 1 < qn < ∞
for all n ∈ N). Moreover, for every n ∈ N, the identities (2.2) hold. So, via
Lemma 2.1 with Xn := `pn and Tn := Cn, for n ∈ N, we have that

σ(C(1+)) ⊂
⋃
n∈N

σ(Cn) ⊆ {λ ∈ C : Reλ > 0} ∪ {0},

and that R(λ,C(1+)) coincides with the restriction of R(λ,Cn) to `1+ for each
n ∈ N and each λ ∈

⋂
n∈N ρ(Cn).

To prove the reverse containment let α ∈ {λ ∈ C : Reλ > 0}. Then there
exists n ∈ N such that

∣∣α− qn
2

∣∣ < qn
2 . Hence, there exists u ∈ `qn \ {0} (and so

u ∈ (`1+)′ = `∞−) satisfying (Cn)′u = αu and hence, (C(1+))′u = αu. Then, for
each x ∈ `1+, we have

〈(C(1+) − αI)x, u〉 = 〈x, ((C(1+))′ − αI)u〉 = 0.

Hence, 〈y, u〉 = 0 for every y in the range of (C(1+) − αI) with u 6= 0 and so

(C(1+)−αI) cannot be surjective. This shows that {λ ∈ C : Reλ > 0} ⊆ σ(C(1+)).

Adapting the proof of Theorem 2.2 it can be shown that C(1+) is injective, not
surjective and C(1+) has dense range in `1+. Part (i) is thereby established.

Fix λ ∈ C with Reλ > 0, i.e., λ ∈ σ(C(1+)) \ {0}. Since qn ↑ 0, there exists
n0 ∈ N such that

∣∣λ− qn
2

∣∣ < qn
2 for all n ≥ n0. Then, arguing as in the proof of

Theorem 2.2, it can be shown that the subspace (λI − C(1+))(`1+) is closed in

`1+ with codim(λI − C(1+))(`1+) = 1. Actually, as in the proof of Theorem 2.2,

it is established along the way that also λ ∈ σpt((C(1+))′).
Finally, part (iii) follows from Lemma 2.1 as it was shown above in the proof

of part (i) that σ(C(1+)) =
⋃
n∈N σ(Cn). �

Theorem 2.5. The Cesàro operator C(1+) : `1+ → `1+ is not mean ergodic, not
power bounded and not supercyclic.

Proof. Via the inclusion in Theorem 2.4(ii) it follows that 2 ∈ σpt((C(1+))′) and

so there exists u ∈ `∞− \ {0} satisfying (C(1+))′u = 2u. Choose any x ∈ `1+ such
that 〈x, u〉 6= 0. Then

〈 1
n

(C(1+))nx, u〉 =
1

n
〈x, ((C(1+))′)nu〉 =

1

n
2n〈x, u〉, n ∈ N,

and so
{

1
n(C(1+))nx : n ∈ N

}
is an unbounded subset of `1+. To complete the

proof it now su�ces to argue as in the proof of Theorem 2.3. �
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Remark 2.6. (i) We point out that the range

(I − C(p+))(`p+) = span{er}r≥2 = {x ∈ `p+ : x1 = 0}.

Clearly (I − C(p+))(`p+) ⊆ {x ∈ `p+ : x1 = 0}. Since {er}∞r=1 is a basis of `p+,
it is routine to check that span{er}r≥2 = {x ∈ `p+ : x1 = 0}. In view of this

observation and the fact that (I − C(p+))(`p+) is closed in `p+ (by Theorem 2.2),

it remains to show that er ∈ (I − C(p+))(`p+), for r ≥ 2. But, this follows from

the identities er+1 = (I − C(p+))yr, for r ∈ N, with

yr := er+1 −
1

r

r∑
k=1

ek ∈ `p+, r ∈ N.

A similar argument shows that also

(I − C(1+))(`1+) = span{er}r≥2 = {x ∈ `1+ : x1 = 0}.

