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Abstract. A detailed investigation is made of the continuity, spectrum and
mean ergodic properties of the Cesàro operator C when acting on the strong
duals of power series spaces of in�nite type. There is a dramatic di�erence in
the nature of the spectrum of C depending on whether or not the strong dual
space (which is always Schwartz) is nuclear.

1. Introduction and Notation.

The discrete Cesàro operator C is de�ned on the linear space CN (consisting of
all scalar sequences) by

Cx :=

(
x1,

x1 + x2
2

, . . . ,
x1 + . . .+ xn

n
, . . .

)
, x = (xn)n∈N ∈ CN. (1.1)

The linear operator C is said to act in a vector subspace X ⊆ CN if it maps X
into itself. Of particular interest is the situation when X is a Fréchet space or an
(LF)-space. Two fundamental questions in this case are: Is C : X → X continuous
and, if so, what is its spectrum? For a large collection of classical Banach spaces
X ⊆ CN where precise answers are known we refer to the Introductions in [4],
[6], for example. The discrete Cesàro operator C acting on the Fréchet sequence
space CN, on ℓp+ := ∩q>pℓq, and on the power series spaces Λ0(α) := Λ1

0(α) of
�nite type was investigated in [3], [5], [6], respectively. The aim of this paper is to
investigate the behaviour of C when it acts on the strong duals (Λ1

∞(α))′ of power
series spaces Λ1

∞(α) of in�nite type. Power series spaces of in�nite type play an
important role in the isomorphic classi�cation of Fréchet spaces, [17], [21], [22].
The reason for concentrating on the in�nite type dual spaces (Λ1

∞(α))′ is that the
Cesàro operator C fails to be continuous on �most� of the �nite type dual spaces
(Λ1

0(α))
′. This is explained more precisely in an Appendix (Section 5) at the end

of the paper.
In order to describe the main results we require some notation and de�nitions.
Let X be a locally convex Hausdor� space (brie�y, lcHs) and ΓX a system of

continuous seminorms determining the topology of X. Let X ′ denote the space
of all continuous linear functionals on X. The family of all bounded subsets of X
is denoted by B(X). Denote the identity operator on X by I. Let L(X) denote
the space of all continuous linear operators from X into itself. For T ∈ L(X), the
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resolvent set ρ(T ) of T consists of all λ ∈ C such that R(λ, T ) := (λI−T )−1 exists
in L(X). The set σ(T ) := C\ρ(T ) is called the spectrum of T . The point spectrum
σpt(T ) of T consists of all λ ∈ C such that (λI − T ) is not injective. If we need
to stress the space X, then we also write σ(T ;X), σpt(T ;X) and ρ(T ;X). Given
λ, µ ∈ ρ(T ) the resolvent identity R(λ, T ) − R(µ, T ) = (µ − λ)R(λ, T )R(µ, T )
holds. Unlike for Banach spaces, it may happen that ρ(T ) = ∅ (cf. Remark
2.6(ii)) or that ρ(T ) is not open in C; see Proposition 2.9(i) for example. That
is why some authors prefer the subset ρ∗(T ) of ρ(T ) consisting of all λ ∈ C for
which there exists δ > 0 such that the open disc B(λ, δ) := {z ∈ C : |z − λ| <
δ} ⊆ ρ(T ) and {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous in L(X). If X is a
Fréchet space or even an (LF)-space, then it su�ces that such sets are bounded
in Ls(X), where Ls(X) denotes L(X) endowed with the strong operator topology
τs which is determined by the seminorms T 7→ qx(T ) := q(Tx), for all x ∈ X and
q ∈ ΓX . The advantage of ρ∗(T ), whenever it is non-empty, is that it is open
and the resolvent map R : λ 7→ R(λ, T ) is holomorphic from ρ∗(T ) into Lb(X),
[2, Proposition 3.4]. Here Lb(X) denotes L(X) endowed with the lcH-topology τb
of uniform convergence on members of B(X); it is determined by the seminorms
T 7→ qB(T ) := supx∈B q(Tx), for T ∈ L(X), for all B ∈ B(X) and q ∈ ΓX . De�ne
σ∗(T ) := C \ ρ∗(T ), which is a closed set containing σ(T ). If T ∈ L(X) with X
a Banach space, then σ(T ) = σ∗(T ). In [2, Remark 3.5(vi), p.265] an example
of a continuous linear operator T on a Fréchet space X is presented such that
σ(T ) ⊂ σ∗(T ) properly. For unde�ned concepts concerning lcHs' see [12], [17].

