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Aim of the lecture

Investigate the continuity, the compactness, the mean ergodicity and
determine the spectrum of the Cesaro operator C acting on weighted ¢y
sequence spaces and on certain Fréchet and (LB)-spaces of analytic
functions on the disc.

We report on joint work in progress with Angela A. Albanese (Univ.
Lecce, Italy) and Werner J. Ricker (Univ. Eichstaett, Germany).
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Ernesto Cesaro (1859-1906)
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Albanese and Ricker

Angela Albanese Werner Ricker
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The discrete Cesaro operator

The Cesaro operator C is defined for a sequence x = (x,), € CY of
complex numbers by
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The operator C: CN — CN is a bicontinuous isomorphism of CY onto
itself with

CHy) = (yn = (n=1)Yn-1)n, ¥ = (yn)o € CY, (1)

where we set y_; := 0.

Recall that CN is a Fréchet space for the topology of coordinatewise
convergence.
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The Cesaro operator for analytic functions

The Cesaro operator is defined for analytic functions on the disc D by

n=0

CF=>" (nil ;)a> 2", f(z) = Z%a,,z" € H(D). J

The Cesaro operator acts continuously and has the integral representation

_ 1 % £(p)
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The Cesaro operator for analytic functions

Indeed, for f(z) = > 7" an,z" € H(D), we have

00 0o 1 z o o 0o n+m
—D%2 0% 2 |Ro o= 2 38 fo o
n=0 k:nk+1 k=0 k+1n:0
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The discrete Cesaro operator on Banach sequence spaces

Theorem. Hardy. 1920.

Let 1 < p < co. The Cesaro operator maps the Banach space /P
continuously into itself, which we denote by CP): ¢gp — ¢P and

I(CP))|| = p’, where % 4 ﬁ =1, for all n € N.

In particular, Hardy’s inequality holds:

IC)p < Plixlp,  x € £°.

Clearly C is not continuous on {1, since C(e1) = (1,1/2,1/3,...).
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The discrete Cesaro operator on Banach sequence spaces

Proposition.
The Cesaro operators C(°°): ¢ — ¢>° C(9): ¢ » cand C: ¢ — ¢
are continuous, and [|C(*9)|| = ||C()|| = ||CO)|| = 1.

Moreover, lim Cx = lim x for each x € c.
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Spectrum and point spectrum

X is a Hausdorff locally convex space (Ics).

L(X) (resp. K£(X)) is the space of all continuous (resp. compact)
linear operators on X.

The resolvent set p(T,X) of T € L(X) consists of all A € C such that
R\, T):= (M — T)~ ! exists in L(X). l

spectrum is the set o,,:( T, X) of those A € C such that T — A/ is not

The spectrum of T is the set o(T,X) :=C\ p(T, X). The point
injective. The elements of g,,:( T, X) are called eigenvalues of T. I
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Spectrum and point spectrum

Theorem. Leibowitz. 1972.

(i) o(C;e®)=0(Ca) ={AeC||x-3| <3}

(i) ope(C: €)= {(1,1,1,...)}.

(iii) 0pe(C; co) = 0.
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Spectrum and point spectrum

Theorem. Leibowitz. 1972.

Letl<p<ocoandl/p+1/p =1

(i) o(C;eP)={reC||x-E| <2}

(i1) 0pe(C; P) = 0.

In particular, C is not compact in the spaces /P, 1 < p < oo, or in the
space ¢p.
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Definitions and abstract results.

X is a Hausdorff locally convex space (lcs).

@ p*(T) consists of all A € C for which there exists § > 0 such that
each € B(\,0) :={z € C: |z— \| < d} belongs to p(T) and the
set {R(u, T): p € B(A,0)} is equicontinuous in L£(X).

@ o*(T):=C\ p*(T).

@ 0*(T) is a closed set containing o(T). If T € L(X) with X a
Banach space, then a(T) = o*(T). There exist continuous linear
operators T on a Fréchet space X such that o(T) C o*(T) properly.
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Abstract results.

