THE CESÅRO OPERATOR ON DUALS OF POWER SERIES SPACES OF INFINITE TYPE

ANGELA A. ALBANESE, JOSÉ BONET, WERNER J. RICKER

Abstract

A detailed investigation is made of the continuity, spectrum and mean ergodic properties of the Cesàro operator C when acting on the strong duals of power series spaces of infinite type. There is a dramatic difference in the nature of the spectrum of C depending on whether or not the strong dual space (which is always Schwartz) is nuclear.

1. Introduction and Notation.

The discrete Cesàro operator C is defined on the linear space $\mathbb{C}^{\mathbb{N}}$ (consisting of all scalar sequences) by

$$
\begin{equation*}
\mathrm{C} x:=\left(x_{1}, \frac{x_{1}+x_{2}}{2}, \ldots, \frac{x_{1}+\ldots+x_{n}}{n}, \ldots\right), \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} . \tag{1.1}
\end{equation*}
$$

The linear operator C is said to act in a vector subspace $X \subseteq \mathbb{C}^{\mathbb{N}}$ if it maps X into itself. Of particular interest is the situation when X is a Fréchet space or an (LF)-space. Two fundamental questions in this case are: Is C: $X \rightarrow X$ continuous and, if so, what is its spectrum? For a large collection of classical Banach spaces $X \subseteq \mathbb{C}^{\mathbb{N}}$ where precise answers are known we refer to the Introductions in [4], [6], for example. The discrete Cesàro operator C acting on the Fréchet sequence space $\mathbb{C}^{\mathbb{N}}$, on $\ell^{p+}:=\cap_{q>p} \ell_{q}$, and on the power series spaces $\Lambda_{0}(\alpha):=\Lambda_{0}^{1}(\alpha)$ of finite type was investigated in [3], [5], [6], respectively. The aim of this paper is to investigate the behaviour of C when it acts on the strong duals $\left(\Lambda_{\infty}^{1}(\alpha)\right)^{\prime}$ of power series spaces $\Lambda_{\infty}^{1}(\alpha)$ of infinite type. Power series spaces of infinite type play an important role in the isomorphic classification of Fréchet spaces, [17], [21], [22]. The reason for concentrating on the infinite type dual spaces $\left(\Lambda_{\infty}^{1}(\alpha)\right)^{\prime}$ is that the Cesàro operator C fails to be continuous on "most" of the finite type dual spaces $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$. This is explained more precisely in an Appendix (Section 5) at the end of the paper.

In order to describe the main results we require some notation and definitions.
Let X be a locally convex Hausdorff space (briefly, lcHs) and Γ_{X} a system of continuous seminorms determining the topology of X. Let X^{\prime} denote the space of all continuous linear functionals on X. The family of all bounded subsets of X is denoted by $\mathcal{B}(X)$. Denote the identity operator on X by I. Let $\mathcal{L}(X)$ denote the space of all continuous linear operators from X into itself. For $T \in \mathcal{L}(X)$, the

[^0]resolvent set $\rho(T)$ of T consists of all $\lambda \in \mathbb{C}$ such that $R(\lambda, T):=(\lambda I-T)^{-1}$ exists in $\mathcal{L}(X)$. The set $\sigma(T):=\mathbb{C} \backslash \rho(T)$ is called the spectrum of T. The point spectrum $\sigma_{p t}(T)$ of T consists of all $\lambda \in \mathbb{C}$ such that $(\lambda I-T)$ is not injective. If we need to stress the space X, then we also write $\sigma(T ; X), \sigma_{p t}(T ; X)$ and $\rho(T ; X)$. Given $\lambda, \mu \in \rho(T)$ the resolvent identity $R(\lambda, T)-R(\mu, T)=(\mu-\lambda) R(\lambda, T) R(\mu, T)$ holds. Unlike for Banach spaces, it may happen that $\rho(T)=\emptyset$ (cf. Remark $2.6(\mathrm{ii})$) or that $\rho(T)$ is not open in \mathbb{C}; see Proposition 2.9 (i) for example. That is why some authors prefer the subset $\rho^{*}(T)$ of $\rho(T)$ consisting of all $\lambda \in \mathbb{C}$ for which there exists $\delta>0$ such that the open disc $B(\lambda, \delta):=\{z \in \mathbb{C}:|z-\lambda|<$ $\delta\} \subseteq \rho(T)$ and $\{R(\mu, T): \mu \in B(\lambda, \delta)\}$ is equicontinuous in $\mathcal{L}(X)$. If X is a Fréchet space or even an (LF)-space, then it suffices that such sets are bounded in $\mathcal{L}_{s}(X)$, where $\mathcal{L}_{s}(X)$ denotes $\mathcal{L}(X)$ endowed with the strong operator topology τ_{s} which is determined by the seminorms $T \mapsto q_{x}(T):=q(T x)$, for all $x \in X$ and $q \in \Gamma_{X}$. The advantage of $\rho^{*}(T)$, whenever it is non-empty, is that it is open and the resolvent map $R: \lambda \mapsto R(\lambda, T)$ is holomorphic from $\rho^{*}(T)$ into $\mathcal{L}_{b}(X)$, [2, Proposition 3.4]. Here $\mathcal{L}_{b}(X)$ denotes $\mathcal{L}(X)$ endowed with the lcH-topology τ_{b} of uniform convergence on members of $\mathcal{B}(X)$; it is determined by the seminorms $T \mapsto q_{B}(T):=\sup _{x \in B} q(T x)$, for $T \in \mathcal{L}(X)$, for all $B \in \mathcal{B}(X)$ and $q \in \Gamma_{X}$. Define $\sigma^{*}(T):=\mathbb{C} \backslash \rho^{*}(T)$, which is a closed set containing $\sigma(T)$. If $T \in \mathcal{L}(X)$ with X a Banach space, then $\sigma(T)=\sigma^{*}(T)$. In [2, Remark 3.5(vi), p.265] an example of a continuous linear operator T on a Fréchet space X is presented such that $\overline{\sigma(T)} \subset \sigma^{*}(T)$ properly. For undefined concepts concerning lcHs' see [12], [17].

Each positive, strictly increasing sequence $\alpha=\left(\alpha_{n}\right)$ which tends to infinity generates a power series space $\Lambda_{\infty}^{1}(\alpha)$ of infinite type; see Section 2. The strong dual $E_{\alpha} \subseteq \mathbb{C}^{\mathbb{N}}$ of $\Lambda_{\infty}^{1}(\alpha)$ is then a co-echelon space, i.e., a particular kind of inductive limit of Banach spaces (of sequences), which is necessarily a Schwartz space in our setting. It turns out (cf. Proposition 2.1) that always $C \in \mathcal{L}\left(E_{\alpha}\right)$. Furthermore, it is known that the nuclearity of the space E_{α} is characterized by the condition $\sup _{n \in \mathbb{N}} \frac{\log (n)}{\alpha_{n}}<\infty$. Remarkably, this is equivalent to the operator $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ being invertible, i.e., $0 \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$; see Proposition 2.4. Actually, the main results of this section (namely, Proposition 2.9 and Corollary 2.10) establish the equivalence of the following assertions:
(i) E_{α} is nuclear.
(ii) $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)$.
(iii) $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.

Moreover, in this case we have $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\{0\} \cup \sigma\left(\mathrm{C} ; E_{\alpha}\right)$. So, whenever E_{α} is nuclear, the spectra $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right), \sigma\left(\mathrm{C} ; E_{\alpha}\right)$ and $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)$ are completely identified. In particular, these spectra of C are independent of α.

The operator $D \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ of differentiation (defined in the obvious way) is closely connected to the Cesàro operator $C \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ via the identity (valid in $\left.\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)\right)$

$$
\mathrm{C}^{-1}=\left(I-S_{r}\right) D S_{r}
$$

where $S_{r} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ is the right-shift operator. It is always the case that $S_{r} \in \mathcal{L}\left(E_{\alpha}\right)$ whenever $\alpha_{n} \uparrow \infty$. Moreover, it follows from (i)-(iii) above that $\mathrm{C}^{-1} \in \mathcal{L}\left(E_{\alpha}\right)$ precisely when E_{α} is nuclear. So, the above identity for C^{-1} suggests that there should be a connection between the continuity of D on E_{α} and the nuclearity of E_{α}. This is clarified by Proposition 2.5. Namely, D is continuous on E_{α} if and
only if E_{α} is both nuclear and $\sup _{n \in \mathbb{N}} \frac{\alpha_{n+1}}{\alpha_{n}}<\infty$. Remark 2.6(i) shows that these two conditions are independent of one another.

Section 3 identifies the spectra of $C \in \mathcal{L}\left(E_{\alpha}\right)$ in the case when E_{α} is not nuclear. We have seen if E_{α} is nuclear, then $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$ is a bounded, infinite and countable set with no accumulation points. For E_{α} non-nuclear the spectrum of C is very different. Indeed, in this case
$\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\{0,1\} \cup\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right|<\frac{1}{2}\right\}$ and $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}$ whenever $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}<\infty$, whereas

$$
\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}
$$

otherwise; see Proposition 3.4. Again the spectra of C are independent of α.
J. von Neumann (1931) proved that unitary operators T in Hilbert space are mean ergodic, i.e., the sequence of its averages $\frac{1}{n} \sum_{m=1}^{n} T^{m}$, for $n \in \mathbb{N}$, converges for the strong operator topology (to a projection). Ever since, intensive research has been undertaken to identify the mean ergodicity of individual (and classes) of operators both in Banach spaces and non-normable lcHs'; see [1], [15] for example, and the references therein. In Section 4 it is shown, for every sequence α with $\alpha_{n} \uparrow \infty$, that the Cesàro operator $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ is always power bounded, (uniformly) mean ergodic and $E_{\alpha}=\operatorname{Ker}(I-\mathrm{C}) \oplus \overline{(I-\mathrm{C})\left(E_{\alpha}\right)}$; see Proposition 4.1. Actually, even the sequence $\left\{\mathrm{C}^{m}\right\}_{m=1}^{\infty}$ of the iterates of C (not just its averages) turns out to be convergent, not only in $\mathcal{L}_{s}\left(E_{\alpha}\right)$ but also in $\mathcal{L}_{b}\left(E_{\alpha}\right)$; see Proposition 4.2. Furthermore, if E_{α} is nuclear, then the range $(I-\mathrm{C})^{m}\left(E_{\alpha}\right)$ of the operator $(I-C)^{m}$ is a closed subspace of E_{α} for each $m \in \mathbb{N}$ (cf. Proposition 4.3). For $m=1$ this is an analogue, for the operator $C \in \mathcal{L}\left(E_{\alpha}\right)$, of a result of M. Lin for arbitrary uniformly mean ergodic Banach space operators T which satisfy $\lim _{n \rightarrow \infty} \frac{\left\|T^{n}\right\|}{n}=0,[16]$.

2. The Spectrum of C in the nuclear case

Let $\alpha:=\left(\alpha_{n}\right)$ be a positive, strictly increasing sequence tending to infinity, briefly, $\alpha_{n} \uparrow \infty$. Let $\left(s_{k}\right) \subseteq(1, \infty)$ be another strictly increasing sequence satisfying $s_{k} \uparrow \infty$. For each $k \in \mathbb{N}$, define $v_{k}: \mathbb{N} \rightarrow(0, \infty)$ by $v_{k}(n):=s_{k}^{-\alpha_{n}}$ for $n \in \mathbb{N}$. Then $v_{k}(n) \geq v_{k}(n+1)$, for $n \in \mathbb{N}$, i.e., v_{k} is a decreasing sequence, and $v_{k} \geq v_{k+1}$ pointwise on \mathbb{N} for all $k \in \mathbb{N}$. Set $\mathcal{V}:=\left(v_{k}\right)$ and note that $v_{k} \in c_{0}$ for all $k \in \mathbb{N}$.

Define the co-echelon spaces $E_{\alpha}:=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$, that is, E_{α} is the (increasing) union of the weighted Banach spaces $c_{0}\left(v_{k}\right), k \in \mathbb{N}$, endowed with the finest lcHtopology such that each natural inclusion map $c_{0}\left(v_{k}\right) \hookrightarrow E_{\alpha}$ is continuous. Since $\lim _{n \rightarrow \infty} \frac{v_{k+1}(n)}{v_{k}(n)}=0$, for $k \in \mathbb{N}$, implies that $\ell_{\infty}\left(v_{k}\right) \subseteq c_{0}\left(v_{k+1}\right)$ continuously, for $k \in \mathbb{N}$, it follows that also $E_{\alpha}:=\operatorname{ind}_{k} \ell_{\infty}\left(v_{k}\right)$. Observing that the power series space $\Lambda_{\infty}^{1}(\alpha):=\operatorname{proj}_{k} \ell_{1}\left(v_{k}^{-1}\right)$ of infinite type is Fréchet-Schwartz (hence, distinguished), [17, p.357], it follows that $E_{\alpha}:=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)=\operatorname{ind}_{k} \ell_{\infty}\left(v_{k}\right)=$ $\left(\Lambda_{\infty}^{1}(\alpha)\right)^{\prime}$ is the strong dual of $\Lambda_{\infty}^{1}(\alpha),\left[17\right.$, Remark 25.13]. The condition $\frac{v_{k+1}}{v_{k}} \in c_{0}$ for $k \in \mathbb{N}$ implies that E_{α} is always a (DFS)-space, [17, p. 304], and in particular, a Montel space, [17, Remark 24.24]. Note that power series spaces in [17, Chapter 24] are defined using ℓ_{2}-norms. It follows from [17, Proposition 29.6] that $\Lambda_{\infty}^{1}(\alpha)$ is a nuclear Fréchet space (equivalently, E_{α} is a (DFN)-space) if and only if
$\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$. This criterion plays a relevant role throughout this section. As the space E_{α} does not change if $\left(s_{k}\right)$ is replaced by any other strictly increasing sequence in $(1, \infty)$ tending to infinity, we sometimes choose $s_{k}:=e^{k}, k \in \mathbb{N}$. For each $k \in \mathbb{N}$, define the norm

$$
q_{k}(x):=\sup _{n \in \mathbb{N}} v_{k}(n)\left|x_{n}\right|, \quad x=\left(x_{n}\right) \in \ell_{\infty}\left(v_{k}\right),
$$

whose restriction to $c_{0}\left(v_{k}\right)$ is the norm of $c_{0}\left(v_{k}\right)$. Observe, for each $k \in \mathbb{N}$, that $c_{0}\left(v_{k}\right) \subseteq c_{0}\left(v_{l}\right)$ for every $l \in \mathbb{N}$ with $l \geq k$, and

$$
\begin{equation*}
q_{l}(x) \leq q_{k}(x), \quad x \in c_{0}\left(v_{k}\right) \tag{2.1}
\end{equation*}
$$

As general references for co-echelon spaces we refer to [8], [9], [14], [17], for example.
Proposition 2.1. For each $\alpha_{n} \uparrow \infty$ the Cesàro operator satsifies $C \in \mathcal{L}\left(E_{\alpha}\right)$.
Proof. Since each sequence v_{k}, for $k \in \mathbb{N}$, is decreasing, Corollary 2.3(i) of [4] implies that the Cesàro operator at each step, namely $\mathrm{C}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{k}\right)$, for $k \in \mathbb{N}$, is continuous. The result then follows from the general theory of (LB)spaces as $E_{\alpha}=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$.
Lemma 2.2. Let $\alpha_{n} \uparrow \infty$. The following conditions are equivalent.
(i) $\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$.
(ii) For each $\gamma>0$ there exists $M(\gamma) \in \mathbb{N}$ such that $\sup _{n \in \mathbb{N}} n^{\gamma} e^{-M(\gamma) \alpha_{n}}<\infty$.
(iii) For some $\gamma>0$ and $M(\gamma) \in \mathbb{N}$ we have $\sup _{n \in \mathbb{N}} n^{\gamma} e^{-M(\gamma) \alpha_{n}}<\infty$.

Proof. (i) \Rightarrow (ii). Fix any $\gamma>0$. By assumption there exists $D>0$ such that $\log n \leq D \alpha_{n}$ for all $n \in \mathbb{N}$. Let $M(\gamma) \in \mathbb{N}$ satisfy $M(\gamma) \geq \gamma D$. Then $\gamma \log n \leq$ $\gamma D \alpha_{n} \leq M(\gamma) \alpha_{n}$ for all $n \in \mathbb{N}$ and hence, $n^{\gamma} \leq e^{M(\gamma) \alpha_{n}}$ for all $n \in \mathbb{N}$.
(ii) \Rightarrow (iii) is clear.
(iii) \Rightarrow (i). By assumption $\sup _{n \in \mathbb{N}} n^{\gamma} e^{-M(\gamma) \alpha_{n}}<\infty$. So, there exists $D>1$ such that $n^{\gamma} \leq D e^{M(\gamma) \alpha_{n}}$ for all $n \in \mathbb{N}$. It follows for each $n \in \mathbb{N}$ that $\frac{\log n}{\alpha_{n}} \leq \frac{\log D}{\gamma \alpha_{n}}+\frac{M}{\gamma}$. Since $\alpha_{n} \rightarrow \infty$, we can conclude that $\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$.