(ii) We have seen that (I−C(p+))(`p+) is a (proper) closed subspace of `p+, but
Cp+ is not even mean ergodic. This fact should be compared with the equivalence
of uniform mean ergodicity of T ∈ L(X) with the closedness of the subspace
(I − T )(X) when X is a (pre)quojection Fréchet space and (1/n)Tn → 0 in
Lb(X) for n→∞, [3, Theorem 3.5]. Of course, `p+ is not a (pre)quojection.

3. The Cesàro operator on the space Lp−, 1 < p ≤ ∞.

We now consider the �continuous� Cesàro operator C de�ned pointwise by (1.5).
Hardy's inequality, [12, p.240], ensures that C maps each Banach space Lp, 1 <

p ≤ ∞, continuously into itself. We denote it by C(p) : Lp → Lp, in which case
its operator norm satis�es ‖C(p)‖op = q if 1 < p < ∞ (with 1

p + 1
q = 1) and

‖C(∞)‖op = 1. Accordingly, the Cesàro operator maps the Fréchet space Lp−

continuously into itself. In fact, if 1 < pn ↑ p (so that 1 < pn < p for all n ∈ N),
then Lp− = ∩∞n=1L

pn and its Fréchet topology is generated by the sequence of

norms (1.4). For each n ∈ N, let Cn := C(pn). If we denote by in : Lp− ↪→ Lpn

and in,n+1 : Lpn+1 ↪→ Lpn the canonical inclusion maps (which clearly have dense

range), then in ◦C(p−) = Cn ◦ in and also in,n+1 ◦Cn+1 = Cn ◦ in,n+1 for all n ∈ N.
Accordingly, for every n ∈ N, we have (with 1

pn
+ 1

qn
= 1) that

‖C(p−)f‖n = ‖inC(p−)f‖n = ‖Cninf‖n = ‖Cnf‖n ≤ qn‖f‖n, f ∈ Lp−.

Theorem 3.1. Let 1 < p ≤ ∞ and q satisfy 1
p + 1

q = 1. Then

(i) σ(C(p−)) =
{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
= σ∗(C(p−)).

(ii) σpt(C
(p−)) =

{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
\ {0}.

Proof. Fix pn ↑ p. If 1
pn

+ 1
qn

= 1 for all n ∈ N, then qn ↓ q (so that qn > q for all

n ∈ N). Moreover, for every n ∈ N, we have

σ(Cn) =
{
λ ∈ C :

∣∣∣λ− qn
2

∣∣∣ ≤ qn
2

}
and σpt(Cn) =

{
λ ∈ C :

∣∣∣λ− qn
2

∣∣∣ < qn
2

}
,

[15], [16, Theorem 1]. Accordingly, for each n ∈ N we have{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ ≤ q

2

}
⊆ σ(Cn) and

{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ < q

2

}
⊆ σpt(Cn).
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Fix λ ∈ C with
∣∣λ− q

2

∣∣ > q
2 . Then

∣∣λ− qn
2

∣∣ > qn
2 for all n ≥ n0 and some

n0 ∈ N (as qn ↓ q) and hence, λ ∈ ρ(Cn) for all n ≥ n0. Since we also have

Lp− = ∩n≥n0L
pn , Lemma 2.1 applied to T := C(p−) ∈ L(Lp−) with Xn := Lpn

and Tn := Cn, for n ≥ n0, implies that
⋂
n≥n0

{
z ∈ C :

∣∣z − qn
2

∣∣ > qn
2

}
⊆ ρ(C(p−))

and hence, λ ∈ ρ(C(p−)). Accordingly, σ(C(p−)) ⊆
{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
.