Theorem.

Let X = NuenX, be a Fréchet space given by the intersection of a
sequence of Banach spaces ((X,, || - |n))nen satisfying X,11 C X, with
[Ix|ln < |Ix|ln+1, for each n € N and x € X,,11. Let T € L£(X) satisfy the

following condition:

(a) For each n € N there exists T,, € £(X,) such that the restriction of
T, to X (resp. of T, to X,11) coincides with T (resp. with T,.1).

Then o(T,X) C Upeno(Tp, Xs) and R(A, T) coincides with the
restriction of R(A, T,) to X for each n € N and each A € Npenp( Ty, Xn).

Moreover, if Upeno(Th, Xn) C o(T, X), then

o*(T,X) =o(T, X).
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Abstract results.

Theorem

Let E = ind ,(E,, || ||») be a Hausdorff inductive limit of Banach spaces.
Let T € L(E) satisfy the following condition:

(A) For each n € N the restriction T, of T to E, maps E, into itself and
belongs to L(E,).

Then the following properties are satisfied.
(i) apt(T7 E) = UnENo'pt(Tn, En)-

(ii) o(T,E) C Npen US2,, o( Ty, Ey). Moreover, if A € N2, o(T,, E,)
for some m € N, then R(\, T,,) coincides with the restriction of
R(A, T) to E, for each n > m.

(iii) If U,,0(Tn, Es) C o(T, E) for some m € N, then
o*(T,E)=0(T,E).
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More about the spectrum and point spectrum

Y ={l: meN}and L, := T U{0}.

m

Proposition.
(i) o(C;CN) = gpe(C;CN) = ¥.
(i) Fix m € N. Let x(M := (x{™), € CN where x{™ := 0 for
ne{l,...,m—1}, x,(,,m) ;=1 and x,sm) = % for n > m.
Then the eigenspace

Ker <;/ — C> = span{x(M} c ¥

is 1-dimensional.
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More about the spectrum and point spectrum

Theorem

The Cesaro operator satisfies

(3) o(C, H(D)) = 0,e(C, H(D)) = {%: m e N}.

(b) o*(C, H(D)) = {%; m € N} U {0}.

Persson showed in 2008 the following facts:

For every m € N the operator (C — 1/): H(D) — H(D) is not injective
because Ker(C — 1/) = span{ey, }, where en(z) = 2" }(1 —z)~™,
z €D, and it is not surjective because the function f,(z) := Z=1

z €D, does not belong to the range of (C — 1 /).
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The growth spaces

For v > 0 the growth classes A~ and A" are the Banach spaces
defined by

AT = {£ € H(B): [y = sup(1 — |2))"]#(z)| < oo}. \

AT ={f € H(D): lim (1—|2])7|f(2)| =0} ]

Ay " is the closure of the polynomials on A=7.

The Cesaro operator acts continuously on A~7. Its spectrum on these
(and many other spaces of analytic functions on the disc) has been
studied by Aleman and Persson 2008-2010.
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The result of Aleman and Persson

Theorem. Aleman, Persson

The Cesaro operator C satisfies:
(i) opt(C, A7) = {%: meN, m<~}.

(ii) o(C,A3™) = 7pe(C, A3 Y) U {A eC: (A - %‘ < %}

(iii) If ‘)\ - ‘ < 55 (or equivalently Re () > ), then the space
Im(A —C) is cIosed in Ay " and has codimension 1 in A;”

(iv) opt(C,AT)={L: meN, m<~}

(v) o(C,A™Y) =0(C,Ay7).
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The Fréchet growth spaces

Let v > 0.