We now turn our attention to the spectrum of $C \in \mathcal{L}\left(E_{\alpha}\right)$, for which we introduce the notation $\Sigma:=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ and $\Sigma_{0}:=\{0\} \cup \Sigma$. The Cesàro matrix C, when acting in $\mathbb{C}^{\mathbb{N}}$, is similar to the diagonal matrix $\operatorname{diag}\left(\left(\frac{1}{n}\right)\right)$. Indeed, $\mathrm{C}=\Delta \operatorname{diag}\left(\left(\frac{1}{n}\right)\right) \Delta$ with $\Delta=\Delta^{-1}=\left(\Delta_{n k}\right)_{n, k \in \mathbb{N}} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ the lower triangular matrix where, for each $n \in \mathbb{N}, \Delta_{n k}=(-1)^{k-1}\binom{n-1}{k-1}$, for $1 \leq k<n$ and $\Delta_{n k}=0$ if $k>n$, [13, pp. 247-249]. Thus $\sigma_{p t}\left(\mathbb{C} ; \mathbb{C}^{\mathbb{N}}\right)=\Sigma$ and each eigenvalue $\frac{1}{n}$ has multiplicity 1 with eigenvector Δe_{n}, where $e_{n}:=\left(\delta_{n k}\right)_{k \in \mathbb{N}}$, for $n \in \mathbb{N}$, are the canonical basis vectors in $\mathbb{C}^{\mathbb{N}}$. Moreover, $\lambda I-\mathrm{C}$ is invertible for each $\lambda \in \mathbb{C} \backslash \Sigma$. If X is a lcHs continuously contained in $\mathbb{C}^{\mathbb{N}}$ and $\mathrm{C}(X) \subseteq X$, then

$$
\begin{equation*}
\sigma_{p t}(\mathrm{C} ; X)=\left\{\frac{1}{n}: n \in \mathbb{N}, \Delta e_{n} \in X\right\} \subseteq \Sigma \tag{2.2}
\end{equation*}
$$

In case the space φ (of all finitely supported vectors in $\mathbb{C}^{\mathbb{N}}$) is densely contained in X, then $\varphi \subseteq X^{\prime}$ and $\Sigma \subseteq \sigma_{p t}\left(\mathrm{C}^{\prime} ; X^{\prime}\right) \subseteq \sigma(\mathrm{C} ; X)$, where C^{\prime} is the dual operator of C. Observe that always $\Delta e_{1}=\mathbf{1}:=(1)_{n \in \mathbb{N}} \in c_{0}\left(v_{1}\right) \subseteq E_{\alpha}$ whenever $\alpha_{n} \uparrow \infty$. Since φ is dense in E_{α} for every α with $\alpha_{n} \uparrow \infty$, we conclude that always

$$
\begin{equation*}
1 \in \sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \Sigma \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right) \tag{2.3}
\end{equation*}
$$

We point out that C does not act in the vector space $\varphi:=\operatorname{ind}_{k} \mathbb{C}^{k} \subseteq \mathbb{C}^{\mathbb{N}}$ because $e_{1} \in \varphi$ but $C e_{1}=\left(\frac{1}{n}\right) \notin \varphi$.
Proposition 2.3. For α with $\alpha_{n} \uparrow \infty$ the following assertions are equivalent.
(i) E_{α} is nuclear.
(ii) $\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$.
(iii) $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)=\Sigma$.
(iv) $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right) \backslash\{1\} \neq \emptyset$.

Proof. (i) \Leftrightarrow (ii). See the introduction to this section.
(ii) \Rightarrow (iii). Observe that Δe_{m}, for fixed $m \in \mathbb{N}$, behaves asymptotically like $\left(n^{m-1}\right)_{n \in \mathbb{N}}$, i.e., $\left|\left(\Delta e_{m}\right)\right| \simeq n^{m-1}$ for $n \rightarrow \infty$. By Lemma 2.2 each $\Delta e_{m} \in E_{\alpha}$ for $m \in \mathbb{N}$. Hence, (2.2) yields that $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)=\Sigma$.
(iii) \Rightarrow (iv). Obvious.
(iv) \Rightarrow (ii). For this proof select $v_{k}(n):=e^{-k \alpha_{n}}, n \in \mathbb{N}$, for each $k \in \mathbb{N}$. By (2.3) and the assumption (iv) there exists $m \in \mathbb{N}$ with $m>1$ such that $\frac{1}{m} \in \sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)$, i.e., $\Delta e_{m} \in E_{\alpha}$. As seen in the proof of (ii) \Rightarrow (iii) we then have $\left(n^{m-1}\right)_{n \in \mathbb{N}} \in E_{\alpha}$. Hence, for some $k \in \mathbb{N},\left(n^{m-1}\right)_{n \in \mathbb{N}} \in c_{0}\left(v_{k}\right)$ and so there exists $M>1$ such that $n^{m-1} v_{k}(n)=n^{m-1} e^{-k \alpha_{n}} \leq M$ for all $n \in \mathbb{N}$. It follows from Lemma 2.2 that (ii) holds.

Proposition 2.4. Let $\alpha_{n} \uparrow \infty$. The following conditions are equivalent.
(i) $\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$, i.e., E_{α} is nuclear.
(ii) $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ is invertible, i.e., $0 \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$.

Proof. Note that $C: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ is bijective with inverse $C^{-1}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ given by

$$
\begin{equation*}
\mathbb{C}^{-1} y=\left(n y_{n}-(n-1) y_{n-1}\right), \quad y=\left(y_{n}\right) \in \mathbb{C}^{\mathbb{N}} \tag{2.4}
\end{equation*}
$$

with $y_{0}:=0$. Accordingly, $0 \notin \sigma\left(\mathrm{C} ; E_{\alpha}\right)$ if and only if $\mathrm{C}^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous if and only if for each $k \in \mathbb{N}$ there exists $l \geq k$ such that $\mathrm{C}^{-1}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous.

For the rest of the proof we select $v_{k}(n):=e^{-k \alpha_{n}}$ for $k, n \in \mathbb{N}$, i.e., $s_{k}:=e^{k}$.
$(\mathrm{i}) \Rightarrow(\mathrm{ii})$. By Lemma 2.2 there exists $m \in \mathbb{N}$ with $D:=\sup _{n \in \mathbb{N}} n e^{-m \alpha_{n}}<\infty$.
Fix $k \in \mathbb{N}$ and set $l:=m+k$. Let $y=\left(y_{n}\right) \in c_{0}\left(v_{k}\right)$. For each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
v_{l}(n)\left(\mathrm{C}^{-1} y\right)= & e^{-l \alpha_{n}}\left|n y_{n}-(n-1) y_{n-1}\right| \leq e^{-l \alpha_{n}} n\left|y_{n}\right|+e^{-l \alpha_{n-1}}(n-1)\left|y_{n-1}\right| \\
& \leq D\left(e^{-k \alpha_{n}}\left|y_{n}\right|+e^{-k \alpha_{n-1}}\left|y_{n-1}\right|\right) \leq 2 D q_{k}(y) .
\end{aligned}
$$

Forming the supremum relative to $n \in \mathbb{N}$ yields $q_{l}\left(\mathrm{C}^{-1} y\right) \leq 2 D q_{k}(y)$ for all $y \in c_{0}\left(v_{k}\right)$. Accordingly, $\mathrm{C}^{-1}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. Since $k \in \mathbb{N}$ is arbitrary, it follows that $\mathrm{C}^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous and so $0 \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$.
(ii) \Rightarrow (i). By assumption $\mathrm{C}^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous. So, there exists $l \in \mathbb{N}$ such that $\mathrm{C}^{-1}: c_{0}\left(v_{1}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous, that is, there exists $D>1$ such that $q_{l}\left(\mathrm{C}^{-1} y\right) \leq D q_{1}(y)$ for all $y \in c_{0}\left(v_{1}\right)$. Since $\mathrm{C}^{-1} e_{n}=n e_{n}-n e_{n+1}$ and $q_{l}\left(\mathrm{C}^{-1} e_{n}\right)=$ $\max \left\{n v_{l}(n), n v_{l}(n+1)\right\}=n v_{l}(n)=n e^{-l \alpha_{n}}$, with $q_{1}\left(e_{n}\right)=v_{1}(n)=e^{-\alpha_{n}}$, for all $n \in \mathbb{N}$, it follows that $n e^{-l \alpha_{n}} \leq D e^{-\alpha_{n}}$, for $n \in \mathbb{N}$. Hence, $n e^{(1-l) \alpha_{n}} \leq D$, for $n \in \mathbb{N}$, which implies that $\sup _{n \in \mathbb{N}} \frac{\log n}{\alpha_{n}}<\infty$.

The operator of differentiation D acts on $\mathbb{C}^{\mathbb{N}}$ via

$$
D\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(x_{2}, 2 x_{3}, 3 x_{4}, \ldots\right), \quad x=\left(x_{n}\right) \in \mathbb{C}^{\mathbb{N}}
$$

Clearly $D \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$. According to (2.4) and a routine calculation the inverse operator $\mathrm{C}^{-1} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ is given by

$$
\begin{equation*}
\mathrm{C}^{-1}=\left(I-S_{r}\right) D S_{r}, \tag{2.5}
\end{equation*}
$$

where $S_{r} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ is the right-shift operator, i.e., $S_{r} x:=\left(0, x_{1}, x_{2}, \ldots\right)$ for $x \in$ $\mathbb{C}^{\mathbb{N}}$. Fix $k \in \mathbb{N}$. Since v_{k} is decreasing on \mathbb{N}, it follows that

$$
q_{k}\left(S_{r} x\right):=\sup _{n \in \mathbb{N}} v_{k}(n+1)\left|x_{n}\right| \leq \sup _{n \in \mathbb{N}} v_{k}(n)\left|x_{n}\right|=q_{k}(x), \quad x \in c_{0}\left(v_{k}\right)
$$

Hence, $S_{r}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{k}\right)$ is continuous for each $k \in \mathbb{N}$ which implies (for every $\left.\alpha_{n} \uparrow \infty\right)$ that $S_{r} \in \mathcal{L}\left(E_{\alpha}\right)$. Moreover, Proposition 2.4 shows that $\mathcal{C}^{-1} \in \mathcal{L}\left(E_{\alpha}\right)$ if and only if E_{α} is nuclear. The identity (2.5) suggests there should be a connection between the nuclearity of E_{α} and the continuity of D on E_{α}. The following result addresses this point. Recall that E_{α} is shift stable if $\limsup _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}<\infty$, [23].
Proposition 2.5. For α with $\alpha_{n} \uparrow \infty$ the following assertions are equivalent.
(i) $D\left(E_{\alpha}\right) \subseteq E_{\alpha}$, i.e., D acts in E_{α}.
(ii) The differentiation operator $D \in \mathcal{L}\left(E_{\alpha}\right)$.
(iii) For every $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that $D: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous.
(iv) For every $k \in \mathbb{N}$ there exist $l \in \mathbb{N}$ with $l>k$ and $M>0$ such that

$$
n v_{l}(n) \leq M v_{k}(n+1), \quad n \in \mathbb{N}
$$

(v) The space E_{α} is both nuclear and shift stable.

Proof. (i) \Leftrightarrow (ii) is immediate from the closed graph theorem for (LB)-spaces, $[17$, Theorem 24.31 and Remark 24.36].
$($ ii $) \Leftrightarrow($ iii $)$ is a general fact about continuous linear operators between (LB)spaces.
(iii) \Rightarrow (iv). Fix $k \in \mathbb{N}$. By (iii) there exists $l \in \mathbb{N}$ with $l>k$ such that $D: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. Hence, there is $M>0$ satisfying

$$
q_{l}(D x)=\sup _{n \in \mathbb{N}} v_{l}(n)|(D x)| \leq M q_{k}(x)=M \sup _{n \in \mathbb{N}} v_{k}(n)\left|x_{n}\right|, \quad x \in c_{0}\left(v_{k}\right)
$$

For each $j \in \mathbb{N}$ with $j \geq 2$ substitute $x:=e_{j}$ in the previous inequality (noting that $\left.D x=D e_{j}=(j-1) e_{j-1}\right)$ yields $(j-1) v_{l}(j-1) \leq M v_{k}(j)$. Since $j \geq 2$ is arbitrary, this is precisely (iv).
(iv) \Rightarrow (iii). Given any $k \in \mathbb{N}$ select $l>k$ and $M>0$ which satisfy (iv). Fix $x \in c_{0}\left(v_{k}\right)$. Then, for each $n \in \mathbb{N}$, we have via (iv) that

$$
v_{l}(n)|(D x)|=n v_{l}(n)\left|x_{n+1}\right| \leq M v_{k}(n+1)
$$

Forming the supremum relative to $n \in \mathbb{N}$ of both sides of this inequality yields

$$
q_{l}(D x) \leq M q_{k}(x), \quad x \in c_{0}\left(v_{k}\right)
$$

which is precisely (iii).
$(\mathrm{iv}) \Rightarrow(\mathrm{v})$. For $k=1$, condition (iv) ensures the existence of $l>1$ and $M>1$ such that

$$
\begin{equation*}
n v_{l}(n) \leq M v_{1}(n+1) \leq M v_{1}(n), \quad n \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

For the remainder of the proof of this proposition, choose $s_{k}:=e^{k}$ for $k \in \mathbb{N}$. It follows from (2.6) that $n e^{-l \alpha_{n}} \leq M e^{-\alpha_{n}}$ for all $n \in \mathbb{N}$. By Lemma 2.2 one can conclude that E_{α} is nuclear.

To prove that E_{α} is shift stable observe that the left-inequality in (2.6) is $n e^{-l \alpha_{n}} \leq M e^{-\alpha_{n+1}}$ for $n \in \mathbb{N}$. Taking logarithms and rearranging yields

$$
\frac{\alpha_{n+1}}{\alpha_{n}} \leq l+\frac{\log (M)}{\alpha_{n}}-\frac{\log (n)}{\alpha_{n}}, \quad n \in \mathbb{N}
$$

Since $\sup _{n \in \mathbb{N}} \frac{\log (n)}{\alpha_{n}}<\infty$ (as E_{α} is nuclear) and $\sup _{n \in \mathbb{N}} \frac{\log (M)}{\alpha_{n}}<\infty$ it follows that $\sup _{n \in \mathbb{N}} \frac{\alpha_{n+1}}{\alpha_{n}}<\infty$, i.e., E_{α} is shift-stable.
$(\mathrm{v}) \Rightarrow(\mathrm{iv})$. Fix $k \in \mathbb{N}$. Since E_{α} is shift stable, there exists $h \in \mathbb{N}$ such that $\alpha_{n+1} \leq h \alpha_{n}$ for $n \in \mathbb{N}$. Because of the nuclearity of E_{α}, Lemma 2.2 implies the existence of $M \in \mathbb{N}$ which satisfies $L:=\sup _{n \in \mathbb{N}} n e^{-M \alpha_{n}}<\infty$. Set $l:=M+h k$. Then $l \in \mathbb{N}$ and, for each $n \in \mathbb{N}$, it follows that

$$
n v_{l}(n)=n e^{-l \alpha_{n}}=n e^{-M \alpha_{n}} e^{-h k \alpha_{n}} \leq L e^{-k\left(h \alpha_{n}\right)} \leq L e^{-k \alpha_{n+1}}=L v_{k}(n+1)
$$

This is precisely condition (iv).
Remark 2.6. (i) There exist nuclear spaces E_{α} for which D is not continuous on E_{α}. Let $\alpha_{n}:=n^{n}$ for $n \in \mathbb{N}$. Then E_{α} is nuclear but, not shift stable. Proposition 2.5 implies that $D \notin \mathcal{L}\left(E_{\alpha}\right)$. On the other hand, for $\alpha_{n}:=\log (\log (n))$ for $n \geq 3$, the space E_{α} is shift stable but, not nuclear; again $D \notin \mathcal{L}\left(E_{\alpha}\right)$.
(ii) Because $v_{1} \downarrow 0$, it is clear that $\ell_{\infty} \subseteq \ell_{\infty}\left(v_{1}\right) \subseteq E_{\alpha}:=\operatorname{ind}_{k} \ell_{\infty}\left(v_{k}\right)$ for every α with $\alpha_{n} \uparrow \infty$. Accordingly, if $x_{\lambda}:=\left(\frac{\lambda^{n-1}}{(n-1)!}\right)_{n \in \mathbb{N}}$ for $\lambda \in \mathbb{C}$, then clearly $\left\{x_{\lambda}: \lambda \in \mathbb{C}\right\} \subseteq \ell_{\infty}$ and so $\left\{x_{\lambda}: \lambda \in \mathbb{C}\right\} \subseteq E_{\alpha}$. Since $D x_{\lambda}=\lambda x_{\lambda}$ for each $\lambda \in \mathbb{C}$, we have established (via Proposition 2.5) the following fact.