Each positive, strictly increasing sequence α = (αn) which tends to in�nity
generates a power series space Λ1

∞(α) of in�nite type; see Section 2. The strong
dual Eα ⊆ CN of Λ1

∞(α) is then a co-echelon space, i.e., a particular kind of
inductive limit of Banach spaces (of sequences), which is necessarily a Schwartz
space in our setting. It turns out (cf. Proposition 2.1) that always C ∈ L(Eα).
Furthermore, it is known that the nuclearity of the space Eα is characterized by

the condition supn∈N
log(n)
αn

< ∞. Remarkably, this is equivalent to the operator

C ∈ L(Eα) being invertible, i.e., 0 ∈ ρ(C;Eα); see Proposition 2.4. Actually, the
main results of this section (namely, Proposition 2.9 and Corollary 2.10) establish
the equivalence of the following assertions:

(i) Eα is nuclear.
(ii) σ(C;Eα) = σpt(C;Eα) .
(iii) σ(C;Eα) = { 1

n : n ∈ N}.
Moreover, in this case we have σ∗(C;Eα) = {0} ∪ σ(C;Eα). So, whenever Eα is
nuclear, the spectra σpt(C;Eα), σ(C;Eα) and σ∗(C;Eα) are completely identi�ed.
In particular, these spectra of C are independent of α.

The operator D ∈ L(CN) of di�erentiation (de�ned in the obvious way) is
closely connected to the Cesàro operator C ∈ L(CN) via the identity (valid in
L(CN))

C−1 = (I − Sr)DSr,

where Sr ∈ L(CN) is the right-shift operator. It is always the case that Sr ∈ L(Eα)
whenever αn ↑ ∞. Moreover, it follows from (i)-(iii) above that C−1 ∈ L(Eα)
precisely when Eα is nuclear. So, the above identity for C−1 suggests that there
should be a connection between the continuity of D on Eα and the nuclearity of
Eα. This is clari�ed by Proposition 2.5. Namely, D is continuous on Eα if and
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only if Eα is both nuclear and supn∈N
αn+1

αn
< ∞. Remark 2.6(i) shows that these

two conditions are independent of one another.
Section 3 identi�es the spectra of C ∈ L(Eα) in the case when Eα is not nuclear.

We have seen if Eα is nuclear, then σ(C;Eα) is a bounded, in�nite and countable
set with no accumulation points. For Eα non-nuclear the spectrum of C is very
di�erent. Indeed, in this case

σ(C;Eα) = {0, 1} ∪ {λ ∈ C : |λ− 1
2 | <

1
2} and σ∗(C;Eα) = {λ ∈ C : |λ− 1

2 | ≤
1
2}

whenever supn∈N
log(log(n))

αn
< ∞, whereas

σ(C;Eα) = σ∗(C;Eα) = {λ ∈ C : |λ− 1
2 | ≤

1
2}

otherwise; see Proposition 3.4. Again the spectra of C are independent of α.
J. von Neumann (1931) proved that unitary operators T in Hilbert space are

mean ergodic, i.e., the sequence of its averages 1
n

∑n
m=1 T

m, for n ∈ N, converges
for the strong operator topology (to a projection). Ever since, intensive research
has been undertaken to identify the mean ergodicity of individual (and classes)
of operators both in Banach spaces and non-normable lcHs'; see [1], [15] for
example, and the references therein. In Section 4 it is shown, for every sequence
α with αn ↑ ∞, that the Cesàro operator C ∈ L(Eα) is always power bounded,

(uniformly) mean ergodic and Eα = Ker(I−C)⊕(I − C)(Eα); see Proposition 4.1.
Actually, even the sequence {Cm}∞m=1 of the iterates of C (not just its averages)
turns out to be convergent, not only in Ls(Eα) but also in Lb(Eα); see Proposition
4.2. Furthermore, if Eα is nuclear, then the range (I − C)m(Eα) of the operator
(I − C)m is a closed subspace of Eα for each m ∈ N (cf. Proposition 4.3). For
m = 1 this is an analogue, for the operator C ∈ L(Eα), of a result of M. Lin
for arbitrary uniformly mean ergodic Banach space operators T which satisfy

limn→∞
∥Tn∥
n = 0, [16].