AT = Ny ATH = Nysy A J

The space A" is Fréchet when it is endowed with the lc-topology
generated by the fundamental sequence of seminorms

IFllk = sup(L — |2])7*|£(2)]. l
zeD

It is a Fréchet-Schwartz space because the inclusion A=#t «— A7H2 s
compact for all 0 < 1 < p1o. In particular, every bounded subset of AL”
is relatively compact, i.e. the space is Montel
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The (LB) growth spaces

Let 0 <y <0

ATY = Upey AP = Uy Ag™, J

and it is endowed with the finest locally convex topology such that all the
inclusions A=#* — A™7Y 1 < ~, are continuous.
In particular, AZ" is the (DFS)-space

AT :=ind A0 = ind A; 7R,
- k k0

As a consequence A_" is a Montel space, too.
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The (LB) growth spaces. The Korenblum space

The Korenblum space A~°° was introduced by Korenblum in 1975 is
usually denoted by

A7 = Up<ycocA™" = UnenA™". )

Observe that A7 C A;" C A=Y C A" with continuous inclusions.

All these spaces play an important role in the study of interpolation and
sampling of holomorphic functions on the disc.

The Cesaro operators C: AZ" — AZ" and C: A_7 — A" are
continuous because C acts continuously in every step.
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The spectrum of C in the Fréchet growth spaces

(1) Let v €]0, ool
(@) opt(C,ADY)={2: meN, m<~}.

(b) o(C,AL)={0}u{Lt:m m<~y}Uu{reC: |)\—%| < % :
(c) o*(C,AYY) = o(C,AY).

(2) Let y = 0.

(a) ope(C,AT°) = 0.

(b) o(C,A7%) = {0} U{X € C | ReX > 0}.

(c) 0*(C,AIO) = O'(C,AIO).
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The spectrum of C in the (LB) growth spaces

(1) Let « €]0, oo
(@) opt(C,AZ)={L2: meN, m<~}.

(b) o(C,AZ)={g:meN, m<y}U{reC:[A- 5| < 5}

(c) o*(C,AZ") =0o(C,AZ").
(2) For the Korenblum space A= (i.e. v = 00) we have:

(@) o(C, A=) = 0p(C,A™>®) = {L: meN}.
(b) o*(C,A=>°)={L: me N}u{0}.
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H(D) as a power series space

The map

f(z) = Za,,z” € H(D) — (an)i, ’
n=0

defines an isomorphism between the Fréchet space H(ID) endowed with
the topology of uniform convergence on the compact sets and the
sequence space
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H(D) as a power series space

In the Fréchet space

No((n)n) := () co(wa), ’

keN

we take wi(n) := ()", k € N,n=0,1,2,... and r, =1 —(1/k),k € N,
an increasing sequence tending to 1. Moreover,

co(wg) = {X = (Xn)nen € CN: nll)n;o wi (n)|xa| = O} , l

equipped with the norm ||x||o,w, = sup,ern Wk(n)|xa| for x € co(wi).
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A~ as a dual power series space

The map

f(z) = Z anz" — (an)io J
n=0

defines an isomorphism between A~°° and the countable inductive limit
E, = Ukenco(vk) of weighted ¢y spaces defined for the weight sequence

ve(n) = (n+e) % keN,n=0,1,2,... J
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The space ¢y(w)

o Let w = (w(n))%2,; be a bounded, strictly positive sequence. Define

co(w) = {X = (Xn)nen € CN: nILrgo w(n)|x,| = 0} , \

equipped with the norm ||x||o,w = sup,cy w(n)|xs| for x € co(w).

@ co(w) is isometrically isomorphic to ¢y via the linear multiplication
operator ®,,: co(w) — o given by

X = (Xn)nen — Pu(x) 1= (W(n)Xn)nen- (2)

@ We are interested in the case when inf,cy w(n) = 0. Otherwise
co(w) = ¢p with equivalent norms.
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Continuity of C on ¢(w)

Theorem.

Let w be a bounded, strictly positive sequence.
The Cesaro operator C(%") € £(co(w)) if and only if

{Win)Zw(lk)} eNeéoo. (3)

k=1

Moreover, ||COW)|| > 1.