Now suppose that λ ∈ C \ {0} satis�es
∣∣λ− q

2

∣∣ ≤ q
2 or, equivalently, that

Re
(
1
λ

)
≥ 1

q , in which case Re
(
1
λ

)
≥ 1

q >
1
qn

for all n ∈ N. The claim is, for each

n ∈ N, that the function fλ(x) := x
1
λ
−1 belongs to Lpn and is an eigenvector of

Cn associated to the eigenvalue λ. To see this note that

‖fλ‖pnn =

∫ 1

0
|fλ(x)|pndx =

∫ 1

0
xpn(Re( 1

λ)−1)dx <∞, n ∈ N,

as pn
(
Re
(
1
λ

)
− 1
)
> pn

(
1
qn
− 1
)

= −1. Thus, fλ ∈ ∩∞n=1L
pn = Lp−. It is

routine to check that Cnfλ = λfλ, for n ∈ N, and hence, C(p−)fλ = λfλ as
in ◦ C(p−) = Cn ◦ in. This shows that

{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
\ {0} ⊆ σpt(C(p−)).

It follows from (1.5) that C(p−) is injective on Lp−. In particular, 0 6∈ σpt(C(p−)).

Moreover, C(p−) is not surjective, since the range of C(p−) contains only functions
which are continuous on (0, 1]. Thus, 0 ∈ σ(C(p−))\σpt(C(p−)). At this stage part
(ii) has been established, as has the �rst equality in part (i).

It remains to verify the statement in part (i) concerning σ∗(C(p−)). From
the �rst equality in (i) and the fact that σ(T ) ⊆ σ∗(T ) always holds we have{
λ ∈ C :

∣∣λ− q
2

∣∣ ≤ q
2

}
⊂ σ∗(C(p−)). On the other hand, �x λ ∈ C such that∣∣λ− q

2

∣∣ > q
2 . Then there exist ε > 0 and n0 ∈ N such that B(λ, ε) ⊆ ρ(Cn), for

n ≥ n0. Assume that there exists f ∈ Lp− for which the set {R(µ,C(p−))f : µ ∈
B(λ, ε)} is unbounded in Lp−. Then there is n ≥ n0 such that {R(µ,C(p−))f : µ ∈
B(λ, ε)} is an unbounded subset of Lpn . Since R(µ,C(p−)) coincides with the
restriction of R(µ,Cn) to Lpn , the set {R(µ,Cn)f : µ ∈ B(λ, ε)} is unbounded
in Lpn . This contradicts the fact that λ ∈ ρ(Cn) with Lpn a Banach space.

Accordingly, {R(µ,C(p−)) : µ ∈ B(λ, ε)} is equicontinuous in L(Lp−) and so λ ∈
σ∗(C(p−)). �

Proposition 3.2. Let 1 < p ≤ ∞. The Cesàro operator C(p−) : Lp− → Lp− is
hypercyclic, not power bounded and not mean ergodic. Moreover, C(p−) is chaotic
only if 1 < p <∞.

Proof. Let 1 < p < ∞. The operator C(p) : Lp → Lp is known to be hypercyclic
and chaotic, [17, Theorems 2.3 and 2.6]. Since Lp is separable and dense in Lp−

and the restriction of C(p−) to Lp coincides with C(p), it follows that C(p−) : Lp− →
Lp− is also hypercyclic and chaotic, [11, Propositions 2.24 and 1.31].

Now let p = ∞. It is shown in [11, Example 12.20] that the Cesàro operator

C(∞−) is hypercyclic on the separable Fréchet space L∞−; see also [11, Corol-

lary 12.19]. But, C(∞−) is not chaotic because, via Theorem 3.1, we know that

σpt(C
(∞−)) =

{
λ ∈ C :

∣∣λ− 1
2

∣∣ ≤ 1
2

}
\ {0} which contains only one root of unity,

[11, Proposition 5.7].

Since C(p−) is hypercyclic, for 1 < p ≤ ∞, it cannot be power bounded.
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Assume that C(p−) is mean ergodic in Lp−. Then

Lp− = Ker(I − C(p−))⊕ (I − C(p−))(Lp−),

[1, Theorem 2.4]. This means precisely that

Ker(I − C(p−)) ∩ (I − C(p−))(Lp−) = {0}
and that

Ker(I − C(p−)) + (I − C(p−))(Lp−) = Lp−.