2. The Spectrum of C in the nuclear case

Let α := (αn) be a positive, strictly increasing sequence tending to in�nity,
brie�y, αn ↑ ∞. Let (sk) ⊆ (1,∞) be another strictly increasing sequence sat-
isfying sk ↑ ∞ . For each k ∈ N, de�ne vk : N → (0,∞) by vk(n) := s−αn

k for
n ∈ N. Then vk(n) ≥ vk(n+ 1), for n ∈ N, i.e., vk is a decreasing sequence, and
vk ≥ vk+1 pointwise on N for all k ∈ N. Set V := (vk) and note that vk ∈ c0 for
all k ∈ N.

De�ne the co-echelon spaces Eα := ind k c0(vk), that is, Eα is the (increasing)
union of the weighted Banach spaces c0(vk), k ∈ N, endowed with the �nest lcH-
topology such that each natural inclusion map c0(vk) ↪→ Eα is continuous. Since

limn→∞
vk+1(n)
vk(n)

= 0, for k ∈ N, implies that ℓ∞(vk) ⊆ c0(vk+1) continuously,

for k ∈ N, it follows that also Eα := ind k ℓ∞(vk). Observing that the power
series space Λ1

∞(α) := proj k ℓ1(v
−1
k ) of in�nite type is Fréchet-Schwartz (hence,

distinguished), [17, p. 357], it follows that Eα := ind k c0(vk) = ind k ℓ∞(vk) =
(Λ1

∞(α))′ is the strong dual of Λ1
∞(α), [17, Remark 25.13]. The condition

vk+1

vk
∈ c0

for k ∈ N implies that Eα is always a (DFS)-space, [17, p. 304], and in particular,
a Montel space, [17, Remark 24.24]. Note that power series spaces in [17, Chapter
24] are de�ned using ℓ2-norms. It follows from [17, Proposition 29.6] that Λ1

∞(α)
is a nuclear Fréchet space (equivalently, Eα is a (DFN)-space) if and only if
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supn∈N
logn
αn

< ∞. This criterion plays a relevant role throughout this section. As

the space Eα does not change if (sk) is replaced by any other strictly increasing
sequence in (1,∞) tending to in�nity, we sometimes choose sk := ek, k ∈ N. For
each k ∈ N, de�ne the norm

qk(x) := sup
n∈N

vk(n)|xn|, x = (xn) ∈ ℓ∞(vk),

whose restriction to c0(vk) is the norm of c0(vk). Observe, for each k ∈ N, that
c0(vk) ⊆ c0(vl) for every l ∈ N with l ≥ k, and

ql(x) ≤ qk(x), x ∈ c0(vk). (2.1)

As general references for co-echelon spaces we refer to [8], [9], [14], [17], for
example.

Proposition 2.1. For each αn ↑ ∞ the Cesàro operator satsi�es C ∈ L(Eα).

Proof. Since each sequence vk , for k ∈ N, is decreasing, Corollary 2.3(i) of [4]
implies that the Cesàro operator at each step, namely C : c0(vk) → c0(vk), for
k ∈ N, is continuous. The result then follows from the general theory of (LB)-
spaces as Eα = ind k c0(vk). �
Lemma 2.2. Let αn ↑ ∞. The following conditions are equivalent.

(i) supn∈N
logn
αn

< ∞.

(ii) For each γ > 0 there exists M(γ) ∈ N such that supn∈N nγe−M(γ)αn < ∞.

(iii) For some γ > 0 and M(γ) ∈ N we have supn∈N nγe−M(γ)αn < ∞.

Proof. (i)⇒(ii). Fix any γ > 0. By assumption there exists D > 0 such that
log n ≤ Dαn for all n ∈ N. Let M(γ) ∈ N satisfy M(γ) ≥ γD. Then γ log n ≤
γDαn ≤ M(γ)αn for all n ∈ N and hence, nγ ≤ eM(γ)αn for all n ∈ N.

(ii)⇒(iii) is clear.