Let α with $\alpha_{n} \uparrow \infty$ be a sequence such that E_{α} is both nuclear and shift stable. Then $D \in \mathcal{L}\left(E_{\alpha}\right)$ and

$$
\sigma_{p t}\left(D ; E_{\alpha}\right)=\sigma\left(D ; E_{\alpha}\right)=\sigma^{*}\left(D ; E_{\alpha}\right)=\mathbb{C} .
$$

In order to determine $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$ we require some further preliminaries. Define the continuous function $a: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ by $a(z):=\operatorname{Re}\left(\frac{1}{z}\right)$ for $z \in \mathbb{C} \backslash\{0\}$. The following result is a refinement of [19, Lemma 7].

Lemma 2.7. Let $\lambda \in \mathbb{C} \backslash \Sigma_{0}$. Then there exists $\delta=\delta_{\lambda}>0$ and positive constants d_{δ}, D_{δ} such that $\overline{B(\lambda, \delta)} \cap \Sigma_{0}=\emptyset$ and

$$
\begin{equation*}
\frac{d_{\delta}}{N^{a(\mu)}} \leq \prod_{n=1}^{N}\left|1-\frac{1}{n \mu}\right| \leq \frac{D_{\delta}}{N^{a(\mu)}}, \quad \forall N \in \mathbb{N}, \mu \in B(\lambda, \delta) \tag{2.7}
\end{equation*}
$$

Proof. Fix $\lambda \in \mathbb{C} \backslash \Sigma_{0}$ and write $\frac{1}{\lambda}=\alpha+i \beta$ with $\alpha, \beta \in \mathbb{R}$, i.e., $\alpha=a(\lambda)$. Observe that

$$
1-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}=\left(1-\frac{\alpha}{n}\right)^{2}+\frac{\beta^{2}}{n^{2}}>0, \quad n \in \mathbb{N}
$$

Using the inequality $(1+x) \leq e^{x}$ for $x \in \mathbb{R}$ we conclude that $(1+x)^{1 / 2} \leq e^{x / 2}$ for all $x \geq-1$. In particular, for $x:=-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}$ it follows that

$$
\left(1-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}\right)^{1 / 2} \leq \exp \left(-\frac{\alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{2 n^{2}}\right), \quad n \in \mathbb{N}
$$

Fix $N \in \mathbb{N}$. Since $\sum_{n=1}^{N} \frac{1}{n^{2}}<2$, we conclude that

$$
\begin{aligned}
& \prod_{n=1}^{N}\left|1-\frac{1}{n \lambda}\right|=\prod_{n=1}^{N}\left(1-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}\right)^{1 / 2} \\
& \leq \exp \left(\sum_{n=1}^{N}-\frac{\alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{2 n^{2}}\right) \leq \exp \left(\alpha^{2}+\beta^{2}\right) \exp \left(-\alpha \sum_{n=1}^{N} \frac{1}{n}\right) \\
& =\exp \left(\frac{1}{|\lambda|^{2}}\right) \exp \left(-\alpha \sum_{n=1}^{N} \frac{1}{n}\right)
\end{aligned}
$$

By considering separately the cases when $\alpha \leq 0$ and $\alpha>0$ and employing the inequalities

$$
\begin{equation*}
\log (k+1) \leq \sum_{n=1}^{k} \frac{1}{n} \leq 1+\log (k), \quad k \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

it turns out that

$$
\exp \left(-\alpha \sum_{n=1}^{N} \frac{1}{n}\right) \leq \frac{e^{|a(\lambda)|}}{N^{a(\lambda)}} \leq \frac{e^{1 /|\lambda|}}{N^{a(\lambda)}}
$$

Accordingly, we have that

$$
\begin{equation*}
\prod_{n=1}^{N}\left|1-\frac{1}{n \lambda}\right| \leq \frac{\exp \left(\frac{1}{|\lambda|}+\frac{1}{|\lambda|^{2}}\right)}{N^{a(\lambda)}}, \quad N \in \mathbb{N} \tag{2.9}
\end{equation*}
$$

From above, for each $n \in \mathbb{N}$, we have $\left|1-\frac{1}{n \lambda}\right|^{-1}=\left(1+x_{n}\right)^{-1 / 2}$, where $x_{n}:=$ $-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}$ satisfies $x_{n}>-1$. Applying Taylor's formula to the function $f(x)=(1+x)^{-1 / 2}$ for $x>-1$ yields, for each $n \in \mathbb{N}$, that

$$
\begin{aligned}
\left(1+x_{n}\right)^{-1 / 2} & =f(0)+f^{\prime}(0) x_{n}+\frac{f^{\prime \prime}\left(\theta_{n} x_{n}\right)}{2!} x_{n}^{2} \\
& =1-\frac{1}{2} x_{n}+\frac{3}{4}\left(1+\theta_{n} x_{n}\right)^{-5 / 2} x_{n}^{2}
\end{aligned}
$$

for some $\theta_{n} \in(0,1)$. Substituting for x_{n} its definition and rearranging we get
$\left(1+x_{n}\right)^{-1 / 2}=1+\frac{\alpha}{n}-\frac{\left(\alpha^{2}+\beta^{2}\right)}{2 n^{2}}+\frac{3}{4}\left(1-\theta_{n}+\theta_{n}\left|1-\frac{1}{\lambda n}\right|\right)^{-5 / 2}\left(-\frac{2 \alpha}{n}+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n^{2}}\right)^{2}$,
for each $n \in \mathbb{N}$. Defining $d(\lambda):=\operatorname{dist}\left(\lambda, \Sigma_{0}\right) \leq|\lambda|$ we have

$$
\left|1-\frac{1}{\lambda n}\right|=\frac{1}{|\lambda|} \cdot\left|\lambda-\frac{1}{n}\right| \geq \frac{d(\lambda)}{|\lambda|}, \quad n \in \mathbb{N}
$$

Hence, for each $n \in \mathbb{N}$, it follows that

$$
1-\theta_{n}+\theta_{n}\left|1-\frac{1}{\lambda n}\right| \geq 1-\theta_{n}+\theta_{n} \frac{d(\lambda)}{|\lambda|} \geq \min \left\{1, \frac{d(\lambda)}{|\lambda|}\right\}=\frac{d(\lambda)}{|\lambda|}
$$

where we have used the inequality

$$
1-x+\gamma x \geq \min \{1, \gamma\}, \quad \forall \gamma \in \mathbb{R}, x \in[0,1]
$$

Accordingly, $\left(1-\theta_{n}+\theta_{n}\left|1-\frac{1}{\lambda n}\right|\right)^{-5 / 2} \leq\left(\frac{|\lambda|}{d(\lambda)}\right)^{5 / 2}$, for $n \in \mathbb{N}$, which implies (see above), for each $n \in \mathbb{N}$, that

$$
\begin{aligned}
\left|1-\frac{1}{n \lambda}\right|^{-1} & \leq 1+\frac{\alpha}{n}+\frac{1}{n^{2}}\left(-\frac{\left(\alpha^{2}+\beta^{2}\right)}{2}+\frac{3}{4}\left(\frac{|\lambda|}{d(\lambda)}\right)^{5 / 2}\left(-2 \alpha+\frac{\left(\alpha^{2}+\beta^{2}\right)}{n}\right)^{2}\right) \\
& \leq 1+\frac{\alpha}{n}+\frac{3}{4 n^{2}}\left(\frac{|\lambda|}{d(\lambda)}\right)^{5 / 2}\left(2|\alpha|+\alpha^{2}+\beta^{2}\right)^{2}
\end{aligned}
$$

But, $\left(2|\alpha|+\alpha^{2}+\beta^{2}\right)^{2} \leq\left(\frac{2}{|\lambda|}+\frac{1}{|\lambda|^{2}}\right)^{2} \leq 4\left(\frac{1}{|\lambda|}+\frac{1}{|\lambda|^{2}}\right)^{2}$ and so

$$
\left|1-\frac{1}{n \lambda}\right|^{-1} \leq 1+\frac{\alpha}{n}+\frac{D(\lambda)}{n^{2}}, \quad n \in \mathbb{N}
$$

with $D(\lambda):=\frac{3(1+|\lambda|)^{2}}{|\lambda|^{3 / 2}(d(\lambda))^{5 / 2}}$. Accordingly, for fixed $N \in \mathbb{N}$, we have

$$
\begin{aligned}
\prod_{n=1}^{N}\left|1-\frac{1}{\lambda n}\right|^{-1} & \leq \prod_{n=1}^{N}\left(1+\frac{\alpha}{n}+\frac{D(\lambda)}{n^{2}}\right) \leq \exp \left(\alpha \sum_{n=1}^{N} \frac{1}{n}\right) \exp \left(D(\lambda) \sum_{n=1}^{N} \frac{1}{n^{2}}\right) \\
& \leq e^{2 D(\lambda)} \exp \left(\alpha \sum_{n=1}^{N} \frac{1}{n}\right)
\end{aligned}
$$

By considering separately the cases when $\alpha<0$ and $\alpha \geq 0$ and applying (2.8) yields

$$
\exp \left(\alpha \sum_{n=1}^{N} \frac{1}{n}\right) \leq e^{|\alpha|} N^{\alpha} \leq e^{\frac{1}{|\lambda|}} N^{a(\lambda)}
$$

Accordingly, $\prod_{n=1}^{N}\left|1-\frac{1}{\lambda n}\right|^{-1} \leq N^{a(\lambda)} \exp \left(2 D(\lambda)+\frac{1}{|\lambda|}\right)$ and hence,

$$
\begin{equation*}
\frac{\exp \left(-\frac{1}{|\lambda|}-2 D(\lambda)\right)}{N^{a(\lambda)}} \leq \prod_{n=1}^{N}\left|1-\frac{1}{n \lambda}\right|, \quad N \in \mathbb{N} \tag{2.10}
\end{equation*}
$$

It follows from (2.9) and (2.10), for any given $\lambda \in \mathbb{C} \backslash \Sigma_{0}$, that

$$
\begin{equation*}
\frac{u(\lambda)}{N^{a(\lambda)}} \leq \prod_{n=1}^{N}\left|1-\frac{1}{\lambda n}\right| \leq \frac{v(\lambda)}{N^{a(\lambda)}}, \quad N \in \mathbb{N} \tag{2.11}
\end{equation*}
$$

where $v(\lambda):=\exp \left(\frac{1}{|\lambda|}+\frac{1}{|\lambda|^{2}}\right)$ and $u(\lambda):=\exp \left(-\frac{1}{|\lambda|}-\frac{6\left(1+|\lambda|^{2}\right)}{|\lambda|^{3 / 2}(d(\lambda))^{5 / 2}}\right)$.
Fix now a point $\lambda \in \mathbb{C} \backslash \Sigma_{0}$ and choose any $\delta>0$ satisfying $\overline{B(\lambda, \delta)} \cap \Sigma_{0}=\emptyset$. According to (2.11) we have

$$
\begin{equation*}
\frac{u(\mu)}{N^{a(\mu)}} \leq \prod_{n=1}^{N}\left|1-\frac{1}{n \mu}\right| \leq \frac{v(\mu)}{N^{a(\mu)}}, \quad \forall N \in \mathbb{N}, \mu \in \overline{B(\lambda, \delta)} \tag{2.12}
\end{equation*}
$$

By the continuity (and form) of the functions u and v on $\mathbb{C} \backslash \Sigma_{0}$ and the compactness of the set $\overline{B(\lambda, \delta)} \subseteq\left(\mathbb{C} \backslash \Sigma_{0}\right)$ it follows that $D_{\delta}:=\sup \{v(\mu): \mu \in \overline{B(\lambda, \delta)}\}<$ ∞ and $d_{\delta}:=\inf \{u(\mu): \mu \in \overline{B(\lambda, \delta)}\}>0$. It is then clear that (2.4) follows from (2.12).

Lemma 2.8. Let $w=\left(w_{n}\right)$ be any strictly positive, decreasing sequence. Then

$$
\begin{equation*}
\sigma\left(\mathrm{C} ; c_{0}(w)\right) \subseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\} \tag{2.13}
\end{equation*}
$$

Moreover, for each $\lambda \in \mathbb{C}$ satisfying $\left|\lambda-\frac{1}{2}\right|>\frac{1}{2}$ there exist constants $\delta_{\lambda}>0$ and $M_{\lambda}>0$ such that

$$
\left\|(\mu I-\mathrm{C})^{-1}\right\|_{o p} \leq \frac{M_{\lambda}}{1-a(\mu)}, \quad \mu \in B\left(\lambda, \delta_{\lambda}\right)
$$

where $\|\cdot\|_{\text {op }}$ denotes the operator norm in $\mathcal{L}\left(c_{0}(w)\right)$.
Proof. According to [4, Corollary 2.3(i)] the Cesàro operator C : $c_{0}(w) \rightarrow c_{0}(w)$ is continuous. Then Corollary 3.6 of [4] implies that (2.13) is satisfied.

Set $A:=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}$ and fix $\lambda \in \mathbb{C} \backslash A$. Define $\delta_{\lambda}:=\frac{1}{2} \operatorname{dist}(\lambda, A)>0$ and $C_{\lambda}:=\overline{B(\lambda, \delta)}$, in which case (2.13) implies that $\operatorname{dist}\left(C_{\lambda}, \sigma\left(\mathrm{C} ; c_{0}(w)\right)\right) \geq$ $\operatorname{dist}\left(C_{\lambda}, A\right)=\delta_{\lambda}$. According to Lemma 6.11 of [10, p. 590] there is a constant $K>0$ such that (setting $\varepsilon:=\delta_{\lambda}$ in that lemma)

$$
\begin{equation*}
\left\|(\mu I-C)^{-1}\right\|_{o p}<\frac{K}{\delta_{\lambda}}, \quad \mu \in C_{\lambda} \tag{2.14}
\end{equation*}
$$

Now, each $\mu \in B\left(\lambda, \delta_{\lambda}\right)$ satisfies $a(\mu)<1,[4$, Remark 3.5], and so

$$
\begin{equation*}
\frac{K}{\delta_{\lambda}}=\frac{K \delta_{\lambda}^{-1}(1-a(\mu))}{1-a(\mu)} \leq \frac{K \delta_{\lambda}^{-1}\left(1+\frac{1}{|\mu|}\right)}{1-a(\mu)} \leq \frac{M_{\lambda}}{1-a(\mu)} \tag{2.15}
\end{equation*}
$$

where $M_{\lambda}:=\sup \left\{\frac{K}{\delta_{\lambda}}\left(1+\frac{1}{|z|}\right): z \in C_{\lambda}\right\}<\infty$ as the set $C_{\lambda} \subseteq(\mathbb{C} \backslash\{0\})$ is compact and the function $z \mapsto \frac{K}{\delta_{\lambda}}\left(1+\frac{1}{|z|}\right)$ is continuous on $\mathbb{C} \backslash\{0\}$. The desired inequality follows from (2.14) and (2.15).

Recall that a Hausdorff inductive limit $E=\operatorname{ind}_{k} E_{k}$ of Banach spaces is called regular if every $B \in \mathcal{B}(E)$ is contained and bounded in some step E_{k}. In particular, for every α with $\alpha_{n} \uparrow \infty$ the space $E_{\alpha}=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$ is regular, [17, Proposition 25.19].

Proposition 2.9. Let α satisfy $\alpha_{n} \uparrow \infty$ with E_{α} nuclear. Then
(i) $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)=\Sigma$, and
(ii) $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\sigma\left(\mathrm{C} ; E_{\alpha}\right) \cup\{0\}=\Sigma_{0}$.

Proof. By Proposition 2.3 we have $\Sigma=\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right)$ and hence,

$$
\Sigma_{0}=\bar{\Sigma} \subseteq \overline{\sigma\left(\mathrm{C} ; E_{\alpha}\right)} \subseteq \sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)
$$

Moreover, Proposition 2.4 yields $0 \notin \sigma\left(\mathrm{C} ; E_{\alpha}\right)$. So, it remains to show that $\left(\mathbb{C} \backslash \Sigma_{0}\right) \subseteq \rho^{*}\left(\mathrm{C} ; E_{\alpha}\right)$. To this end, we need to show, for each $\lambda \in \mathbb{C} \backslash \Sigma_{0}$, that there exists $\delta>0$ with the property that $(\mathrm{C}-\mu I)^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous for each $\mu \in B(\lambda, \delta)$ and the set $\left\{(\mathrm{C}-\mu I)^{-1}: \mu \in B(\lambda, \delta)\right\}$ is equicontinuous in $\mathcal{L}\left(E_{\alpha}\right)$. We recall that $(\mathbb{C}-\mu I)^{-1}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ exists in $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ for each $\mu \in \mathbb{C} \backslash \Sigma$.