But, dim Ker(I − C(p−)) = 1 (as the constant function 1 ∈ Ker(I − C(p−)) ⊆
Ker(I−C(r)), for any 1 < r < p, with dim Ker(I−C(r)) = 1, [15, Theorem, p.28])

and (I − C(p−))(Lp−) is dense in Lp− as C(p−) is hypercyclic, [11, Lemma 6.3].

So, we have a contradiction, i.e., C(p−) is not mean ergodic. �

4. The Cesàro operator in other classical Fréchet spaces

The lc-topology of each Fréchet space `p+, 1 ≤ p <∞, and Lp−, 1 < p ≤ ∞, is
generated by a sequence of norms. This is not so for the classical Fréchet space
C(R+), equipped with the topology generated by the seminorms

qj(f) := max
x∈[0,j]

|f(x)|, f ∈ C(R+), j ∈ N, (4.1)

nor for the Fréchet space Lploc(R
+), 1 < p < ∞, consisting of all C-valued,

measurable functions f on R+ such that

pj(f) :=

(∫ j

0
|f(x)|p dx

)1/p

<∞, j ∈ N, (4.2)

endowed with the topology generated by the seminorms {pj}j∈N. In fact, C(R+)
and Lploc(R

+), 1 < p <∞, belong to the class of quojection Fréchet spaces which,
whenever they admit a continuous norm, are necessarily a Banach space, see [6],
[20].

The Cesàro operator C : C(R+) → C(R+) de�ned, for every f ∈ C(R+), by
Cf(0) = f(0) and Cf(x) = 1

x

∫ x
0 f(t) dt, for x > 0, has been investigated in [4],

where it is shown that C is power bounded and mean ergodic but, not uniformly
mean ergodic and not supercyclic (hence, not hypercyclic). Moreover,

σ(C;C(R+)) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
(4.3)

with σpt(C;C(R+)) = σ(C;C(R+)) \ {0}, [4, Theorem 3.1]. It remains to clarify
the connection between the two notions of spectra.

Proposition 4.1. For the Cesàro operator C : C(R+)→ C(R+) we have

σ(C;C(R+)) = σ∗(C;C(R+)).

Proof. Let λ ∈ C satisfy
∣∣λ− 1

2

∣∣ > 1
2 (equivalently, Re

(
1
λ

)
< 1) and de�ne ξ := 1

λ .
The linear operator Pξ which maps f ∈ C(R+) to the function

Pξf : x ∈ R+ 7→
∫ 1

0
s−ξf(xs) ds ,

is a continuous operator on C(R+) such that ξI + ξ2Pξ is the inverse of (λI − C)
on C(R+). Indeed, applying the dominated convergence theorem to calculate
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limn→∞ Pξf(xn), whenever f ∈ C(R+) and xn → x in R+ for n→∞, it follows
that Pξf ∈ C(R+). Moreover, the substitution s = e−t yields

Pξf(x) =

∫ 1

0
s−ξf(xs) ds =

∫ ∞
0

e−(1−ξ)tf(xe−t) dt, x ∈ R+,

which implies, for each j ∈ N, that

qj(Pξf) ≤
∫ ∞
0

e−Re(1−ξ)t max
x∈[0,j]

|f(xe−t)| dt ≤ 1

Re(1− ξ)
qj(f), f ∈ C(R+).

Accordingly, Pξ ∈ L(C(R+)). That ξI+ ξ2Pξ is the inverse of (λI−C) on C(R+)
follows as in [15, p.29] (or, see the proof of [7, Lemma 2(a)]).