(iii)⇒(i). By assumption supn∈N nγe−M(γ)αn < ∞. So, there exists D > 1 such

that nγ ≤ DeM(γ)αn for all n ∈ N. It follows for each n ∈ N that logn
αn

≤ logD
γαn

+M
γ .

Since αn → ∞, we can conclude that supn∈N
logn
αn

< ∞. �
We now turn our attention to the spectrum of C ∈ L(Eα), for which we in-

troduce the notation Σ := { 1
n : n ∈ N} and Σ0 := {0} ∪ Σ. The Cesàro ma-

trix C, when acting in CN, is similar to the diagonal matrix diag(( 1n)). Indeed,

C = ∆diag(( 1n))∆ with ∆ = ∆−1 = (∆nk)n,k∈N ∈ L(CN) the lower triangular

matrix where, for each n ∈ N, ∆nk = (−1)k−1
(
n−1
k−1

)
, for 1 ≤ k < n and ∆nk = 0

if k > n, [13, pp. 247-249]. Thus σpt(C;CN) = Σ and each eigenvalue 1
n has multi-

plicity 1 with eigenvector ∆en, where en := (δnk)k∈N, for n ∈ N, are the canonical
basis vectors in CN. Moreover, λI − C is invertible for each λ ∈ C \ Σ. If X is a
lcHs continuously contained in CN and C(X) ⊆ X, then

σpt(C;X) = { 1
n : n ∈ N, ∆en ∈ X} ⊆ Σ. (2.2)

In case the space φ (of all �nitely supported vectors in CN) is densely contained
in X, then φ ⊆ X ′ and Σ ⊆ σpt(C

′;X ′) ⊆ σ(C;X), where C′ is the dual operator
of C. Observe that always ∆e1 = 1 := (1)n∈N ∈ c0(v1) ⊆ Eα whenever αn ↑ ∞.
Since φ is dense in Eα for every α with αn ↑ ∞, we conclude that always

1 ∈ σpt(C;Eα) ⊆ Σ ⊆ σ(C;Eα). (2.3)
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We point out that C does not act in the vector space φ := ind k Ck ⊆ CN because
e1 ∈ φ but Ce1 = ( 1n) /∈ φ.

Proposition 2.3. For α with αn ↑ ∞ the following assertions are equivalent.

(i) Eα is nuclear.

(ii) supn∈N
logn
αn

< ∞.

(iii) σpt(C;Eα) = Σ .

(iv) σpt(C;Eα) \ {1} ̸= ∅.

Proof. (i) ⇔ (ii). See the introduction to this section.
(ii) ⇒ (iii). Observe that ∆em, for �xed m ∈ N, behaves asymptotically like

(nm−1)n∈N, i.e., |(∆em)| ≃ nm−1 for n → ∞. By Lemma 2.2 each ∆em ∈ Eα for
m ∈ N. Hence, (2.2) yields that σpt(C;Eα) = Σ.

(iii) ⇒ (iv). Obvious.
(iv) ⇒ (ii). For this proof select vk(n) := e−kαn , n ∈ N, for each k ∈ N.

By (2.3) and the assumption (iv) there exists m ∈ N with m > 1 such that
1
m ∈ σpt(C;Eα), i.e., ∆em ∈ Eα. As seen in the proof of (ii) ⇒ (iii) we then have

(nm−1)n∈N ∈ Eα. Hence, for some k ∈ N, (nm−1)n∈N ∈ c0(vk) and so there exists
M > 1 such that nm−1vk(n) = nm−1e−kαn ≤ M for all n ∈ N. It follows from
Lemma 2.2 that (ii) holds. �
Proposition 2.4. Let αn ↑ ∞. The following conditions are equivalent.

(i) supn∈N
logn
αn

< ∞, i.e., Eα is nuclear.

(ii) C ∈ L(Eα) is invertible, i.e., 0 ∈ ρ(C;Eα).

Proof. Note that C : CN → CN is bijective with inverse C−1 : CN → CN given by

C−1y = (nyn − (n− 1)yn−1), y = (yn) ∈ CN, (2.4)

with y0 := 0. Accordingly, 0 ̸∈ σ(C;Eα) if and only if C
−1 : Eα → Eα is continuous

if and only if for each k ∈ N there exists l ≥ k such that C−1 : c0(vk) → c0(vl) is
continuous.