For this proof we select the weights $v_{k}(n)=e^{-k \alpha_{n}}, n \in \mathbb{N}$, for each $k \in \mathbb{N}$. Fix $\lambda \in \mathbb{C} \backslash \Sigma_{0}$. First, choose $\delta_{1}>0$ such that $\overline{B\left(\lambda, \delta_{1}\right)} \cap \Sigma_{0}=\emptyset$. Later $\delta>0$ will be selected in such a way that $0<\delta<\delta_{1}$.

According to Lemma 5.4 in the Appendix it suffices to find a $\delta>0$ satisfying the following condition: for each $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l \geq k$ and $D_{k}>0$ such that

$$
\begin{equation*}
q_{l}\left((\mathrm{C}-\mu I)^{-1} x\right) \leq D_{k} q_{k}(x), \quad \forall \mu \in B(\lambda, \delta), x \in c_{0}\left(v_{k}\right) \tag{2.16}
\end{equation*}
$$

Case (i). Suppose that $\left|\lambda-\frac{1}{2}\right|>\frac{1}{2}$ (equivalently, $a(\lambda)<1$, [4, Remark 3.5]). To establish the condition (2.16) we proceed as follows. Fix $k \in \mathbb{N}$. Since $a(\lambda)<1$, we can select $\varepsilon>0$ such that $a(\lambda)<1-\varepsilon$. By continuity of the function $a: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ there exists $\delta_{2} \in\left(0, \delta_{1}\right)$ such that $a(\mu)<1-\varepsilon$ for all $\mu \in \overline{B\left(\lambda, \delta_{2}\right)}$. Applying Lemma 2.8 (with v_{k} in place of w), it follows that there exist $\delta \in\left(0, \delta_{2}\right)$ and $M_{k, \lambda}>0$ satisfying

$$
q_{k}\left((\mathrm{C}-\mu I)^{-1} x\right) \leq \frac{M_{k, \lambda}}{1-a(\mu)} q_{k}(x) \leq \frac{M_{k, \lambda}}{\varepsilon} q_{k}(x)
$$

for all $\mu \in \overline{B(\lambda, \delta)}$ and $x \in c_{0}\left(v_{k}\right)$. So, inequality (2.16) is then satisfied with $l:=k$ and $D_{k}:=\frac{M_{k, \lambda}}{\varepsilon}$. Since $k \in \mathbb{N}$ is arbitrary, condition (2.16) holds.

Case (ii). Suppose now that $\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}$ (equivalently, $a(\lambda) \geq 1$, [4, Remark 3.5]). We recall the formula for the inverse operator $(\mathbb{C}-\mu I)^{-1}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ whenever $\mu \notin \Sigma_{0},\left[19\right.$, p. 266]. For $n \in \mathbb{N}$ the n-th row of the matrix for $(\mathrm{C}-\mu I)^{-1}$ has the entries

$$
\begin{gathered}
\frac{-1}{n \mu^{2} \prod_{k=m}^{n}\left(1-\frac{1}{\mu k}\right)}, \quad 1 \leq m<n \\
\frac{n}{1-n \mu}=\frac{1}{\frac{1}{n}-\mu}, \quad m=n
\end{gathered}
$$

and all the other entries in row n are equal to 0 . So, we can write

$$
\begin{equation*}
(\mathrm{C}-\mu I)^{-1}=D_{\mu}-\frac{1}{\mu^{2}} E_{\mu}, \quad \mu \in \mathbb{C} \backslash \Sigma_{0} \tag{2.17}
\end{equation*}
$$

where the diagonal operator $D_{\mu}=\left(d_{n m}(\mu)\right)_{n, m \in \mathbb{N}}$ is given by $d_{n n}(\mu):=\frac{1}{\frac{1}{n}-\mu}$ and $d_{n m}(\mu):=0$ if $n \neq m$. The operator $E_{\mu}=\left(e_{n m}(\mu)\right)_{n, m \in \mathbb{N}}$ is then the lower triangular matrix with $e_{1 m}(\mu)=0$ for all $m \in \mathbb{N}$, and for every $n \geq 2$ with $e_{n m}(\mu):=\frac{1}{n \prod_{k=m}^{n}\left(1-\frac{1}{\mu k}\right)}$ if $1 \leq m<n$ and $e_{n m}(\mu):=0$ if $m \geq n$.

Since $d_{0}(\lambda):=\operatorname{dist}\left(\overline{B\left(\lambda, \delta_{1}\right)}, \Sigma_{0}\right)>0$, we have $\left|d_{n n}(\mu)\right| \leq \frac{1}{d_{0}(\lambda)}$ for all $\mu \in$ $\overline{B\left(\lambda, \delta_{1}\right)}$ and $n \in \mathbb{N}$. Fix $k \in \mathbb{N}$. Then, for every $x \in c_{0}\left(v_{k}\right)$ and $\mu \in \overline{B\left(\lambda, \delta_{1}\right)}$, we have

$$
q_{k}\left(D_{\mu}(x)\right)=\sup _{n \in \mathbb{N}}\left|d_{n n}(\mu) x_{n}\right| v_{k}(n) \leq \frac{1}{d_{0}(\lambda)} \sup _{n \in \mathbb{N}}\left|x_{n}\right| v_{k}(n)=\frac{1}{d_{0}(\lambda)} q_{k}(x)
$$

So, $\left\{D_{\mu}: \mu \in \overline{B\left(\lambda, \delta_{1}\right)}\right\} \subseteq \mathcal{L}\left(c_{0}\left(v_{k}\right)\right)$. Moreover, for every $l \in \mathbb{N}$ with $l \geq k$ it follows that

$$
\begin{equation*}
q_{l}\left(D_{\mu}(x)\right) \leq q_{k}\left(D_{\mu}(x)\right) \leq \frac{1}{d_{0}(\lambda)} q_{k}(x), \quad \forall x \in c_{0}\left(v_{k}\right), \quad \mu \in \overline{B\left(\lambda, \delta_{1}\right)} \tag{2.18}
\end{equation*}
$$

Via (2.17) it remains to investigate the operator $E_{\mu}: E_{\alpha} \rightarrow E_{\alpha}$ in order to show the validity of condition (2.16) for $(\mathrm{C}-\mu I)^{-1}$. To this end we first observe, for each $k \in \mathbb{N}$, that $c_{0}\left(v_{k}\right)$ is isometrically isomorphic to c_{0} via the linear multiplication operator $\Phi_{k}: c_{0}\left(v_{k}\right) \rightarrow c_{0}$ given by $\Phi_{k}(x):=\left(v_{k}(n) x_{n}\right)$, for $x=\left(x_{n}\right) \in c_{0}\left(v_{k}\right)$. Of
course, each Φ_{k} is also a bicontinuous isomorphism of $\mathbb{C}^{\mathbb{N}}$ onto $\mathbb{C}^{\mathbb{N}}$. So, it suffices to show, for every $k \in \mathbb{N}$, that there exist $l \in \mathbb{N}$ with $l \geq k$ and $D_{k}>0$ such that $\left\|\Phi_{l} E_{\mu} \Phi_{k}^{-1} x\right\|_{0} \leq D_{k}\|x\|_{0}$ for all $x \in c_{0}$ and $\mu \in \overline{B\left(\lambda, \delta_{1}\right)}$; here $\|\cdot\|_{0}$ denotes the usual norm of c_{0}. For each $k, l \in \mathbb{N}$ with $l \geq k$, define $\tilde{E}_{\mu, k, l}:=\Phi_{l} E_{\mu} \Phi_{k}^{-1} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$, for $\mu \in \mathbb{C} \backslash \Sigma_{0}$.

Fix $k \in \mathbb{N}$. For each $l \geq k$ the operator $\tilde{E}_{\mu, k, l}$, for $\mu \in B\left(\lambda, \delta_{1}\right)$, is the restriction to c_{0} of

$$
\tilde{E}_{\mu, k, l}(x)=\left(\left(\tilde{E}_{\mu, k, l}(x)\right)\right)=\left(v_{l}(n) \sum_{m=1}^{n-1} \frac{e_{n m}(\mu)}{v_{k}(m)} x_{m}\right), \quad x=\left(x_{n}\right) \in \mathbb{C}^{\mathbb{N}}
$$

with $\left(\tilde{E}_{\mu, k, l}(x)\right)_{1}:=0$. Moreover, observe that $\tilde{E}_{\mu, k, l}=\left(\tilde{e}_{n m}^{k, l}(\mu)\right)_{n, m \in \mathbb{N}}$ is the lower triangular matrix given by $\tilde{e}_{1 m}^{k, l}(\mu)=0$ for $m \in \mathbb{N}$ and $\tilde{e}_{n m}^{k, l}(\mu)=\frac{v_{l}(n)}{v_{k}(m)} e_{n m}(\mu)$ for $n \geq 2$ and $1 \leq m<n$.

So, it suffices to verify, for some $l \geq k$ and $\delta>0$, that $\tilde{E}_{\mu, k, l} \in \mathcal{L}\left(c_{0}\right)$ for $\mu \in B(\lambda, \delta)$ and $\left\{\tilde{E}_{\mu, k, l}: \mu \in B(\lambda, \delta)\right\}$ is equicontinuous in $\mathcal{L}\left(c_{0}\right)$. To prove this first observe from the definition of $e_{n m}(\mu)$ that Lemma 2.7 implies, for every $l \geq k$, every $m, n \in \mathbb{N}$ and all $\mu \in \overline{B\left(\lambda, \delta_{2}\right)}$ that

$$
\begin{equation*}
\left|\tilde{e}_{n m}^{k, l}(\mu)\right|=\frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\mu)\right| \leq D_{\lambda}^{\prime} \frac{n^{a(\mu)-1} v_{l}(n)}{m^{a(\mu)} v_{k}(m)} \tag{2.19}
\end{equation*}
$$

for some constant $D_{\lambda}^{\prime}>0$ and $\delta_{2} \in\left(0, \delta_{1}\right)$. Because the function $a: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is continuous, there exists $\delta \in\left(0, \delta_{2}\right)$ such that $a(\lambda)-\frac{1}{2}<a(\mu)<a(\lambda)+\frac{1}{2}$, for all $\mu \in \overline{B(\lambda, \delta)}$. This implies, for each $\mu \in \overline{B(\lambda, \delta)}$ that $a(\mu)>a(\lambda)-\frac{1}{2} \geq \frac{1}{2}$; recall that $a(\lambda) \geq 1$. Let $c:=\max \left\{2, a(\lambda)+\frac{1}{2}\right\}$. According to Lemma 2.2 there exists $t \in \mathbb{N}$ such that $S_{\lambda}:=\sup _{n \in \mathbb{N}} n^{c} e^{-t \alpha_{n}}<\infty$. Set $l:=k+t$. By (2.19) and the fact that $\tilde{e}_{n m}^{k, l}(\mu)=0$ for $1 \leq m<n$, it follows for every $n \in \mathbb{N}$ and $\mu \in \overline{B(\lambda, \delta)}$ that

$$
\begin{aligned}
& \sum_{m=1}^{\infty}\left|\tilde{e}_{n m}^{k, l}(\mu)\right|=\sum_{m=1}^{n-1}\left|\tilde{e}_{n m}^{k, l}(\mu)\right| \leq D_{\lambda}^{\prime} n^{a(\mu)-1} v_{l}(n) \sum_{m=1}^{n-1} \frac{1}{m^{a(\mu)} v_{k}(m)} \\
& =D_{\lambda}^{\prime} n^{a(\mu)-1} e^{-l \alpha_{n}} \sum_{m=1}^{n-1} \frac{e^{k \alpha_{m}}}{m^{a(\mu)}} \leq D_{\lambda}^{\prime} n^{a(\mu)-1} e^{-l \alpha_{n}} \sum_{m=1}^{n-1} e^{k \alpha_{m}} \\
& \leq D_{\lambda}^{\prime} n^{a(\mu)-1} e^{-l \alpha_{n}}(n-1) e^{k \alpha_{n}} \leq D_{\lambda}^{\prime} n^{a(\mu)} e^{(k-l) \alpha_{n}} \\
& =D_{\lambda}^{\prime} n^{a(\mu)} e^{-t \alpha_{n}} \leq D_{\lambda}^{\prime} n^{c} e^{-t \alpha_{n}} \leq D_{\lambda}^{\prime} S_{\lambda} .
\end{aligned}
$$

Hence, for every $\mu \in \overline{B(\lambda, \delta)}$, we have the inequality

$$
\sup _{n \in \mathbb{N}} \sum_{m=1}^{\infty}\left|\tilde{e}_{n m}^{k, l}(\mu)\right| \leq D_{\lambda}^{\prime} S_{\lambda},
$$

that is, condition (ii) of Lemma 2.1 in [4] is satisfied for all $\mu \in \overline{B(\lambda, \delta)}$. Moreover, since $n^{a(\mu)-1} v_{l}(n)=n^{a(\mu)-1} e^{-l \alpha_{n}}=n^{a(\mu)-1-c} n^{c} e^{-t \alpha_{n}} e^{-k \alpha_{n}} \rightarrow 0$ for $n \rightarrow \infty$ (because $S_{\lambda}=\sup _{n \in \mathbb{N}} n^{c} e^{-t \alpha_{n}}<\infty, e^{-k \alpha_{n}} \leq 1$, and $a(\mu)<a(\lambda)+\frac{1}{2} \leq c+1$), the inequality (2.19) implies for each fixed $\mu \in \overline{B(\lambda, \delta)}$ and $m \in \mathbb{N}$ that

$$
\lim _{n \rightarrow \infty} \tilde{e}_{n m}^{k, l}(\mu)=0
$$

Also the condition (i) of Lemma 2.1 in [4] is satisfied, for all $\mu \in \overline{B(\lambda, \delta)}$. Accordingly, [4, Lemma 2.1] implies, for every $\mu \in \overline{B(\lambda, \delta)}$, that $\tilde{E}_{\mu, k, l} \in \mathcal{L}\left(c_{0}\right)$ with $\left\|\tilde{E}_{\mu, k, l}\right\|_{o p} \leq D_{\lambda}^{\prime} S_{\lambda}$, that is, $\left\{\tilde{E}_{\mu, k, l}: \mu \in \overline{B(\lambda, \delta)}\right\}$ is equicontinuous in $\mathcal{L}\left(c_{0}\right)$. Finally, in view of (2.18), we have shown that condition (2.16) is indeed satisfied.

Corollary 2.10. For α with $\alpha_{n} \uparrow \infty$ the following assertions are equivalent.
(i) E_{α} is nuclear.
(ii) $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)$.
(iii) $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\Sigma$.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are clear from Proposition 2.9(i).
(ii) \Rightarrow (i). The equality in (ii) together with the fact that $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \Sigma$ (see the discussion prior to Proposition 2.3) implies $0 \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$. Hence, E_{α} is nuclear; see Proposition 2.4.
(iii) $\Rightarrow(\mathrm{i})$. The equality in (iii) implies $0 \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$ and so E_{α} is nuclear (cf. Proposition 2.4).

Recall that an operator $T \in \mathcal{L}(X)$, with X a lcHs, is compact (resp. weakly compact) if there exists a neighbourhood U of 0 such that $T(U)$ is a relatively compact (resp. relatively weakly compact) subset of X.

Corollary 2.11. Let α satisfy $\alpha_{n} \uparrow \infty$ with E_{α} nuclear. Then the Cesàro operator $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ is neither compact nor weakly compact.

Proof. Since E_{α} is Montel, there is no distinction between C being compact or weakly compact. So, suppose that C is compact. Then $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$ is necessarily a compact set in \mathbb{C}, [11, Theorem 9.10.2], which contradicts Proposition 2.9(i).

The identity $C=\Delta \operatorname{diag}\left(\left(\frac{1}{n}\right)\right) \Delta$ holds in $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ and all the three operators C, Δ and $\operatorname{diag}\left(\left(\frac{1}{n}\right)\right)$ are continuous; see the discussion prior to Proposition 2.3. For every positive sequence $\alpha_{n} \uparrow \infty$ we also have that $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ (cf. Proposition 2.1) and $\operatorname{diag}\left(\left(\frac{1}{n}\right)\right) \in \mathcal{L}\left(E_{\alpha}\right)$ (because $\operatorname{diag}\left(\left(\frac{1}{n}\right)\right) \in \mathcal{L}\left(c_{0}\left(v_{k}\right)\right)$ for every $k \in \mathbb{N}$). If Δ acts in E_{α}, then $\Delta e_{n} \in E_{\alpha}$ for all $n \in \mathbb{N}$ and so $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)=\Sigma$; see (2.2). Accordingly, E_{α} is necessarily nuclear via Proposition 2.3. However, this condition alone is not sufficient for the continuity of Δ.