So, for every λ ∈ C such that
∣∣λ− 1

2

∣∣ > 1
2 , the operator

R(λ) := (λI − C)−1 = ξI + ξ2Pξ, ξ :=
1

λ
,

is the resolvent map of C at λ on C(R+) and satis�es the estimates

qj(R(λ)f) ≤
(
|ξ|+ |ξ|2

Re(1− ξ)

)
qj(f), j ∈ N, f ∈ C(R+). (4.4)

Fix λ0 ∈ C satisfying
∣∣λ0 − 1

2

∣∣ > 1
2 (i.e., λ ∈ ρ(C;C(R+))), and set ξ0 := 1

λ0
. Via

the resolvent equation we have

R(λ) = R(λ0) + (λ0 − λ)R(λ)R(λ0), λ ∈ ρ(C;C(R+)).

Then (4.4) yields, for every j ∈ N and f ∈ C(R+), that

qj(R(λ)f) ≤
(
|ξ0|+

|ξ0|2

Re(1− ξ0)

)[
1 + |λ0 − λ|

(
|ξ|+ |ξ|2

Re(1− ξ)

)]
qj(f). (4.5)

Observe, with ξ := 1
λ , that Φ(λ) := 1 + |λ0 − λ|

(
|ξ|+ |ξ|2

Re(1−ξ)

)
is de�ned and

continuous on C \
{
µ ∈ C :

∣∣µ− 1
2

∣∣ = 1
2

}
. Via (4.3) there is r > 0 such that

D(λ0, r) := {λ ∈ C : |λ− λ0| ≤ r} ⊆ ρ(C;C(R+)). Then (4.5) yields that

qj(R(λ)f) ≤M
(
|ξ0|+

|ξ0|2

Re(1− ξ0)

)
qj(f), j ∈ N, f ∈ C(R+),

with M := maxλ∈D(λ0,r) Φ(λ) < ∞, i.e., {R(λ) : λ ∈ D(λ0, r)} is equicontinuous
in L(C(R+)). This shows that λ0 ∈ ρ∗(C;C(R+)). By the arbitrariness of λ0 we
have ρ(C;C(R+)) ⊆ ρ∗(C;C(R+)), by which the proof is complete. �

We now address the spectra of the Cesàro operator C : Lploc(R
+) → Lploc(R

+)

given by Cf(x) := 1
x

∫ x
0 f(t) dt, for x > 0 and all f ∈ Lploc(R

+), which is well

de�ned as Lp([0, x]) ⊆ L1([0, x]) for each x > 0. By Hardy's inequality, [12,
p.240], the linear operator C is continuous on Lploc(R

+). It is known, for each
1 < p < ∞, that C : Lploc(R

+) → Lploc(R
+) is not power bounded and not mean

ergodic but, it is hypercyclic, chaotic and satis�es

σ(C;Lploc(R
+)) =

{
λ ∈ C :

∣∣∣λ− q

2

∣∣∣ ≤ q

2

}
(4.6)

with σpt(C;Lploc(R
+)) =

{
λ ∈ C :

∣∣λ− q
2

∣∣ < q
2

}
, [4, Theorem 4.2].

Proposition 4.2. For the Cesàro operator C : Lploc(R
+)→ Lploc(R

+) we have

σ(C;Lploc(R
+)) = σ∗(C;Lploc(R

+)).
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Proof. Let λ ∈ C satisfy
∣∣λ− q

2

∣∣ > q
2 (equivalently, Re

(
1
λ

)
< 1

q ) and set ξ := 1
λ .

The linear operator Qξ which maps f ∈ Lploc(R
+) to the function

Qξf : x ∈ R+ 7→
∫ 1

0
s−ξf(xs) ds ,

is a continuous operator on Lploc(R
+) such that ξI+ξ2Qξ is the inverse of (λI−C)

on Lploc(R
+). Indeed, �x f ∈ Lploc(R

+). For j ∈ N set g := fχ[0,j]. Then

g ∈ Lp(R+) and hence, by [7, Lemma 1(a)], the function Qξg ∈ Lp(R+) and

satis�es ‖Qξg‖p :=
(∫∞

0 |Qξg(t)|p dt
)1/p ≤ (1

q − Reξ
)−1
‖g‖p. Since f(x) = g(x)

and Qξf(x) = Qξg(x) whenever x ∈ [0, j], it follows (with pj given by (4.2)) that

pj(Qξf) = pj(Qξg) ≤ ‖Qξg‖p ≤
(

1

q
− Reξ

)−1
‖g‖p =

(
1

q
− Reξ

)−1
pj(f).