For the rest of the proof we select vk(n) := e−kαn for k, n ∈ N, i.e., sk := ek.
(i)⇒(ii). By Lemma 2.2 there exists m ∈ N with D := supn∈N ne−mαn < ∞.

Fix k ∈ N and set l := m+ k. Let y = (yn) ∈ c0(vk). For each n ∈ N, we have

vl(n)(C
−1y) = e−lαn |nyn − (n− 1)yn−1| ≤ e−lαnn|yn|+ e−lαn−1(n− 1)|yn−1|

≤ D(e−kαn |yn|+ e−kαn−1 |yn−1|) ≤ 2Dqk(y).

Forming the supremum relative to n ∈ N yields ql(C
−1y) ≤ 2Dqk(y) for all

y ∈ c0(vk). Accordingly, C−1 : c0(vk) → c0(vl) is continuous. Since k ∈ N is
arbitrary, it follows that C−1 : Eα → Eα is continuous and so 0 ∈ ρ(C;Eα).

(ii)⇒(i). By assumption C−1 : Eα → Eα is continuous. So, there exists l ∈ N
such that C−1 : c0(v1) → c0(vl) is continuous, that is, there exists D > 1 such that
ql(C

−1y) ≤ Dq1(y) for all y ∈ c0(v1). Since C
−1en = nen−nen+1 and ql(C

−1en) =
max{nvl(n), nvl(n + 1)} = nvl(n) = ne−lαn , with q1(en) = v1(n) = e−αn , for all

n ∈ N, it follows that ne−lαn ≤ De−αn , for n ∈ N. Hence, ne(1−l)αn ≤ D, for
n ∈ N, which implies that supn∈N

logn
αn

< ∞. �

The operator of di�erentiation D acts on CN via

D(x1, x2, x3, . . .) := (x2, 2x3, 3x4, . . .), x = (xn) ∈ CN.
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Clearly D ∈ L(CN). According to (2.4) and a routine calculation the inverse
operator C−1 ∈ L(CN) is given by

C−1 = (I − Sr)DSr, (2.5)

where Sr ∈ L(CN) is the right-shift operator, i.e., Srx := (0, x1, x2, . . .) for x ∈
CN. Fix k ∈ N. Since vk is decreasing on N, it follows that

qk(Srx) := sup
n∈N

vk(n+ 1)|xn| ≤ sup
n∈N

vk(n)|xn| = qk(x), x ∈ c0(vk).

Hence, Sr : c0(vk) → c0(vk) is continuous for each k ∈ N which implies (for every
αn ↑ ∞) that Sr ∈ L(Eα). Moreover, Proposition 2.4 shows that C−1 ∈ L(Eα) if
and only if Eα is nuclear. The identity (2.5) suggests there should be a connection
between the nuclearity of Eα and the continuity of D on Eα. The following result
addresses this point. Recall that Eα is shift stable if lim supn→∞

αn+1

αn
< ∞, [23].

Proposition 2.5. For α with αn ↑ ∞ the following assertions are equivalent.

(i) D(Eα) ⊆ Eα, i.e., D acts in Eα.

(ii) The di�erentiation operator D ∈ L(Eα).
(iii) For every k ∈ N there exists l ∈ N with l > k such that D : c0(vk) → c0(vl)

is continuous.

(iv) For every k ∈ N there exist l ∈ N with l > k and M > 0 such that

nvl(n) ≤ Mvk(n+ 1), n ∈ N.
(v) The space Eα is both nuclear and shift stable.

Proof. (i)⇔(ii) is immediate from the closed graph theorem for (LB)-spaces, [17,
Theorem 24.31 and Remark 24.36].

(ii)⇔(iii) is a general fact about continuous linear operators between (LB)-
spaces.

(iii)⇒(iv). Fix k ∈ N. By (iii) there exists l ∈ N with l > k such that
D : c0(vk) → c0(vl) is continuous. Hence, there is M > 0 satisfying

ql(Dx) = sup
n∈N

vl(n)|(Dx)| ≤ Mqk(x) = M sup
n∈N

vk(n)|xn|, x ∈ c0(vk).

For each j ∈ N with j ≥ 2 substitute x := ej in the previous inequality (noting
that Dx = Dej = (j − 1)ej−1) yields (j − 1)vl(j − 1) ≤ Mvk(j). Since j ≥ 2 is
arbitrary, this is precisely (iv).