Proposition 2.12. For α with $\alpha_{n} \uparrow \infty$ the following assertions are equivalent.
(i) The operator $\Delta \in \mathcal{L}\left(E_{\alpha}\right)$.
(ii) $\sup _{n \in \mathbb{N}} \frac{n}{\alpha_{n}}<\infty$.

Proof. For each $k \in \mathbb{N}$, the surjective isometric isomorphism $\Phi_{k}: c_{0}\left(v_{k}\right) \rightarrow c_{0}$ was defined in the proof of Proposition 2.9. Because $E_{\alpha}=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$ it follows that $\Delta \in \mathcal{L}\left(E_{\alpha}\right)$ if and only if for each $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that $\Delta: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. Moreover, the continuity of $\Delta: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is equivalent to continuity of the operator $D^{k, l}: c_{0} \rightarrow c_{0}$, where $D^{k, l}:=\Phi_{l} \Delta \Phi_{k}^{-1}$. Note that $\Phi_{l}=\operatorname{diag}\left(\left(v_{l}(n)\right)\right)$ and $\Phi_{k}^{-1}=\operatorname{diag}\left(\left(\frac{1}{v_{k}(n)}\right)\right)$ are diagonal matrices and $\Delta=\left(\Delta_{n m}\right)_{n, m \in \mathbb{N}}$ is a lower triangular matrix, a direct calculation shows that $D^{k, l}=\left(d_{n m}^{k, l}\right)_{n, m \in \mathbb{N}}$ is the lower triangular matrix where, for each $n \in \mathbb{N}$, $d_{n m}^{k, l}=(-1)^{m-1} \frac{v_{l}(n)}{v_{k}(m)}\binom{n-1}{m-1}$, for $1 \leq m<n$ and $d_{n m}^{k, l}=0$ if $m>n$. It follows
from [20, Theorem 4.51-C] that a matrix $A=\left(a_{n m}\right)_{n, m \in \mathbb{N}}$ acts continuously on c_{0} if and only if the matrix $\left(\left|a_{n m}\right|\right)_{n, m \in \mathbb{N}}$ does so and hence, by the same result in [20], that $\Delta \in \mathcal{L}\left(E_{\alpha}\right)$ if and only if for each $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that the lower triangular matrix $\left(\left|d_{n m}^{k, l}\right|\right)_{n, m \in \mathbb{N}}$ satisfies both

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|d_{n m}^{k, l}\right|=\lim _{n \rightarrow \infty} \frac{v_{l}(n)}{v_{k}(m)}\binom{n-1}{m-1}=0, \quad \forall m \in \mathbb{N} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{m=1}^{\infty}\left|d_{n m}^{k, l}\right|=\sup _{n \in \mathbb{N}} \sum_{m=1}^{n} \frac{v_{l}(n)}{v_{k}(m)}\binom{n-1}{m-1}<\infty \tag{2.21}
\end{equation*}
$$

Actually, (2.21) implies (2.20). Indeed, if (2.21) holds, then there exists $L>0$ satisfying $v_{l}(n) \sum_{m=1}^{n} \frac{1}{v_{k}(m)}\binom{n-1}{m-1} \leq L$ for all $n \in \mathbb{N}$ and hence, as $\frac{1}{v_{k}(m)}=e^{k \alpha_{m}}>$ 1 for all $m \in \mathbb{N}$, also $2^{n-1} v_{l}(n)=v_{l}(n) \sum_{m=1}^{n}\binom{n-1}{m-1} \leq L$ for all $n \in \mathbb{N}$. Then, for fixed $m \in \mathbb{N}$, it follows that

$$
n^{m-1} v_{l}(n)=\frac{n^{m-1}}{2^{n-1}} \cdot 2^{n-1} v_{l}(n) \leq \frac{L \cdot n^{m-1}}{2^{n-1}}, \quad n \in \mathbb{N}
$$

Since $\left(\frac{n^{m-1}}{2^{n-1}}\right)_{n \in \mathbb{N}}$ is a null sequence and $\binom{n-1}{m-1} \simeq n^{m-1}$ for $n \rightarrow \infty$ the condition (2.20) follows. So, we have established that the continuity of $\Delta: E_{\alpha} \rightarrow E_{\alpha}$ is equivalent to the following
Condition (δ): For every $k \in \mathbb{N}$ there exists $l>k$ such that (2.21) is satisfied.
(i) \Rightarrow (ii). Since Condition (δ) holds, for the choice $k=1$ there exist $l \in \mathbb{N}$ with $l>1$ and $M>1$ such that

$$
2^{n-1} v_{l}(n)=v_{l}(n) \sum_{m=1}^{n}\binom{n-1}{m-1} \leq \sum_{m=1}^{n} \frac{v_{l}(n)}{v_{1}(m)}\binom{n-1}{m-1} \leq M, \quad n \in \mathbb{N}
$$

Hence, $2^{n} v_{l}(n) \leq 2 M$ from which it follows that

$$
\exp \left(n \log (2)-l a_{n}\right) \leq 2 M=\exp (\log (2 M)), \quad n \in \mathbb{N}
$$

Rearranging this inequality yields

$$
\frac{n}{\alpha_{n}} \leq \frac{l}{\log (2)}+\frac{\log (2 M)}{\alpha_{n} \log (2)}, \quad n \in \mathbb{N}
$$

Since $\alpha_{n} \uparrow \infty$, it follows that $\sup _{n \in \mathbb{N}} \frac{n}{\alpha_{n}}<\infty$.
(ii) \Rightarrow (i). Choose $M \in \mathbb{N}$ such that $n \leq M \alpha_{n}$ for $n \in \mathbb{N}$. In order to verify Condition (δ) fix $k \in \mathbb{N}$. Then $l:=(k+M) \in \mathbb{N}$ and $l>k$. Since v_{k} is decreasing on \mathbb{N} we have

$$
\sum_{m=1}^{n} \frac{v_{l}(n)}{v_{k}(m)}\binom{n-1}{m-1} \leq \frac{v_{l}(n)}{v_{k}(n)} \sum_{m=1}^{n}\binom{n-1}{m-1} \leq 2^{n} \frac{v_{l}(n)}{v_{k}(n)}, \quad n \in \mathbb{N}
$$

Furthermore, for each $n \in \mathbb{N}$, it is also the case that

$$
2^{n} \frac{v_{l}(n)}{v_{k}(n)}=2^{n} e^{-\alpha_{n}(l-k)}=e^{n \log (2)} e^{-M \alpha_{n}} \leq e^{n} e^{-M \alpha_{n}} \leq 1
$$

The previous two sets of inequalities imply (2.21) and hence, Condition (δ) is satisfied, i.e., $\Delta \in \mathcal{L}\left(E_{\alpha}\right)$.

Remark 2.13. (i) Clearly $\sup _{n \in \mathbb{N}} \frac{n}{\alpha_{n}}<\infty$ implies E_{α} is a nuclear space (cf. Proposition 2.4). On the other hand, the sequence $\alpha_{n}:=\log (n), n \in \mathbb{N}$, has the property that E_{α} is nuclear but, $\Delta \notin \mathcal{L}\left(E_{\alpha}\right)$ by Proposition 2.12.
(ii) The continuity of the operators Δ and D on E_{α} is unrelated. Indeed, consider $\alpha_{n}:=\sqrt{n}$, for $n \in \mathbb{N}$. Then D is continuous because E_{α} is both nuclear and shift stable (cf. Proposition 2.5) whereas Δ is not continuous (cf. Proposition 2.12). On the other hand, Δ is continuous on E_{α} for $\alpha_{n}:=n^{n}, n \in \mathbb{N}$ (via Proposition 2.12), but D fails to be continuous on this space; see Remark 2.6.

We end this section with an application. Consider the space of germs of holomorphic functions at 0 , namely the regular (LB)-space defined by $H_{0}:=$ $\operatorname{ind}_{k} A\left(\overline{B\left(0, \frac{1}{k}\right)}\right)$. Here, for each $k \in \mathbb{N}, A\left(\overline{B\left(0, \frac{1}{k}\right)}\right)$ is the disc algebra consisting of all holomorphic functions on the open $\operatorname{disc} B\left(0, \frac{1}{k}\right) \subseteq \mathbb{C}$ which have a continuous extension to its closure $\overline{B\left(0, \frac{1}{k}\right)}$: it is a Banach algebra for the norm

$$
\|f\|_{k}:=\sup _{|z| \leq \frac{1}{k}}|f(z)|=\sup _{|z|=\frac{1}{k}}|f(z)|, \quad f \in A\left(\overline{B\left(0, \frac{1}{k}\right)}\right)
$$

It is known that the linking maps $A\left(\overline{B\left(0, \frac{1}{k}\right)}\right) \rightarrow A\left(\overline{B\left(0, \frac{1}{k+1}\right)}\right)$ for $k \in \mathbb{N}$, which are given by restriction, are injective and absolutely summing. By Köthe duality theory, H_{0} is isomorphic to the strong dual of the nuclear Fréchet space $H(\mathbb{C})$. In particular, H_{0} is a (DFN)-space. We refer to [9, Section 2, Example 5] and [14, Ch. 5.27, Sections 3,4] for further information concerning spaces of holomorphic germs and their strong duals. Define $\alpha=\left(\alpha_{n}\right)$ by $\alpha_{n}:=n$ for $n \in \mathbb{N}$ in which case $\lim _{n \rightarrow \infty} \frac{\log (n)}{\alpha_{n}}=0$. Then $H(\mathbb{C})$ is isomorphic to the power series space $\Lambda_{\infty}^{1}(\alpha)$ of infinite type, [17, Example $29.4(2)]$, and its strong dual E_{α} is isomorphic to H_{0}. Indeed, a topological isomorphism of H_{0} onto E_{α} is given by the linear map which sends $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ (an element of $A\left(\overline{B\left(0, \frac{1}{k}\right)}\right)$ for some $k \in \mathbb{N}$) to $\left(a_{n-1}\right)_{n \in \mathbb{N}} \in E_{\alpha}$. The proof of this (known) fact relies on the following estimates.
(i) If $f \in A(\overline{B(0, \varepsilon)})$ for some $0<\varepsilon<1$ (with $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$), then the Cauchy estimates for f imply $\left|a_{n}\right| \leq \frac{1}{\varepsilon^{n}} \max _{|z|=\varepsilon}|f(z)|$ for $n \in \mathbb{N}_{0}:=\{0\} \cup \mathbb{N}$. Hence, if $f \in A\left(\overline{B\left(0, \frac{1}{k}\right)}\right)$ for some $k \in \mathbb{N}$, then

$$
\left|a_{n}\right| \leq k^{n} \max _{|z|=\frac{1}{k}}|f(z)|=k^{n}\|f\|_{k}, \quad n \in \mathbb{N}_{0}
$$

(ii) Let $a:=\left(a_{n}\right)_{n \in \mathbb{N}_{0}} \in \ell_{\infty}\left(v_{k}\right)$ for some $k \in \mathbb{N}$, where $v_{k}(n):=\frac{1}{(1+k)^{n}}$ for $n \in \mathbb{N}_{0}, k \in \mathbb{N}$; we have taken here $s_{k}:=\log (k+1)$. Then $\left|a_{n}\right| \leq q_{k}(a) k^{n}$ for $n \in \mathbb{N}_{0}$ and each fixed $k \in \mathbb{N}$. Hence, if $|z| \leq \frac{1}{2 k}$, then $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ satisfies

$$
|f(z)| \leq \sum_{n=0}^{\infty}\left|a_{n}\right| \cdot|z|^{n} \leq q_{k}(a) \sum_{n=0}^{\infty} k^{n} \frac{1}{(2 k)^{n}}=2 q_{k}(a)
$$

Accordingly, $f \in A\left(\overline{B\left(0, \frac{1}{2 k}\right)}\right)$.
The above facts, combined with Proposition 2.9 and Corollary 2.11, yield the following result.

Proposition 2.14. The Cèsaro operator $\mathrm{C}: H_{0} \rightarrow H_{0}$ is continuous with spectra

$$
\sigma\left(\mathrm{C} ; H_{0}\right)=\sigma_{p t}\left(\mathrm{C} ; H_{0}\right)=\Sigma \quad \text { and } \quad \sigma^{*}\left(\mathrm{C} ; H_{0}\right)=\Sigma_{0}
$$

In particular, C is not (weakly) compact.

3. The spectrum of C in the non-nuclear Case

The aim of this section is to give a complete description of the spectrum of $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ for the case when E_{α} is not nuclear. It turns out that $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$ and $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)$ are dramatically different to that when E_{α} is nuclear. The following fact, which we record for the sake of explicit reference, is immediate from (2.3) and Propositions 2.3 and 2.4.

Proposition 3.1. For α with $\alpha_{n} \uparrow \infty$ the following assertions are equivalent.
(i) E_{α} is not nuclear.
(ii) $\sigma_{p t}\left(\mathrm{C} ; E_{\alpha}\right)=\{1\}$.
(iii) $0 \in \sigma\left(\mathrm{C} ; E_{\alpha}\right)$.

The following general result will be useful in the sequel. For each $r>0$ we adopt the notation $D(r):=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2 r}\right|<\frac{1}{2 r}\right\}$.

Proposition 3.2. Let α satisfy $\alpha_{n} \uparrow \infty$. Then

$$
\Sigma \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \overline{D(1)}
$$

Proof. Since $C \in \mathcal{L}\left(E_{\alpha}\right)$, its dual operator C^{\prime} is defined, continuous on the strong dual $E_{\alpha}^{\prime}=\bigcap_{k \in \mathbb{N}} \ell_{1}\left(\frac{1}{v_{k}}\right)=\operatorname{proj}_{k} \ell_{1}\left(\frac{1}{v_{k}}\right)$ of $E_{\alpha}=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$ and is given by the formula

$$
\mathrm{C}^{\prime} y:=\left(\sum_{j=n}^{\infty} \frac{y_{j}}{j}\right)_{n \in \mathbb{N}}, \quad y=\left(y_{n}\right) \in E_{\alpha}^{\prime}
$$

see (3.7) in [4, p. 774], for example, after noting that $E_{\alpha}^{\prime} \subseteq \ell_{1}\left(\frac{1}{v_{1}}\right)$. Given $\lambda \in \Sigma$ there is $m \in \mathbb{N}$ with $\lambda=\frac{1}{m}$. Define $u^{(m)}$ by $u_{n}^{(m)}:=\prod_{k=1}^{n-1}\left(1-\frac{1}{\lambda k}\right)$ for $1<n \leq m$ (with $u_{1}^{(m)}:=1$) and $u_{n}^{(m)}:=0$ for $n>m$. It is routine to verify that $u^{(m)} \in E_{\alpha}^{\prime}$ $\left(\right.$ as $\left.u^{(m)} \in \varphi\right)$ and $\mathrm{C}^{\prime} u^{(m)}=\frac{1}{m} u^{(m)}$, i.e., $\lambda \in \sigma_{p t}\left(\mathrm{C}^{\prime} ; E_{\alpha}^{\prime}\right)$. It follows that $\lambda \in$ $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$. Indeed, if not, then $\lambda \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$ and so $(\mathrm{C}-\lambda I)\left(E_{\alpha}\right)=E_{\alpha}$. This implies, for each $z \in E_{\alpha}$ that there exists $x \in E_{\alpha}$ satisfying $(\mathrm{C}-\lambda I) x=z$. Hence,

$$
\left\langle z, u^{(m)}\right\rangle=\left\langle(\mathrm{C}-\lambda I) x, u^{(m)}\right\rangle=\left\langle x,\left(\mathrm{C}^{\prime}-\lambda I\right) u^{(m)}\right\rangle=0
$$

that is, $\left\langle z, u^{(m)}\right\rangle=0$ for all $z \in E_{\alpha}$. Since $u^{(m)} \neq 0$, this is a contradiction. So, $\lambda \in \sigma\left(\mathrm{C} ; E_{\alpha}\right)$. This establishes that $\Sigma \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right)$.

According to Lemma 2.8 we see that $\sigma\left(\mathrm{C}_{k} ; c_{0}\left(v_{k}\right)\right) \subseteq \overline{D(1)}$ for all $k \in \mathbb{N}$, where $\mathrm{C}_{k}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{k}\right)$ is the restriction of $\mathrm{C} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$. Hence,

$$
\bigcap_{m \in \mathbb{N}}\left(\bigcup_{k=m}^{\infty} \sigma\left(\mathrm{C}_{k} ; c_{0}\left(v_{k}\right)\right)\right) \subseteq \overline{D(1)}
$$

and so $\sigma\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \overline{D(1)} ;$ see Lemma 5.5 in the Appendix.
The following result identifies a large part of $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$.
Proposition 3.3. Let α satisfy $\alpha_{n} \uparrow \infty$ and such that E_{α} is not nuclear. Then

$$
\{0,1\} \cup D(1) \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \overline{D(1)}
$$

Proof. It follows from Propositions 3.1 and 3.2 that $\Sigma_{0} \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right) \subseteq \overline{D(1)}$. So, it remains to verify that $(D(1) \backslash \Sigma) \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right)$. This is achieved via a contradiction argument.