If w is decreasing, then (3) is satisfied and ||C(O")|| = 1.
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Compactness of C on ¢y(w)

Let w be a bounded, strictly positive sequence.
The following conditions are equivalent.

(a) CO%) is weakly compact.
(b) €% is compact.

(¢) The sequence

José Bonet The Cesaro operator on sequence and function spaces



Continuity and compactness of C on ¢o(w)

Let w = (w(n))52, be two strictly positive sequences. Let
Tw: CY — CN denote the linear operator given by

[ w(n) X = (x N
Twx = ( n ZW(k)>neN’ _( n)nENE(C . (5)

k=1

Then ¢,,C = T,®,. Therefore, the Cesaro operator C maps cp(w)
continuously (resp., compactly) into ¢y(w) if and only if the operator
Tw € L(co) (resp., Tw € K(c0))-
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Continuity of C on ¢y(w). A classical lemma

Lemma. Banach’'s Book.

Let A= (3pm)nmen be a matrix with entries from C and T: CN — CN
be the linear operator defined by

Tx = (2_:1 a,,mxm> ;X = (Xn)nen, (6)

neN

interpreted to mean that Tx exists in CY for every x € CV.
Then T € L(c) if and only if the following two conditions are satisfied:

(i) limp— o0 @nm = 0 for each fixed m € N;
(i) SUPpen 2o mei |@nm| < 0o

In this case, || T|| = suppcy o meq |@nml-
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o Let w(2n+1) = ﬁ for n > 0 and w(2n) = 27" for n > 1. Clearly
limp— oo w(n) =0, but C does not act continuously in co(w).

o Let &> 0 and w(n) := L for all n € N. Since w is decreasing,
COw) ¢ £(co(w)). But C%) is not compact, since

w(n) 1 1 < 1 < /k
= k> —— *d,
n W(k) natl ; = patl kz::l k—1X X

1 n 1
= —_— (Xd = —
n“+1/0X XAt

José Bonet The Cesaro operator on sequence and function spaces



Examples of compact operators Cesaro operators on C(0%)

Proposition.
Let w be bounded, strictly positive and satisfy

1
o )

n—oo  w(n)

€ [0,1),

then CO) € K(co(w))
Moreover, 0, (CO") =%; o(COW) =%,

One checks that that the condition (4) is valid to prove compactness.
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Examples of compact operators Cesaro operators on C(0%)

o C(O%) ¢ K(cy(w)) for the following sequences:

(1) w(n) :=a=, ne N, with a> 1, a, T 00 and
limp—oo(@n — @p_1) = 0.

2 (n):—C:fornGN,wherea>1anda€R.
(3) w(n) := 2 for n € N, where a > 1.

(4) w(n) :=n~"for ne N.

o Let w(n) :=e V7 or w(n) := e (°€"” 3> 1 for n€ N. Then

limp o0 0 = 1, but C € K(co(w)).
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Spectrum of C(Ow)

Given a bounded, strictly positive sequence w, let

SW::{SER:Z#(H)<OO}. J

In case S,, # () we define sq :=inf S,,.

Moreover, let

n—oo

Ry, :={t €R: lim n'w(n) = 0}. \

In case R, # R we define to :=sup R,,. If R, = R we set ty = co.
Recall © := {1: me N} and &, := X U{0}.
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(0,w)

Spectrum of C\%") Main result

Theorem.

Let w be a bounded, strictly positive sequence such that
COW) € £(co(w)).
(1) The following inclusion holds:

Yo C o(COW).

(2) Let A & Yo. Then A € p(C(®")) if and only if both of the conditions
(i) limyoo 22 =0, and

oo —1 e
(i) supper 2 Sy ol < oo,

are satisfied, where o := Re ().
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(0,w)

Spectrum of C . Main result continued

Theorem continued.