(iv)⇒(iii). Given any k ∈ N select l > k and M > 0 which satisfy (iv). Fix
x ∈ c0(vk). Then, for each n ∈ N, we have via (iv) that

vl(n)|(Dx)| = nvl(n)|xn+1| ≤ Mvk(n+ 1).

Forming the supremum relative to n ∈ N of both sides of this inequality yields

ql(Dx) ≤ Mqk(x), x ∈ c0(vk),

which is precisely (iii).
(iv)⇒(v). For k = 1, condition (iv) ensures the existence of l > 1 and M > 1

such that
nvl(n) ≤ Mv1(n+ 1) ≤ Mv1(n), n ∈ N. (2.6)

For the remainder of the proof of this proposition, choose sk := ek for k ∈ N. It
follows from (2.6) that ne−lαn ≤ Me−αn for all n ∈ N. By Lemma 2.2 one can
conclude that Eα is nuclear.
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To prove that Eα is shift stable observe that the left-inequality in (2.6) is
ne−lαn ≤ Me−αn+1 for n ∈ N. Taking logarithms and rearranging yields

αn+1

αn
≤ l +

log(M)

αn
− log(n)

αn
, n ∈ N.

Since supn∈N
log(n)
αn

< ∞ (as Eα is nuclear) and supn∈N
log(M)

αn
< ∞ it follows that

supn∈N
αn+1

αn
< ∞, i.e., Eα is shift-stable.

(v)⇒(iv). Fix k ∈ N. Since Eα is shift stable, there exists h ∈ N such that
αn+1 ≤ hαn for n ∈ N. Because of the nuclearity of Eα, Lemma 2.2 implies the
existence of M ∈ N which satis�es L := supn∈N ne−Mαn < ∞. Set l := M + hk.
Then l ∈ N and, for each n ∈ N, it follows that

nvl(n) = ne−lαn = ne−Mαne−hkαn ≤ Le−k(hαn) ≤ Le−kαn+1 = Lvk(n+ 1).

This is precisely condition (iv). �

Remark 2.6. (i) There exist nuclear spaces Eα for which D is not continuous on
Eα. Let αn := nn for n ∈ N. Then Eα is nuclear but, not shift stable. Proposition
2.5 implies that D /∈ L(Eα). On the other hand, for αn := log(log(n)) for n ≥ 3,
the space Eα is shift stable but, not nuclear; again D /∈ L(Eα).

(ii) Because v1 ↓ 0, it is clear that ℓ∞ ⊆ ℓ∞(v1) ⊆ Eα := ind k ℓ∞(vk) for

every α with αn ↑ ∞. Accordingly, if xλ := ( λn−1

(n−1)!)n∈N for λ ∈ C, then clearly

{xλ : λ ∈ C} ⊆ ℓ∞ and so {xλ : λ ∈ C} ⊆ Eα. Since Dxλ = λxλ for each λ ∈ C,
we have established (via Proposition 2.5) the following fact.

Let α with αn ↑ ∞ be a sequence such that Eα is both nuclear and shift stable.

Then D ∈ L(Eα) and

σpt(D;Eα) = σ(D;Eα) = σ∗(D;Eα) = C.

In order to determine σ(C;Eα) we require some further preliminaries. De�ne
the continuous function a : C \ {0} → R by a(z) := Re(1z ) for z ∈ C \ {0}. The
following result is a re�nement of [19, Lemma 7].

Lemma 2.7. Let λ ∈ C\Σ0. Then there exists δ = δλ > 0 and positive constants

dδ, Dδ such that B(λ, δ) ∩ Σ0 = ∅ and

dδ
Na(µ)

≤
N∏

n=1

∣∣1− 1
nµ

∣∣ ≤ Dδ

Na(µ) , ∀N ∈ N, µ ∈ B(λ, δ). (2.7)

Proof. Fix λ ∈ C\Σ0 and write 1
λ = α+iβ with α, β ∈ R, i.e., α = a(λ). Observe

that

1− 2α

n
+

(α2 + β2)

n2
=

(
1− α

n

)2
+

β2

n2
> 0, n ∈ N.