Let $\lambda \in D(1) \backslash \Sigma$ and suppose that $\lambda \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$. Note that $\beta:=\operatorname{Re}\left(\frac{1}{\lambda}\right)>1$. Since $(\mathrm{C}-\lambda I)^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous, for $k=1$ there exists $l \in \mathbb{N}$ with $l>1$ such that $(\mathrm{C}-\lambda I)^{-1}: c_{0}\left(v_{1}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. In the notation of the proof of Proposition 2.9 it follows that the linear map $\widetilde{E}_{\lambda, 1, l}: c_{0} \rightarrow c_{0}$ is continuous, where $\widetilde{E}_{\lambda, 1, l}=\left(\tilde{e}_{n m}^{1, l}(\lambda)\right)_{n, m \in \mathbb{N}}$ is the lower triangular matrix given by

$$
\begin{equation*}
\tilde{e}_{n m}^{1, l}(\lambda)=\frac{v_{l}(n)}{v_{1}(m)} e_{n m}(\lambda), \quad \forall n \geq 2, \quad 1 \leq m<n \tag{3.1}
\end{equation*}
$$

and $\tilde{e}_{n m}^{1, l}(\lambda)=0$ otherwise. Here $e_{n, m}(\lambda)=\frac{1}{n \prod_{k=m}^{n}\left(1-\frac{1}{\lambda k}\right)}$ if $1 \leq m<n$ and $e_{n m}(\lambda)=0$ if $m \geq n$. According to the inequality (3.10) in [4, p. 776], there exist positive constants c, d such that

$$
\begin{equation*}
\frac{c}{n^{1-\beta}} \leq\left|e_{n 1}(\lambda)\right| \leq \frac{d}{n^{1-\beta}}, \quad n \geq 2 \tag{3.2}
\end{equation*}
$$

Since $\widetilde{E}_{\lambda, 1, l} \in \mathcal{L}\left(c_{0}\right)$, a well known criterion, [4, Lemma 2.1], [20, Theorem 4.51-C], implies that necessarily

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{e}_{n m}^{1, l}(\lambda)=0, \quad m \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

It now follows from (3.1), the left-inequality in (3.2), and (3.3) with $m=1$, that

$$
\lim _{n \rightarrow \infty} n^{\beta-1} e^{-l \alpha_{n}}=\lim _{n \rightarrow \infty} n^{\beta-1} v_{l}(n)=0
$$

Since $\beta>1$, it follows from Lemma 2.2 that $\sup _{n \in \mathbb{N}} \frac{\log (n)}{\alpha_{n}}<\infty$ which contradicts the non-nuclearity of E_{α} (cf. Proposition 2.3). Hence, no $\lambda \in D(1) \backslash \Sigma$ exists with $\lambda \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$.

We now come to the main result of this section.
Proposition 3.4. Let α satisfy $\alpha_{n} \uparrow \infty$ and such that E_{α} is not nuclear.
(i) If $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}<\infty$, then

$$
\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\{0,1\} \cup D(1) \quad \text { and } \quad \sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\overline{D(1)}
$$

(ii) If $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}=\infty$, then

$$
\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\overline{D(1)}=\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)
$$

Proof. In the notation of the proof of Proposition 2.9, for each $\lambda \in \mathbb{C} \backslash \Sigma_{0}$ the inverse operator $(\mathrm{C}-\lambda I)^{-1} \in \mathcal{L}\left(\mathbb{C}^{N}\right)$ satisfies

$$
(\mathrm{C}-\lambda I)^{-1}=D_{\lambda}-\frac{1}{\lambda^{2}} E_{\lambda}
$$

see (2.17). It is also argued there (as a consequence of the fact that the diagonal in D_{λ} is a bounded sequence) that $(\mathrm{C}-\lambda I)^{-1}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous if and only if $E_{\lambda} \in \mathcal{L}\left(E_{\alpha}\right)$; the nuclearity of E_{α} is not used for this part of the argument. Moreover, since E_{α} is an inductive limit, general theory yields that $E_{\lambda} \in \mathcal{L}\left(E_{\alpha}\right)$ if and only if for each $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that $E_{\lambda}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. With $\widetilde{E}_{\lambda, k, l}=\left(\tilde{e}_{n m}^{k, l}(\lambda)\right)_{n, m \in \mathbb{N}}$, where
$\tilde{e}_{n m}^{k, l}(\lambda):=\frac{v_{l}(n)}{v_{k}(m)} e_{n m}(\lambda)$ for $n, m \in \mathbb{N}$, it follows via the argument used in Case (ii) of the proof of Proposition 2.9 (see also the proof of Proposition 3.3, where $k=1$ can be replaced by an arbitrary $k \in \mathbb{N}$) that $E_{\lambda}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous if and only if $\widetilde{E}_{\lambda, k, l}: c_{0} \rightarrow c_{0}$ is continuous. Via [20, Theorem 4.51-C] this is equivalent to both of the following conditions being satisfied:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\tilde{e}_{n m}^{k, l}(\lambda)\right|=\lim _{n \rightarrow \infty} \frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right|=0, \quad \forall m \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{m=1}^{\infty} \frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right|=\sup _{n \in \mathbb{N}} \sum_{m=1}^{n-1} \frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right|<\infty . \tag{3.5}
\end{equation*}
$$

Next, if $\lambda \notin\{0,1\}$ belongs to the boundary $\partial D(1)$ of $D(1)$, then $\beta:=\operatorname{Re}\left(\frac{1}{\lambda}\right)=1$ and $\lambda \notin \Sigma_{0}$. Accordingly, Lemma 3.3 of [4] ensures the existence of positive constants c, d such that $c \leq\left|e_{n 1}(\lambda)\right| \leq d$ for all $n \in \mathbb{N}$ and

$$
\begin{equation*}
\frac{c}{m} \leq\left|e_{n m}(\lambda)\right| \leq \frac{d}{m}, \quad \forall n \in \mathbb{N}, \quad 2 \leq m<n \tag{3.6}
\end{equation*}
$$

In order to deduce (3.6) from [4, Lemma 3.3] we have used the formula

$$
\left|e_{n m}(\lambda)\right|=\frac{1}{(m-1)} \cdot \frac{(m-1) \prod_{k=1}^{m-1}\left|1-\frac{1}{\lambda k}\right|}{n \prod_{k=1}^{n}\left|1-\frac{1}{\lambda k}\right|}, \quad \forall n \in \mathbb{N}, \quad 2 \leq m<n
$$

Henceforth we use $v_{r}(n):=e^{-r \alpha_{n}}$ for all $r, n \in \mathbb{N}$. Note that (3.4) is satisfied for every $\lambda \in \partial D(1) \backslash\{0,1\}$. Indeed, for fixed $m \in \mathbb{N}$, we have via (3.6) that

$$
\frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right| \leq \frac{d e^{k \alpha_{m}}}{m e^{l \alpha_{n}}} \leq \frac{d^{\prime}}{e^{l \alpha_{n}}}, \quad n \in \mathbb{N}
$$

from which (3.4) is clear.
(i) Since $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}<\infty$, there exists $M \in \mathbb{N}$ such that $\log (\log (n)) \leq$ $M \alpha_{n}$, equivalently $\log (n) \leq e^{M \alpha_{n}}$ for $n \in \mathbb{N}$. Fix $\lambda \in \partial D(1) \backslash\{0,1\}$; in particular, $\lambda \notin \Sigma_{0}$. Given $k \in \mathbb{N}$ define $l:=k+M$. Then, for every $n \geq 2$, it follows from (2.8), (3.6) and $(l-k)=M$ that

$$
\begin{gathered}
\sum_{m=1}^{n-1} \frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right| \leq \frac{d}{e^{l \alpha_{n}}} \sum_{m=1}^{n-1} \frac{e^{k \alpha_{m}}}{m} \leq \frac{d e^{k \alpha_{n}}}{e^{l \alpha_{n}}} \sum_{m=1}^{n-1} \frac{1}{m} \\
\leq \frac{1+\log (n)}{e^{M \alpha_{n}}}=e^{-M \alpha_{n}}+\frac{\log (n)}{e^{M \alpha_{n}}} \leq 2
\end{gathered}
$$

Accordingly, (3.5) is satisfied. Since (3.4) holds, we conclude that $\widetilde{E}_{\lambda, k, l}: c_{0} \rightarrow c_{0}$ is continuous, equivalently that $(\mathrm{C}-\lambda I)^{-1} \in \mathcal{L}\left(E_{\alpha}\right)$. It follows that $\partial D(1) \backslash$ $\{0,1\} \subseteq \rho\left(\mathrm{C} ; E_{\alpha}\right)$ and so $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\{0,1\} \cup D(1)$; see Proposition 3.3.

It was shown in the proof of Proposition 3.2 that $\bigcup_{k=1}^{\infty} \sigma\left(\mathrm{C}_{k} ; c_{0}\left(v_{k}\right)\right) \subseteq \overline{D(1)}$. $\underline{\text { Since } \sigma\left(\mathrm{C} ; E_{\alpha}\right)=\{0,1\} \cup D(1) \text {, we have } \overline{\sigma\left(\mathrm{C} ; E_{\alpha}\right)}=\overline{D(1)} \text { and so } \bigcup_{k=1}^{\infty} \sigma\left(\mathrm{C}_{k} ; c_{0}\left(v_{k}\right)\right) \subseteq}$ $\overline{\sigma\left(\mathrm{C} ; E_{\alpha}\right)}$. It follows from Lemma 5.5(iii) in the Appendix that $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\overline{D(1)}$.
(ii) Fix $\lambda \in \partial D(1) \backslash\{0,1\}$. Observe first, for $k=1$ and $l \in \mathbb{N}$ arbitrary, that it follows from (2.8) and (3.6) that

$$
\begin{equation*}
\sum_{m=1}^{n-1} \frac{v_{l}(n)}{v_{k}(m)}\left|e_{n m}(\lambda)\right| \geq \frac{c}{e^{l \alpha_{n}}} \sum_{m=1}^{n-1} \frac{e^{\alpha_{m}}}{m} \geq \frac{c e^{\alpha_{1}}}{e^{l \alpha_{n}}} \sum_{m=1}^{n-1} \frac{1}{m} \geq \frac{c \log (n)}{e^{l \alpha_{n}}} \tag{3.7}
\end{equation*}
$$

for all $n \geq 2$. Suppose now that $\lambda \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$. Then for $k=1$ there exists $l \in \mathbb{N}$ with $l>1$ such that (3.5) is satisfied. It then follows from (3.7) that $\sup _{n \in \mathbb{N}} \frac{\log (n)}{e^{l \alpha_{n}}}<\infty$. So, there exists $K>1$ such that $\log (n) \leq K e^{l \alpha_{n}}$, equivalently that

$$
\log (\log (n)) \leq l \alpha_{n}+\log (K), \quad n \geq 3
$$

A rearrangement yields $\frac{\log (\log (n))}{\alpha_{n}} \leq l+\frac{\log (K)}{\alpha_{n}}$ for $n \geq 3$, and so $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}<$ ∞; contradiction! So, no $\lambda \in \partial D(1) \backslash\{0,1\}$ exists which satisfies $\lambda \in \rho\left(\mathrm{C} ; E_{\alpha}\right)$, $\underline{\text { i.e., } \partial} D(1) \backslash\{0,1\} \subseteq \sigma\left(\mathrm{C} ; E_{\alpha}\right)$. It now follows from Proposition 3.3 that $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=$ $\overline{D(1)}$.
It was observed in the proof of part (i) that $\bigcup_{k=1}^{\infty} \sigma\left(\mathrm{C}_{k} ; c_{0}\left(v_{k}\right)\right) \subseteq \overline{D(1)}$. Since $\overline{D(1)}=\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\overline{\sigma\left(\mathrm{C} ; E_{\alpha}\right)}$, it again follows from Lemma 5.5(iii) in the Appendix that $\sigma^{*}\left(\mathrm{C} ; E_{\alpha}\right)=\sigma\left(\mathrm{C} ; E_{\alpha}\right)$.

Remark 3.5. (i) Let α satisfy $\alpha_{n} \uparrow \infty$. Then $\sigma\left(\mathrm{C} ; E_{\alpha}\right)$ is a compact subset of \mathbb{C} if and only if $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}=\infty$. This follows from Corollary 2.10, Proposition 3.4 and the fact that the condition $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}=\infty$ implies $\sup _{n \in \mathbb{N}} \frac{\log (n)}{\alpha_{n}}=\infty$, i.e., E_{α} is automatically non-nuclear.
(ii) The sequence $\alpha_{n}:=\log (\log (n))$ for $n \geq 3^{3}>e^{e}$ (with $1<\alpha_{1}<\ldots<$ $\alpha_{26}<\log \left(\log \left(3^{3}\right)\right)$ arbitrary) satisfies $1<\alpha_{n} \uparrow \infty$ with E_{α} not nuclear and $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}<\infty$. Proposition 3.4(i) shows that $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\{0,1\} \cup D(1)$. On the other hand, the sequence $\alpha_{n}:=\log \left(\log (\log (n))\right.$) for $n \geq 3^{27}>e^{e^{e}}$ (with $1<\alpha_{1}<\ldots<\alpha_{3^{27}-1}<\log \left(\log \left(\log \left(3^{27}\right)\right)\right.$) arbitrary) satisfies $1<\alpha_{n} \uparrow \infty$ with E_{α} not nuclear and $\sup _{n \in \mathbb{N}} \frac{\log (\log (n))}{\alpha_{n}}=\infty$. In this case Proposition 3.4(ii) reveals that $\sigma\left(\mathrm{C} ; E_{\alpha}\right)=\overline{D(1)}$.

4. Mean ergodicity of the Cesàro operator.

An operator $T \in \mathcal{L}(X)$, with X a lcHs, is power bounded if $\left\{T^{n}\right\}_{n=1}^{\infty}$ is an equicontinuous subset of $\mathcal{L}(X)$. Given $T \in \mathcal{L}(X)$, the averages

$$
T_{[n]}:=\frac{1}{n} \sum_{m=1}^{n} T^{m}, \quad n \in \mathbb{N}
$$

are called the Cesàro means of T. The operator T is said to be mean ergodic (resp. uniformly mean ergodic) if $\left\{T_{[n]}\right\}_{n=1}^{\infty}$ is a convergent sequence in $\mathcal{L}_{s}(X)$ (resp., in $\mathcal{L}_{b}(X)$). A relevant text for mean ergodic operators is [15].