Since j ∈ N is arbitrary, we have Qξ ∈ L(Lploc(R
+)). That ξI+ξ2Qξ is the inverse

of (λI − C) on Lploc(R
+) follows as in the proof of [7, Lemma 2(a)].

Therefore, for every λ ∈ C satisfying
∣∣λ− q

2

∣∣ > q
2 , the operator

R(λ) := (λI − C)−1 = ξI + ξ2Qξ, ξ :=
1

λ
,

is the resolvent map of C at λ on Lploc(R
+) and satis�es the estimates

pj(R(λ)f) ≤

(
|ξ|+ |ξ|2

(
1

q
− Reξ

)−1)
pj(f), j ∈ N, f ∈ Lploc(R

+). (4.7)

Fix λ0 ∈ C satisfying
∣∣λ0 − q

2

∣∣ > q
2 (i.e., λ ∈ ρ(C;Lploc(R

+))), and set ξ0 := 1
λ0
.

Via the resolvent equation we have

R(λ) = R(λ0) + (λ0 − λ)R(λ)R(λ0), λ ∈ ρ(C;Lploc(R
+)).

It follows from (4.7), for every j ∈ N and f ∈ Lploc(R
+), that

pj(R(λ)f) ≤ (4.8)(
|ξ0|+ |ξ0|2

(
1

q
− Reξ0

)−1)[
1 + |λ0 − λ|

(
|ξ|+ |ξ|2

(
1

q
− Reξ

)−1)]
pj(f).

Observe, with ξ := 1
λ , that Ψ(λ) := 1 + |λ0 − λ|

(
|ξ|+ |ξ|2

(
1
q − Reξ

)−1)
is

de�ned and continuous on C \
{
µ ∈ C :

∣∣µ− q
2

∣∣ = q
2

}
. According to (4.6) there

exists r > 0 such that D(λ0, r) ⊆ ρ(C;Lploc(R
+)). It then follows from (4.8) that

pj(R(λ)f) ≤ L

(
|ξ0|+ |ξ0|2

(
1

q
− Reξ0

)−1)
pj(f), j ∈ N, f ∈ Lploc(R

+),

with L := maxλ∈D(λ0,r) Ψ(λ) < ∞, i.e., {R(λ) : λ ∈ D(λ0, r)} is equicontinuous
in L(Lploc(R

+)). This shows that λ0 ∈ ρ∗(C;Lploc(R
+)). By the arbitrariness of λ0

we have ρ(C;Lploc(R
+)) ⊆ ρ∗(C;Lploc(R

+)), by which the proof is complete. �

Consider now the Cesàro operator C : ω → ω as given by (1.1). As an increasing
sequence of seminorms de�ning the Fréchet topology in ω = CN we take rk : ω →
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[0,∞), k ∈ N, where rk(x) = max1≤j≤k |xj |, for x = (xi)
∞
i=1 ∈ ω. Clearly,

C ∈ L(ω). In fact,

rk(C
nx) ≤ rk(x), x ∈ ω, k, n ∈ N. (4.9)

Its dual operator C′ : ϕ→ ϕ is continuous on ϕ := (ω)′β and is given by

C′(x) =

( ∞∑
h=i

xh
h

)∞
i=1

, x = (xi)
∞
i=1 ∈ ϕ. (4.10)

The linear operator C is a bicontinuous (topological) isomorphism of ω onto itself
with C−1 : ω → ω given by (1.2). Denote by 1 the constant sequence (1, 1, . . .) ∈
ω. The following result, with the exception of the statement about supercyclicity,
occurs in [3, Proposition 4.1]. The supercyclicity can be deduced from [9, Lema
11]; we include a direct proof.