Using the inequality (1 + x) ≤ ex for x ∈ R we conclude that (1 + x)1/2 ≤ ex/2

for all x ≥ −1. In particular, for x := −2α
n + (α2+β2)

n2 it follows that(
1− 2α

n
+

(α2 + β2)

n2

)1/2
≤ exp

(
− α

n
+

(α2 + β2)

2n2

)
, n ∈ N.
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Fix N ∈ N. Since
∑N

n=1
1
n2 < 2, we conclude that

N∏
n=1

∣∣∣1− 1

nλ

∣∣∣ = N∏
n=1

(
1− 2α

n
+

(α2 + β2)

n2

)1/2

≤ exp
( N∑

n=1

−α

n
+

(α2 + β2)

2n2

)
≤ exp(α2 + β2) exp

(
− α

N∑
n=1

1

n

)
= exp

( 1

|λ|2
)
exp

(
− α

N∑
n=1

1

n

)
.

By considering separately the cases when α ≤ 0 and α > 0 and employing the
inequalities

log(k + 1) ≤
k∑

n=1

1

n
≤ 1 + log(k), k ∈ N, (2.8)

it turns out that

exp
(
− α

N∑
n=1

1

n

)
≤ e|a(λ)|

Na(λ)
≤ e1/|λ|

Na(λ)
.

Accordingly, we have that

N∏
n=1

∣∣1− 1

nλ

∣∣ ≤ exp( 1
|λ| +

1
|λ|2 )

Na(λ)
, N ∈ N. (2.9)

From above, for each n ∈ N, we have |1 − 1
nλ |

−1 = (1 + xn)
−1/2, where xn :=

−2α
n + (α2+β2)

n2 satis�es xn > −1. Applying Taylor's formula to the function

f(x) = (1 + x)−1/2 for x > −1 yields, for each n ∈ N, that

(1 + xn)
−1/2 = f(0) + f ′(0)xn +

f ′′(θnxn)

2!
x2n

= 1− 1
2xn + 3

4(1 + θnxn)
−5/2x2n

for some θn ∈ (0, 1). Substituting for xn its de�nition and rearranging we get

(1+xn)
−1/2 = 1+

α

n
− (α2 + β2)

2n2
+ 3

4(1−θn+θn|1− 1
λn |)

−5/2
(
− 2α

n
+
(α2 + β2)

n2

)2
,

for each n ∈ N. De�ning d(λ) := dist(λ,Σ0) ≤ |λ| we have∣∣1− 1
λn

∣∣ = 1
|λ| ·

∣∣λ− 1
n

∣∣ ≥ d(λ)
|λ| , n ∈ N.

Hence, for each n ∈ N, it follows that

1− θn + θn
∣∣1− 1

λn

∣∣ ≥ 1− θn + θn
d(λ)
|λ| ≥ min

{
1, d(λ)|λ|

}
= d(λ)

|λ| ,

where we have used the inequality

1− x+ γx ≥ min{1, γ}, ∀γ ∈ R, x ∈ [0, 1].
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Accordingly,
(
1− θn + θn

∣∣1− 1
λn

∣∣)−5/2 ≤
( |λ|
d(λ)

)5/2
, for n ∈ N, which implies (see

above), for each n ∈ N, that∣∣1− 1
nλ

∣∣−1 ≤ 1 +
α

n
+

1

n2

(
− (α2 + β2)

2
+

3

4

( |λ|
d(λ)

)5/2(
− 2α+

(α2 + β2)

n

)2)
≤ 1 +

α

n
+

3

4n2

( |λ|
d(λ)

)5/2(
2|α|+ α2 + β2

)2
.

But, (2|α|+ α2 + β2)2 ≤
(

2
|λ| +

1
|λ|2

)2 ≤ 4
(

1
|λ| +

1
|λ|2

)2
and so

∣∣1− 1

nλ

∣∣−1 ≤ 1 +
α

n
+

D(λ)

n2
, n ∈ N,

with D(λ) := 3(1+|λ|)2
|λ|3/2(d(λ))5/2 . Accordingly, for �xed N ∈ N, we have

N∏
n=1

∣∣∣1− 1
λn

∣∣∣−1
≤

N∏
n=1

(
1 +

α

n
+

D(λ)

n2

)
≤ exp

(
α

N∑
n=1

1

n

)
exp

(
D(λ)

N∑
n=1

1

n2

)
≤ e2D(λ) exp

(
α

N∑
n=1

1

n

)
.