Proposition 4.1. Let $\alpha_{n} \uparrow \infty$. The Cesàro operator $C \in \mathcal{L}\left(E_{\alpha}\right)$ is power bounded and uniformly mean ergodic. In particular,

$$
\begin{equation*}
E_{\alpha}=\operatorname{Ker}(I-\mathrm{C}) \oplus \overline{(I-\mathrm{C})\left(E_{\alpha}\right)} \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Ker}(I-\mathrm{C})=\{\mathbf{1}\} \text { and } \overline{(I-\mathrm{C})\left(E_{\alpha}\right)}=\left\{x \in E_{\alpha}: x_{1}=0\right\}=\overline{\operatorname{span}\left\{e_{n}\right\}_{n \geq 2}} . \tag{4.2}
\end{equation*}
$$

Proof. Since each weight v_{k} for $k \in \mathbb{N}$ is decreasing, it is known that $\mathrm{C} \in \mathcal{L}\left(c_{0}\left(v_{k}\right)\right)$ and $q_{k}(\mathrm{C} x) \leq q_{k}(x)$ for all $x \in c_{0}\left(v_{k}\right)$, [4, Corollary 2.3(i)]. It follows, via (2.1), for every $k \in \mathbb{N}$ that

$$
q_{k}\left(\mathrm{C}^{m} x\right) \leq q_{k}(x), \quad \forall x \in c_{0}\left(v_{k}\right), m \in \mathbb{N}
$$

Accordingly, for each $k \in \mathbb{N}$, (5.5) is satisfied with $l:=k$ and $D=1$. Then Lemma 5.4 in the Appendix implies that $\mathcal{H}:=\left\{\mathrm{C}^{m}: m \in \mathbb{N}\right\} \subseteq \mathcal{L}\left(E_{\alpha}\right)$ is equicontinuous, i.e., the Cesàro operator C is power bounded in E_{α}. Since E_{α} is Montel, it follows via [1, Proposition 2.8] that the Cesàro operator C is uniformly mean ergodic in E_{α} and hence, (4.1) is also satisfied, [1, Theorem 2.4]. The facts that each $x \in E_{\alpha}$ belongs to $c_{0}\left(v_{k}\right)$ for some $k \in \mathbb{N}$, that the inclusion $c_{0}\left(v_{k}\right) \subseteq E_{\alpha}$ is continuous and that the canonical vectors $e_{n}:=\left(\delta_{n k}\right)_{k \in \mathbb{N}}$, for $n \in \mathbb{N}$, form a Schauder basis in $c_{0}\left(v_{k}\right)$ implies $\left\{e_{n}: n \in \mathbb{N}\right\}$ is a Schauder basis for E_{α}. The proof of the identities in (4.2) now follow by applying the same (algebraic) arguments as used in the proof of [3, Proposition 4.1].
Proposition 4.2. Let $\alpha_{n} \uparrow \infty$. The sequence $\left\{\mathrm{C}^{m}\right\}_{m \in \mathbb{N}}$ converges in $\mathcal{L}_{b}\left(E_{\alpha}\right)$ to the projection onto $\operatorname{span}\{\mathbf{1}\}$ along $\overline{(I-C)\left(E_{\alpha}\right)}$.
Proof. Using Proposition 4.1 we proceed as in the proof of the analogous result when C acts in the Frèchet space $\Lambda_{0}(\alpha)$, [6, Proposition 3.2]. Indeed, for each $x \in E_{\alpha}$, we have that $x=y+z$ with $y \in \operatorname{Ker}(I-\mathrm{C})=\operatorname{span}\{\mathbf{1}\}$ and $z \in$ $\overline{(I-\mathrm{C})\left(E_{\alpha}\right)}=\overline{\operatorname{span}\left\{e_{n}\right\}_{n \geq 2}}$. So, for each $m \in \mathbb{N}$ we have $\mathrm{C}^{m} x=\mathrm{C}^{m} y+\mathrm{C}^{m} z$, with $\mathrm{C}^{m} y=y \rightarrow y$ in E_{α} as $m \rightarrow \infty$. The claim is that the sequence $\left\{\mathrm{C}^{m} z\right\}_{m \in \mathbb{N}}$ is also convergent in E_{α}. Indeed, proceeding as in the proof of Proposition 3.2 of [6] one shows, for each $r \geq 2$ and $m, n \in \mathbb{N}$, that $\left|\left(\mathrm{C}^{m} e_{r}\right)(n)\right| \leq \frac{1}{r-1} a_{m}$, where $\left(a_{m}\right)_{m \in \mathbb{N}}$ is a sequence of positive numbers satisfying $\lim _{m \rightarrow \infty} a_{m}=0$. Since $v_{1}(n)\left|\left(\mathrm{C}^{m} e_{r}\right)(n)\right| \leq \frac{v_{1}(n)}{r-1} a_{m}$, for each $r \geq 2$ and $n, m \in \mathbb{N}$, with $1 \geq v_{1}(1) \geq v_{1}(n)$ for all $n \in \mathbb{N}$ it follows that $q_{1}\left(\mathrm{C}^{m} e_{r}\right) \leq \frac{1}{r-1} a_{m}$. We deduce, for each $r \geq 2$, that $\mathrm{C}^{m} e_{r} \rightarrow 0$ in $c_{0}\left(v_{1}\right)$ and hence, also in E_{α} as $m \rightarrow \infty$. Since $\left\{\mathrm{C}^{m}\right\}_{m \in \mathbb{N}} \subseteq \mathcal{L}\left(E_{\alpha}\right)$ is equicontinuous and (by (4.2)) the linear span of $\left\{e_{n}\right\}_{n \geq 2}$ is dense in $\overline{(I-\mathrm{C})\left(E_{\alpha}\right)}$, it follows that $\mathrm{C}^{m} z \rightarrow 0$ in E_{α} as $m \rightarrow \infty$ for each $z \in \overline{(I-\mathrm{C})\left(E_{\alpha}\right)}$. So, it has been shown that $\mathrm{C}^{m} x=\mathrm{C}^{m} y+\mathrm{C}^{m} z \rightarrow y$ in E_{α} as $m \rightarrow \infty$, for each $x \in E_{\alpha}$, i.e., $\left\{\mathrm{C}^{m}\right\}_{m \in \mathbb{N}}$ converges in $\mathcal{L}_{s}\left(E_{\alpha}\right)$. Since E_{α} is a Montel space, $\left\{\mathrm{C}^{m}\right\}_{m \in \mathbb{N}}$ also converges in $\mathcal{L}_{b}\left(E_{\alpha}\right)$.
Proposition 4.3. Let $\alpha_{n} \uparrow \infty$ with E_{α} nuclear. Then the range $(I-\mathrm{C})^{m}\left(E_{\alpha}\right)$ is a closed subspace of E_{α} for each $m \in \mathbb{N}$.

Proof. Consider first $m=1$. Set $X(\alpha):=\left\{x \in E_{\alpha}: x_{1}=0\right\}$. The claim is that

$$
\begin{equation*}
(I-\mathrm{C})\left(E_{\alpha}\right)=(I-\mathrm{C})(X(\alpha)) \tag{4.3}
\end{equation*}
$$

First recall that each sequence v_{k}, for $k \in \mathbb{N}$, is strictly positive and decreasing with $v_{k} \in c_{0}$ and so $\overline{(I-\mathrm{C})\left(c_{0}\left(v_{k}\right)\right)}=\left\{x \in c_{0}\left(v_{k}\right): x_{1}=0\right\}=: X_{k}$ and $(I-$ C) $\left(X_{k}\right)=(I-\mathrm{C})\left(c_{0}\left(v_{k}\right)\right)$, [4, Lemmas 4.1 and 4.5]. Now, if $x \in X(\alpha)$, then $x \in X_{k}$ for some $k \in \mathbb{N}$ and hence,

$$
(I-\mathrm{C}) x \in(I-\mathrm{C})\left(X_{k}\right)=(I-\mathrm{C})\left(c_{0}\left(v_{k}\right)\right) \subseteq(I-\mathrm{C})\left(E_{\alpha}\right)
$$

This establishes one inclusion in (4.3). For the reverse inclusion let $x \in E_{\alpha}$. Then $x \in c_{0}\left(v_{k}\right)$ for some $k \in \mathbb{N}$ and hence, $(I-\mathrm{C}) x \in(I-\mathrm{C})\left(c_{0}\left(v_{k}\right)\right)=(I-\mathrm{C})\left(X_{k}\right) \subseteq$ $(I-\mathrm{C})(X(\alpha))$. Thus, the reverse inclusion in (4.3) is also valid.

Because of (4.3) and the containment $(I-\mathrm{C})\left(E_{\alpha}\right) \subseteq \overline{(I-\mathrm{C})\left(E_{\alpha}\right)}=X(\alpha)$, which is immediate from Proposition 4.1, to show that $(I-\mathrm{C})\left(E_{\alpha}\right)$ is closed in E_{α} it suffices to show that the continuous linear restriction operator ($I-$ C) $\left.\right|_{X(\alpha)}: X_{\alpha} \rightarrow X_{\alpha}$ is bijective, actually surjective. Indeed, if $(I-\mathrm{C})(X(\alpha))=$ $X(\alpha)$, then $(I-\mathrm{C})\left(E_{\alpha}\right)=X(\alpha)$ by (4.3) and hence, $(I-\mathrm{C})\left(E_{\alpha}\right)$ is a closed subspace of E_{α}.

To establish that $\left.(I-\mathrm{C})\right|_{X_{\alpha}}$ is bijective we require the identity $(X(\alpha), \tau)=$ ind ${ }_{k} X_{k}$, where τ is the relative topology in $X(\alpha)$ induced from E_{α}. This identity follows from the general fact that if $(E, \tilde{\tau})=\operatorname{ind}_{n} E_{n}$ is a (LB)-space and $F \subseteq E$ is a closed subspace with finite codimension, then $\left(F,\left.\tilde{\tau}\right|_{F}\right)=\operatorname{ind}_{n}\left(F \cap E_{n}\right)$ is also a (LB)-space, [18, Lemma 6.3.1]. Actually, setting $\tilde{v}_{k}(n):=v_{k}(n+1)$ for all $k, n \in \mathbb{N}$, we have that $X(\alpha)$ is topologically isomorphic to $E(\tilde{\alpha}):=\operatorname{ind}_{k} c_{0}\left(\tilde{v}_{k}\right)$. Indeed, the left-shift operator $S: X(\alpha) \rightarrow E(\tilde{\alpha})$ given by $S(x):=\left(x_{2}, x_{3}, \ldots\right)$ for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in X(\alpha)$ is such an isomorphism (because, for each $k \in \mathbb{N}$, the left shift operator $S: X_{k} \rightarrow c_{0}\left(v_{k}\right)$ is a surjective isometry). Consider now the operator $A:=\left.S \circ(I-\mathrm{C})\right|_{X(\alpha)} \circ S^{-1} \in \mathcal{L}(E(\tilde{\alpha}))$. The claim is that A is bijective with $A^{-1} \in \mathcal{L}(E(\tilde{\alpha}))$.

To establish the above claim observe, when interpreted to be acting in the space $\mathbb{C}^{\mathbb{N}}$, that the operator $A: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ is bijective (which is a routine verification) and its inverse $B:=A^{-1}: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ is determined by the lower triangular matrix $B=\left(b_{n m}\right)_{n, m \in \mathbb{N}}$ with entries given as follows: for each $n \in \mathbb{N}$ we have $b_{n m}=0$ if $m>n, b_{n m}=\frac{n+1}{n}$ if $m=n$ and $b_{n m}=\frac{1}{m}$ if $1 \leq m<n$. To show that B is also the inverse of A acting on $E(\tilde{\alpha})$, we only need to verify that $B \in \mathcal{L}(E(\tilde{\alpha}))$. To establish this it suffices to show, for each $k \in \mathbb{N}$, that there exists $l \geq k$ such that $\Phi_{\tilde{v}_{l}} \circ B \circ \Phi_{\tilde{v}_{k}}^{-1} \in \mathcal{L}\left(c_{0}\right)$, where for each $h \in \mathbb{N}$ the operator $\Phi_{\tilde{v}_{h}}: c_{0}\left(\tilde{v}_{h}\right) \rightarrow c_{0}$ given by $\Phi_{\tilde{v}_{h}}(x)=\left(\tilde{v}_{h}(n+1) x_{n}\right)$ for $x \in c_{0}\left(\tilde{v}_{h}\right)$ is a surjective isometry. To this end, given $k \in \mathbb{N}$ set $l:=k+1$, say. Then the lower triangular matrix corresponding to $\Phi_{\tilde{v}_{l}} \circ B \circ \Phi_{\tilde{v}_{k}}^{-1}$ is given by $D:=\left(\frac{v_{l}(n+1)}{v_{k}(m+1)} b_{n m}\right)_{n, m \in \mathbb{N}}$. Moreover, for each fixed $m \in \mathbb{N}$, we have

$$
\lim _{n \rightarrow \infty} \frac{v_{l}(n+1)}{v_{k}(m+1)} b_{n m}=\frac{1}{m v_{k}(m+1)} \lim _{n \rightarrow \infty} v_{l}(n+1)=0
$$

and, for each $n \in \mathbb{N}$, that

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \frac{v_{l}(n+1)}{v_{k}(m+1)} b_{n m}=\frac{(n+1)}{n} \frac{v_{l}(n+1)}{v_{k}(n+1)}+v_{l}(n+1) \sum_{m=1}^{n-1} \frac{1}{m v_{k}(m+1)} \\
& \quad \leq 2+\left(s_{l}\right)^{-\alpha_{n+1}} \sum_{m=1}^{n-1} \frac{s_{k}^{\alpha_{m+1}}}{m} \leq 2+\left(\frac{s_{k}}{s_{l}}\right)^{\alpha_{n+1}} \sum_{m=1}^{n-1} \frac{1}{m} \\
& \quad \leq 2+\left(\frac{s_{k}}{s_{l}}\right)^{\alpha_{n+1}}(1+\log (n)) \leq 2+2 a^{\alpha_{n+1}} \log (n+1),
\end{aligned}
$$

where $a:=\frac{s_{k}}{s_{l}} \in(0,1)$. Since E_{α} is nuclear, there exists $M \geq 1$ such that $\log (n) \leq$ $M \alpha_{n}$ for all $n \in \mathbb{N}$ and hence, $a^{\alpha_{n}} \log (n) \leq M \alpha_{n} a^{\alpha_{n}}$ for $n \in \mathbb{N}$. Since $f(x):=x a^{x}$,
for $x \in(0, \infty)$, satisfies $f^{\prime}(x)<0$ for $x>\frac{1}{\log \left(\frac{1}{a}\right)}$, the function f is decreasing on $\left(\frac{1}{\log \left(\frac{1}{a}\right)}, \infty\right)$ which implies $\sup _{n \in \mathbb{N}} a^{\alpha_{n}} \log (n)<\infty$, i.e., $\sum_{m=1}^{\infty} \frac{v_{l}(n+1)}{v_{k}(m+1)}<\infty$ for each $n \in \mathbb{N}$. Thus, both the conditions (i), (ii) of [4, Lemma 2.1] are satisfied. Accordingly, $\Phi_{\tilde{v}_{l}} \circ B \circ \Phi_{\tilde{v}_{k}}^{-1} \in \mathcal{L}\left(c_{0}\right)$. The proof that $(I-\mathrm{C})\left(E_{\alpha}\right)$ is closed is thereby complete.

Since $(I-\mathrm{C})\left(E_{\alpha}\right)$ is closed, (4.1) implies $E_{\alpha}=\operatorname{Ker}(I-\mathrm{C}) \oplus(I-\mathrm{C})\left(E_{\alpha}\right)$. The proof of $(2) \Rightarrow(5)$ in Remark 3.6 of [3] then shows that $(I-\mathrm{C})^{m}\left(E_{\alpha}\right)$ is closed in E_{α} for all $m \in \mathbb{N}$.

An operator $T \in \mathcal{L}(X)$, with X a separable lcHs, is called hypercyclic if there exists $x \in X$ such that the orbit $\left\{T^{n} x: n \in \mathbb{N}_{0}\right\}$ is dense in X. If, for some $z \in X$ the projective orbit $\left\{\lambda T^{n} z: n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}\right\}$ is dense in X, then T is called supercyclic. Clearly, hypercyclicity implies supercyclicity.

Proposition 4.4. Let α satisfy $\alpha_{n} \uparrow \infty$. Then $\mathrm{C} \in \mathcal{L}\left(E_{\alpha}\right)$ is not supercyclic and hence, also not hypercyclic.

Proof. It is known that C is not supercyclic in $\mathbb{C}^{\mathbb{N}}$, [5, Proposition 4.3]. Since E_{α} is dense (as it contains φ) and continuously included in $\mathbb{C}^{\mathbb{N}}$, the supercyclicity of C in any one of the spaces E_{α} would imply that $\mathrm{C} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ is supercyclic.

5. Appendix

In this section we elaborate on the point raised in Section 1 that the behaviour of the Cesàro operator on the strong dual $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$ of power series spaces $\Lambda_{0}^{1}(\alpha)$ of finite type, is not so relevant in relation to continuity. It turns out that C fails to act in $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$ for every α with $\alpha_{n} \uparrow \infty$ such that $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$ is nuclear. Moreover, there exist $\alpha_{n} \uparrow \infty$ such that $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$ is not nuclear and $\mathrm{C} \in \mathcal{L}\left(\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}\right)$ (cf. Example 5.2) as well as other $\alpha_{n} \uparrow \infty$ such that $\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}$ is not nuclear and C $\notin \mathcal{L}\left(\left(\Lambda_{0}^{1}(\alpha)\right)^{\prime}\right) ;$ see Example 5.3.