Proposition 4.3. The Cesàro operator C : ω → ω is power bounded (hence,

satis�es Cn

n → 0 in Lb(ω) as n → ∞) and uniformly mean ergodic but, it is not
supercyclic. Moreover, Ker(I − C) = span{1} and the range (I − C)(ω) = {x ∈
ω : x1 = 0} = span{er}r≥2 is closed.

Proof. To show that C : ω → ω is not supercyclic we proceed by contradiction.
So, assume the existence of x = (xi)

∞
i=1 ∈ ω such that {λCix : λ ∈ C, i ∈ N0}

is dense in ω. Since the 1-st coordinate (Cix)1 = x1, for every i ∈ N, it follows
that x1 6= 0. On the other hand, there exists a set {µk : k ∈ N} ⊂ C and
a strictly increasing sequence (jk)k ⊆ N0 such that µkC

jkx → e2 as k → ∞.
Considering the 1-st coordinate and recalling that x1 6= 0, we may conclude that
µk → 0 as k →∞. Consequently, for all k ∈ N, the inequality (4.9) implies that
0 ≤ r2(µkC

jkx) ≤ |µk|r2(x) → 0 as k → ∞. But, r2(µkC
jkx) → r2(e2) = 1 as

k →∞, which is a contradiction. �

Proposition 4.4. The spectra of the Cesàro operator C : ω → ω are given by

σ(C) = σpt(C) = {1/k : k ∈ N}
and

σ∗(C) = {0} ∪ σ(C) = σ(C).

Proof. As observed above, 0 ∈ ρ(C). Moreover, 1 ∈ σpt(C) ⊆ σ(C) by Proposition
4.3. For λ ∈ C \ {0} the claim is that (λI − C) is injective if and only if λ 6∈
{1/k : k ∈ N}.

To establish the claim, �x λ ∈ C\{0} and consider the equation (λI−C)x = 0
with x = (xn)n∈N ∈ ω. Then x1 = λx1 and (2λ − 1)x2 = x1 and (nλ − 1)xn =
λ(n − 1)xn−1 for all n ≥ 3. If m ∈ N denotes the smallest positive integer
satisfying xm 6= 0, then it follows that λ = 1

m and so xn = n−1
n−mxn−1 for all

n > m. This implies that

xn = xm+(n−m) =
(n− 1)!

(m− 1)!(n−m)!
xm, n > m.

Then x =
(

0, . . . , 0, xm,mxm,
m(m+1)

2 xm, . . .
)
∈ ω satis�es Cx = 1

mx with x 6= 0

for any choice of xm 6= 0. This proves the claim.
According to the established claim we have σpt(C) = {1/k : k ∈ N} ⊆ σ(C) ⊆

σ∗(C) with σ∗(C) closed, and so 0 ∈ σ∗(C).
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It remains to show that every λ /∈ {0} ∪ {1/k : k ∈ N} belongs to ρ∗(C). To
see this, �x λ /∈ {0} ∪ {1/k : k ∈ N}. The formula for the resolvent operator
(C − λI)−1 : ω → ω is a matrix which has the entries in its i-th row given by

ai,j =
−1

iλ2
∏i
h=j(1−

1
hλ)

=
−λi−j−1

i
∏i
h=j(λ−

1
h)
, 1 ≤ j < i, (4.11)

ai,j = 1/(1/i− λ), i = j,

with all the other entries being 0, [21, p.266]. Select δ > 0 such that the distance
ε of B(λ, δ) to the compact set {0} ∪ {1/k : k ∈ N} is strictly positive. Using the
form (4.11) of the matrix for the resolvent operator it follows, for each k ∈ N,
that there is Mk > 0 such that rk((C− µI)−1x) ≤ Mkrk(x) for each µ ∈ B(λ, δ)
and each x ∈ ω. This implies that {(C − µI)−1 : µ ∈ B(λ, δ)} is equicontinuous
in L(ω) and so λ ∈ ρ∗(C). �
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