(3) Suppose that R, # R, i.e., to < co. Then we have the inclusions

1
{m: meN, 1<m< toJrl} gapt(C(O’W)) C

1
g{:meN, 1§m§t0+1}.
m

In particular, apt(C(O’W)) is a proper subset of X.
If R, =R, then

0pt(COM) = 3.
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Some ingredients of the proof of the main result

First ingredient

The dual operator

The dual operator (C(O")) € £(¢1(w™1)) satisfies ||(COM)Y|| = ||[COW)||
and it is given by

= (§2) sy
neN

It satisfies 0 & 0 ((CO™)) and £ C o, ((COWY).
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Some ingredients of the proof of the main result

First ingredient.
The dual operator.

Proposition.
If S. # 0, then the dual operator (C(O"))’ of C(O") satisfies

1 1
{A eC: ’/\ L } UX Cop((CO™Y), and

25y 2sp

1 1
< — >
~ 259

0ot ((COMY)\ Zo C {)\EC: ‘)\—250

A\
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Some ingredients of the proof of the main result

Second ingredient.
A result of Reade (1985)

For n € N the n-th row of the matrix for (C—\)~1: CN — CN () ¢ ¥o)
has the entries

and all the other entries in row n are equal to 0. Therefore

1

(C— /\/)_1 =D, — FEM

where the D is a diagonal operator and Ex = (€pm)n men is a lower
triangular matrix.
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Some ingredients of the proof of the main result

Third ingredient.
A technical lemma improving Reade (1985)

Lemma.

Let A € C\ Xo and set a := Re (3). Then there exist constants d > 0
and D > 0 (depending on «) such that

D
1——_ , neN.
ne

A\
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Spectrum of C(Ow)

Let w be a strictly positive, decreasing sequence.
(i)
(0,w) . 1 1
(ii) If Su # 0, then
reC: - | <L UZ C o(COm) (8)
' 250 | — 2sp B '
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Spectrum of C(Ow)

A sequence u = (up)nen € CY is called rapidly decreasing if
(n™up)nen € ¢o for every m € N. The space of all rapidly decreasing,
C-valued sequences is denoted by s.

Proposition.

Let w be a bounded, strictly positive sequence. If C(©%) € K(cp(w)),
then
0pt(CO") =% and o(COW) =5,

Moreover, w € s and S,, = 0.

There exist weights w € s such that C(") ¢ IC(cy(w)): Define w via

w(1) :=1 and w(n) ::j% ifne {27 14+1,...,2} forjeN.
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(0,w)

Spectrum of C\"%"/ Relevant examples

(1) w(n) = egrrmy7 for n € N with 4 > 0. Then so =1 and to = 0.

We have
(0,w) 1 1
o(C®"N)=dxeC: A== <=5, and
2 2
op(COM) =0 if y=0; 0pe(COW)={1}ify>0. J
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(0,w)

Spectrum of C\"%"/ Relevant examples

(2) w(n) = 2 for n € N with 8 > 0. Then to = 3 and

1 '< 1
206+1)| ~ 2(8+1)

{)\e(C: ’A }UZ:U(C(O’W)), and

{;: meN, 1<m< ﬁ—i—l} = 0, (COW).
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(0,w)

Spectrum of C\"%"/ Relevant examples

Checking the examples requires the following technical result:

Let a be a real number with o« < 1. Then

1 4
sup E — < Q.
11—« fo
n m
neN m=1

José Bonet The Cesaro operator on sequence and function spaces



Mean ergodic properties. Definitions

Power bounded operators

An operator T € £(X) is said to be power bounded if {T™}3_, is an
equicontinuous subset of £(X).

If X is a Banach space, an operator T is power bounded if and only if
sup, || T"|| < 0.

If X is a barrelled space, an operator T is power bounded if and only if
the orbits { T™(x)}55_; of all the elements x € X under T are bounded.
This is a consequence of the uniform boundedness principle.
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Mean ergodic properties. Definitions

For T € £(X), we set Tj,p:=15"  T™

Mean ergodic operators
An operator T € £(X) is said to be mean ergodic if the limits

N N
Px.:nlmeZ;Tx, x € X, (9)

exist in X.