In order to be able to formulate the above claims more precisely, let $\left(v_{k}\right)_{k \in \mathbb{N}}$ be a sequence of functions $v_{k}: \mathbb{N} \rightarrow(0, \infty)$ satisfying $v_{k}(n) \uparrow_{n} \infty$, for each $k \in \mathbb{N}$, with $v_{k} \geq v_{k+1}$ pointwise on \mathbb{N} and $\lim _{n \rightarrow \infty} \frac{v_{k+1}(n)}{v_{k}(n)}=0$ for all $k \in \mathbb{N}$. Then $\ell_{\infty}\left(v_{k}\right) \subseteq c_{0}\left(v_{k+1}\right)$ continuously for each $k \in \mathbb{N}$ and so

$$
k_{0}(V):=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)=\operatorname{ind}_{k} \ell_{\infty}\left(v_{k}\right) .
$$

In the notation of Köthe echelon spaces $\lambda_{1}\left(\frac{1}{v}\right):=\operatorname{proj}_{k} \ell_{1}\left(\frac{1}{v_{k}}\right)$ is a FréchetSchwartz space whose strong dual space, i.e., the co-echelon space $\left(\lambda_{1}\left(\frac{1}{v}\right)\right)_{\beta}^{\prime}=$ $\operatorname{ind}_{k} \ell_{\infty}\left(v_{k}\right)=k_{0}(V)$, is a (DFS)-space. It is known that the regular (LB)-space $k_{0}(V)$ is nuclear if and only if the Fréchet-Schwartz space $\lambda_{1}\left(\frac{1}{v}\right)$ is nuclear if and only if the Grothendieck-Pietsch criterion is satisfied: for every $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that the sequence $\left(\frac{v_{l}(n)}{v_{k}(n)}\right)_{n \in \mathbb{N}} \in \ell_{1},[12$, Section 21.6]. In case $v_{k}(n):=e^{\alpha_{n} / k}$, for $k, n \in \mathbb{N}$, with $\alpha_{n} \uparrow \infty$, then $k_{0}(V)$ is the strong dual of the finite type power series space (of order 1) $\Lambda_{0}^{1}(\alpha):=\operatorname{proj}_{k} \ell_{1}\left(\frac{1}{v_{k}}\right)$. This Fréchet space is nuclear if and only if $\lim _{n \rightarrow \infty} \frac{\log (n)}{\alpha_{n}}=0$, [17, Proposition 29.6]. Whenever this nuclearity condition is satisfied we have $\Lambda_{0}^{1}(\alpha)=\operatorname{proj}_{j} c_{0}\left(\frac{1}{v_{k}}\right)$ which is
precisely the power series space $\Lambda_{0}(\alpha)$ in which the operator C was investigated in [6].

For the rest of this section, whenever $\alpha_{n} \uparrow \infty$ we only consider the weights $v_{k}(n):=e^{\alpha_{n} / k}$ for $k, n \in \mathbb{N}$.

Proposition 5.1. Let the sequence α_{n} satisfy $\alpha_{n} \uparrow \infty$ and $\lim _{n \rightarrow \infty} \frac{\log (n)}{\alpha_{n}}=0$. Then the Cesàro operator C does not act in $k_{0}(V)=\operatorname{ind}_{k} c_{0}\left(v_{k}\right)$.
Proof. Since $\lim _{n \rightarrow \infty} \frac{\log (n)}{\alpha_{n}}=0$, it follows from Lemma 2.2 of [6] that $\lim _{n \rightarrow \infty} n^{t} e^{-\alpha_{n}}=$ 0 for each $t \in \mathbb{N}$, which implies $\lim _{n \rightarrow \infty} n e^{-\alpha_{n} / l}=0$ for each $l \in \mathbb{N}$. In particular,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \frac{e^{\alpha_{n} / l}}{n}=\infty, \quad \forall l \in \mathbb{N} \tag{5.1}
\end{equation*}
$$

Suppose that $\mathrm{C} \in \mathcal{L}\left(k_{0}(V)\right)$, i.e., for every $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l>k$ such that $\mathrm{C}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous. Then, for $k:=1$ there exists $l_{1}>1$ such that $\mathrm{C}: c_{0}\left(v_{1}\right) \rightarrow c_{0}\left(v_{l_{1}}\right)$ is continuous, equivalently

$$
\begin{equation*}
M:=\sup _{n \in \mathbb{N}} \frac{v_{l_{1}}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{1}(m)}<\infty \tag{5.2}
\end{equation*}
$$

[4, Proposition 2.2(i)]. But, via (5.2), we then have for each $n \in \mathbb{N}$ that

$$
\frac{e^{\alpha_{n} / l_{1}}}{n}=v_{1}(1) \cdot \frac{v_{l_{1}}(n)}{n v_{1}(n)} \leq v_{1}(1) \cdot \frac{v_{l_{1}}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{1}(m)} \leq M v_{1}(1)
$$

This contradicts (5.1) for $l:=l_{1}$. Hence, C does not act in $k_{0}(V)$.
Example 5.2. Define $\alpha_{n}:=\log (n+1)$ for $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \frac{\log (n)}{\alpha_{n}}=1 \neq 0$, the space $k_{0}(V)$ is not nuclear. To see that $\mathcal{C} \in \mathcal{L}\left(k_{0}(V)\right)$ fix any $k \in \mathbb{N}$ and set $l:=k+1$. Noting that $v_{r}(n)=(n+1)^{1 / r}$ for $r, n \in \mathbb{N}$, it follows that

$$
\begin{equation*}
\frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{k}(m)}=\frac{(n+1)^{1 / l}}{n} \sum_{m=1}^{n} \frac{1}{(m+1)^{1 / k}} \leq \frac{2(n+1)^{1 / l}}{(n+1)} \sum_{m=1}^{n+1} \frac{1}{m^{1 / k}} \tag{5.3}
\end{equation*}
$$

for each $n \in \mathbb{N}$. If $k=1$, then $l=2$ and it follows from (5.3) and the inequality $\sum_{m=1}^{n+1} \frac{1}{m} \leq 1+\log (n+1)$ that the left-side of (5.3) is at most $\frac{2(1+\log (n+1))}{(n+1)^{1 / 2}}$, for $n \in \mathbb{N}$. For $k>1$, using the inequality $\sum_{m=1}^{n+1} \frac{1}{m^{\delta}} \leq 1+\frac{(n+1)^{1-\delta}}{1-\delta}, n \in \mathbb{N}$ (valid for each $\delta \in(0,1)$), with $\delta:=\frac{1}{k}$ it follows from (5.3) (with $l=k+1$) that

$$
\frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{k}(m)} \leq(n+1)^{\left(\frac{1}{k+1}-1\right)}+\frac{k(n+1)^{\frac{1}{k+1}-\frac{1}{k}}}{(k-1)}, \quad n \in \mathbb{N}
$$

In both the cases (i.e., $k=1$ and $k>1$) we see that $\sup _{n \in \mathbb{N}} \frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{k}(m)}<\infty$ and so $\mathrm{C}: c_{0}\left(v_{k}\right) \rightarrow c_{0}\left(v_{l}\right)$ is continuous, [4, Proposition 2.2(i)]. Since this is valid for every $k \in \mathbb{N}$ and with $l:=k+1$, it follows that $\mathrm{C} \in \mathcal{L}\left(k_{0}(V)\right)$.
Example 5.3. Let $(j(k))_{k \in \mathbb{N}} \subseteq \mathbb{N}$ be the sequence given by $j(1):=1$ and $j(k+$ 1) $:=2(k+1)(j(k))^{k}$, for $k \geq 1$. Observe that $j(k+1)>k(j(k))^{k}+1>j(k)$ for all $k \in \mathbb{N}$. Define $\beta=\left(\beta_{n}\right)_{n \in \mathbb{N}}$ via $\beta_{n}:=k(j(k))^{k}$ for $n=j(k), \ldots, j(k+1)-1$. Then β is non-decreasing with $\lim _{n \rightarrow \infty} \beta_{n}=\infty$. Let $\gamma=\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be any strictly increasing sequence satisfying $2<\gamma_{n} \uparrow 3$. Then the sequence $\alpha_{n}:=\log \left(\beta_{n}+\gamma_{n}\right)$,
for $n \in \mathbb{N}$, satisfies $1<\alpha_{n} \uparrow \infty$ and $\lim _{n \rightarrow \infty} \frac{\log (n)}{n} \neq 0$, [6, Remark 2.17]. In particular, $k_{0}(V)$ it not nuclear. To establish that C does not act in $k_{0}(V)$ is suffices to show, for $k:=1$, that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{1}(m)}=\infty, \quad \forall l \in \mathbb{N} \tag{5.4}
\end{equation*}
$$

So, fix any $l \in \mathbb{N}$. Select $n=j(k)$, for any $k \in \mathbb{N}$, and observe (for this n) that

$$
\begin{aligned}
& \frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{1}(m)}=\frac{\left(\beta_{j(k)}+\gamma_{j(k)}\right)^{1 / l}}{j(k)} \sum_{m=1}^{j(k)} \frac{1}{\beta_{m}+\gamma_{m}} \geq \frac{\left(\beta_{j(k)}+\gamma_{j(k)}\right)^{1 / l}}{j(k)} \cdot \frac{1}{\left(\beta_{1}+\gamma_{1}\right)} \\
& \quad \geq \frac{\left(k(j(k))^{k}+\gamma_{j(k)}\right)^{1 / l}}{4 j(k)} \geq \frac{k^{1 / l}(j(k))^{\left(\frac{k}{l}\right)-1}}{4} \geq \frac{k^{1 / l} k^{\left(\frac{k}{l}\right)-1}}{4}
\end{aligned}
$$

where we have used $\frac{1}{\beta_{1}+\gamma_{1}}>\frac{1}{4}$ and $j(k) \geq k$. Accordingly,

$$
\sup _{n \in \mathbb{N}} \frac{v_{l}(n)}{n} \sum_{m=1}^{n} \frac{1}{v_{1}(m)} \geq \sup _{k \in \mathbb{N}} \frac{v_{l}(j(k))}{j(k)} \sum_{m=1}^{j(k)} \frac{1}{v_{1}(m)} \geq \sup _{k \in \mathbb{N}} \frac{k^{1 / l} k^{\left(\frac{k}{l}\right)-1}}{4}=\infty
$$

So, (5.4) is satisfied and hence, C does not act in $k_{0}(V)$.
The final two (abstract) results are recorded here in order not to disturb the flow of the text in earlier sections (where these results are needed). We begin with a fact which is surely known; a proof is included for the sake of self containment.

Lemma 5.4. Let $E=\operatorname{ind}_{k}\left(E_{k},\| \|_{k}\right)$ be a regular inductive limit of Banach spaces. Then a subset $\mathcal{H} \subseteq \mathcal{L}(E)$ is equicontinuous if and only if the following condition is satisfied: for every $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $l \geq k$ and $D>0$ such that

$$
\begin{equation*}
\|T x\|_{l} \leq D\|x\|_{k}, \quad \forall T \in \mathcal{H}, x \in E_{k} \tag{5.5}
\end{equation*}
$$

Proof. First, assume that \mathcal{H} is equicontinuous. Fix $k \in \mathbb{N}$, in which case the closed unit ball B_{k} of E_{k} is bounded in E. The claim is that $C:=\cup_{T \in \mathcal{H}} T\left(B_{k}\right)$ is bounded in E. Indeed, by equicontinuity of \mathcal{H}, given any 0 -neighbourhood V in E there exists a 0 -neighbourhood U in E such that $T(U) \subseteq V$ for all $T \in \mathcal{H}$. Since B_{k} is bounded in E, there exists $\lambda>0$ such that $B_{k} \subseteq \lambda U$ and hence, $T\left(B_{k}\right) \subseteq \lambda T(U) \subseteq \lambda V$ for all $T \in \mathcal{H}$. It follows that $C \subseteq \lambda V$. Since V is arbitrary, it follows that C is bounded in E. But, E is regular and so there exists $l \geq k$ such that C is contained and bounded in E_{l}. Thus, there exists $D>0$ such that $\|T x\|_{l} \leq D$ for all $x \in B_{k}$ and $T \in \mathcal{H}$. Accordingly, the stated condition (5.5) is satisfied.

Assume that the stated condition (5.5) is satisfied. Since E is barrelled, the Banach-Steinhaus principle is available and so it suffices to show that the set $\{T y: T \in \mathcal{H}\}$ is bounded in E for each $y \in E$. So, fix $y \in E$ in which case $y \in E_{k}$ for some $k \in \mathbb{N}$. Selecting $l \geq k$ and $D>0$ according to condition (5.5), we have $\|T y\|_{l} \leq D\|y\|_{k}$ for all $T \in \mathcal{H}$. Hence, the set $\{T y: T \in \mathcal{H}\}$ is bounded in E_{l} and so, also in E.

The following result occurs in [7, Lemma 5.2].
Lemma 5.5. Let $E=\operatorname{ind}_{n}\left(E_{n},\|\cdot\|_{n}\right)$ be a Hausdorff inductive limit of Banach spaces. Let $T \in \mathcal{L}(E)$ satisfy the following condition:
(A) For each $n \in \mathbb{N}$ the restriction T_{n} of T to E_{n} maps E_{n} into itself and belongs to $\mathcal{L}\left(E_{n}\right)$.
Then the following properties are satisfied.
(i) $\sigma_{p t}(T ; E)=\cup_{n \in \mathbb{N}} \sigma_{p t}\left(T_{n} ; E_{n}\right)$.
(ii) $\sigma(T ; E) \subseteq \cap_{m \in \mathbb{N}}\left(\cup_{n=m}^{\infty} \sigma\left(T_{n} ; E_{n}\right)\right)$. Moreover, if $\lambda \in \cap_{n=m}^{\infty} \rho\left(T_{n} ; E_{n}\right)$ for some $m \in \mathbb{N}$, then $R\left(\lambda, T_{n}\right)$ coincides with the restriction of $R(\lambda, T)$ to E_{n} for each $n \geq m$.
(iii) If $\cup_{n=m}^{\infty} \sigma\left(T_{n} ; E_{n}\right) \subseteq \overline{\sigma(T ; E)}$ for some $m \in \mathbb{N}$, then $\sigma^{*}(T ; E)=\overline{\sigma(T ; E)}$.

Acknowledgements. The research of the first two authors was partially supported by the projects MTM2016-76647-P (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.

References

[1] A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34 (2009), 401-436.
[2] A.A. Albanese, J. Bonet, W.J. Ricker, Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36 (2013), 253-290.
[3] A.A. Albanese, J. Bonet, W.J. Ricker, Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401 (2013), 160-173.
[4] A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodicity and spectrum of the Cesàro operator on weighted c_{0} spaces. Positivity, 20 (2016), 761-803.
[5] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator in the Fréchet spaces ℓ^{p+} and L^{p-}. Glasgow Math. J., 59 (2017) 273-287.
[6] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator on power series spaces. Studia Math., 240 (2018), 47-68.
[7] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math., DOI 10.1007/s13348-017-0205-7 (to appear).
[8] K.D. Bierstedt, R. Meise and W. H. Summers, Kothe sets and Kothe sequence spaces. In: Functional analysis, holomorphy and approximation theory (ed. J. A. Barroso), NorthHolland Math. Studies 71, North-Holland, Amsterdam, 1982, pp. 27-91.
[9] K.D. Bierstedt, An introduction to locally convex inductive limits. In: Functional Analysis and its Applications. Ed. H. Hogbe-Nlend, World Scientific, Singapore, 1988, pp.35-133.
[10] N. Dunford, J.T. Schwartz, Linear Operators I: General Theory. 2nd Printing, Wiley Interscience Publ., New York, 1964.
[11] R.E. Edwards, Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York Chicago San Francisco, 1965.
[12] H. Jarchow, Locally Convex Spaces. Stuttgart, Teubner, 1981.
[13] G.H. Hardy, Divergent Series. Clarendon Press. Oxford, 1949.
[14] G. Köthe, Topological Vector Spaces I. 2nd printing-revised, Springer, Berlin Heidelberg, 1983.
[15] U. Krengel, Ergodic Theorems. de Gruyter Studies in Mathematics, 6. Walter de Gruyter Co., Berlin, 1985.
[16] M. Lin, On the uniform ergodic theorem. Proc. Amer. Math. Soc. 43 (1974), 337-340.
[17] R. Meise, D. Vogt, Introduction to Functional Analysis. Clarendon Press, Oxford, 1997.
[18] P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces. North Holland Math. Studies, 131, North Holland, Amsterdam, 1987.
[19] J.B. Reade, On the spectrum of the Cesàro operator. Bull. London Math. Soc. 17 (1985), 263-267.
[20] A.E. Taylor, Introduction to Functional Analysis. John Wiley \& Sons, New York 1958.
[21] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichen Typ. Studia Math. 71 (1982), 251-270.
[22] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichen Typ und ihre Folgerungen. Manuscripta Math. 37 (1982), 269-301.
[23] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist. J. reine angew. Math., 345 (1983), 182-200.

Angela A. Albanese, Dipartimento di Matematica e Fisica "E. De Giorgi", UniVersità del Salento- C.P.193, I-73100 Lecce, Italy

E-mail address: angela.albanese@unisalento.it
José Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 Valencia, Spain

E-mail address: jbonet@mat.upv.es
Werner J. Ricker, Math.-Geogr. Fakultät, Katholische Universität EichstättIngolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku-eichstaett.de

[^0]: Key words and phrases. Cesàro operator, duals of power series spaces, spectrum, (LB)-space, mean ergodic operator, nuclear space.

 Mathematics Subject Classification 2010: Primary 47A10, 47B37; Secondary 46A04, 46A11, 46A13, 46A45, 47A35.

 This article is accepted for publication in Journal of Operator Theory.