If T is mean ergodic, then one then has the direct decomposition

X =Ker(l - T)a (I - T)(X).
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Mean ergodic properties. Definitions

Uniformly mean ergodic operators

If {T[n}o2; happens to be convergent in L,(X) to P € L(X), then T is
called uniformly mean ergodic.

4

Theorem. Lin. 1974

Let T a (continuous) operator on a Banach space X which satisfies
limy— o0 || T"/n|| = 0. The following conditions are equivalent:

(1) T is uniformly mean ergodic.

(4) (I = T)(X) is closed.
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Ergodic properties of C on classical spaces

@ The Cesaro operator C: CN — CN is power bounded and uniformly
mean ergodic.

@ The Cesaro operator C(P): (P — (P 1 < p < o0, is not power
bounded and not mean ergodic.

@ The Cesaro operator C(9: ¢y — ¢y is power bounded, not mean
ergodic.
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Hypercyclicity. Definitions

Hypercyclic operator

T € L(X), with X separable, is called hypercyclic if there exists x € X
such that the orbit { T"x: n € Ny} is dense in X.

Supercyclic operator

If, for some z € X, the projective orbit {\T"z: A € C, n € Ny} is dense
in X, then T is called supercyclic.

Clearly, hypercyclicity always implies supercyclicity.
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Dynamics of C on classical spaces

@ The Cesaro operator C: CN — CV is power bounded, uniformly
mean ergodic and not supercyclic.

@ The Cesaro operator C(P): (P — (P 1 < p < o0, is not power
bounded, not mean ergodic and not supercyclic.

@ The Cesaro operator C(9: ¢y — ¢y is power bounded, not mean
ergodic and not supercyclic.
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Mean ergodicity of C on ¢y(w)

Proposition.

Let w be a decreasing, strictly positive sequence. Then
COw) ¢ £(co(w)) is power bounded.

Moreover, the following assertions are equivalent:

(i) C®%) is mean ergodic.

(iii) The weight w satisfies lim,_,o w(n) = 0.
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Uniform mean ergodicity of C on ¢y(w)

Let w be a decreasing, strictly positive sequence. Then C(") € £(cy(w))
is uniformly mean ergodic if and only if w satisfies both of the conditions

(i) limp—0o w(n) =0, and

0g n—1
(11) SUPeN W(n + 1) Zm:l mw(}n+1) < 0.
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Uniform mean ergodicity of C on ¢y(w)

Proposition.

If w is a decreasing, strictly positive sequence such that
COw) ¢ K(co(w)), then C(%%) is uniformly mean ergodic.

(i) For w(n) =

= W for n € N with v > 1, the operator C(%%) is

not compact, mean ergodic and not uniformly mean ergodic.

(ii) For w(n) = - for n € N with 3 > 1, the operator cow) js
uniformly mean ergodic but not compact
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Non superciclycity of C on co(w)

Proposition

Let w be a bounded, strictly positive sequence such that

COw) ¢ £(co(w)). Then C(O%) is not supercyclic and hence, also not
hypercyclic.

This is a direct consequence of a general result by Ansari and Bourdon,
since ot ((C(O™))') is infinite.
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Ergodicity of C on H(D)

The Cesaro operator C acting on H(D) is power bounded, uniformly
mean ergodic and not supercyclic, hence not hypercyclic.

As a consequence, C is not supercyclic on the spaces A_”, v > 0, and
AZ7.0 <y < oo.
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Ergodicity of C on the Fréchet growth spaces

Let v € [0, ool

The following conditions are equivalent:
(a) Cis power bounded on A”.
(b) Cis (uniformly) mean ergodic on A, 7.

(c) 1<y < o0
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Ergodicity of C on the (LB) growth spaces

Let v €]0, o0].

The following conditions are equivalent:
(a) Cis power bounded on A~7.
(b) Cis (uniformly) mean ergodic on A_".

() 1<y < o0
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