By considering separately the cases when α < 0 and α ≥ 0 and applying (2.8)
yields

exp
(
α

N∑
n=1

1

n

)
≤ e|α|Nα ≤ e

1
|λ|Na(λ).

Accordingly,
∏N

n=1 |1−
1
λn |

−1 ≤ Na(λ) exp(2D(λ) + 1
|λ|) and hence,

exp(− 1
|λ| − 2D(λ))

Na(λ)
≤

N∏
n=1

∣∣1− 1
nλ

∣∣, N ∈ N. (2.10)

It follows from (2.9) and (2.10), for any given λ ∈ C \ Σ0, that

u(λ)

Na(λ)
≤

N∏
n=1

∣∣1− 1
λn

∣∣ ≤ v(λ)

Na(λ)
, N ∈ N, (2.11)

where v(λ) := exp( 1
|λ| +

1
|λ|2 ) and u(λ) := exp(− 1

|λ| −
6(1+|λ|2)

|λ|3/2(d(λ))5/2 ).

Fix now a point λ ∈ C \ Σ0 and choose any δ > 0 satisfying B(λ, δ) ∩ Σ0 = ∅.
According to (2.11) we have

u(µ)

Na(µ)
≤

N∏
n=1

∣∣1− 1
nµ

∣∣ ≤ v(µ)

Na(µ)
, ∀N ∈ N, µ ∈ B(λ, δ). (2.12)

By the continuity (and form) of the functions u and v on C\Σ0 and the compact-

ness of the set B(λ, δ) ⊆ (C \Σ0) it follows that Dδ := sup{v(µ) : µ ∈ B(λ, δ)} <

∞ and dδ := inf{u(µ) : µ ∈ B(λ, δ)} > 0. It is then clear that (2.4) follows from
(2.12). �
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Lemma 2.8. Let w = (wn) be any strictly positive, decreasing sequence. Then

σ(C; c0(w)) ⊆ {λ ∈ C : |λ− 1
2 | ≤

1
2}. (2.13)

Moreover, for each λ ∈ C satisfying |λ− 1
2 | >

1
2 there exist constants δλ > 0 and

Mλ > 0 such that

∥(µI − C)−1∥op ≤
Mλ

1− a(µ)
, µ ∈ B(λ, δλ),

where ∥ · ∥op denotes the operator norm in L(c0(w)).

Proof. According to [4, Corollary 2.3(i)] the Cesàro operator C : c0(w) → c0(w)
is continuous. Then Corollary 3.6 of [4] implies that (2.13) is satis�ed.

Set A := {λ ∈ C : |λ− 1
2 | ≤

1
2} and �x λ ∈ C \A. De�ne δλ := 1

2dist(λ,A) > 0

and Cλ := B(λ, δ), in which case (2.13) implies that dist(Cλ, σ(C; c0(w))) ≥
dist(Cλ, A) = δλ. According to Lemma 6.11 of [10, p. 590] there is a constant
K > 0 such that (setting ε := δλ in that lemma)

∥(µI − C)−1∥op <
K

δλ
, µ ∈ Cλ. (2.14)

Now, each µ ∈ B(λ, δλ) satis�es a(µ) < 1, [4, Remark 3.5], and so

K

δλ
=

Kδ−1
λ (1− a(µ))

1− a(µ)
≤

Kδ−1
λ (1 + 1

|µ|)

1− a(µ)
≤ Mλ

1− a(µ)
, (2.15)

where Mλ := sup{K
δλ
(1+ 1

|z|) : z ∈ Cλ} < ∞ as the set Cλ ⊆ (C \ {0}) is compact

and the function z 7→ K
δλ
(1+ 1

|z|) is continuous on C \ {0}. The desired inequality

follows from (2.14) and (2.15). �

Recall that a Hausdor� inductive limit E = ind k Ek of Banach spaces is called
regular if every B ∈ B(E) is contained and bounded in some step Ek. In par-
ticular, for every α with αn ↑ ∞ the space Eα = ind k c0(vk) is regular, [17,
Proposition 25.19].

Proposition 2.9. Let α satisfy αn ↑ ∞ with Eα nuclear. Then

(i) σ(C;Eα) = σpt(C;Eα) = Σ, and
(ii) σ∗(C;Eα) = σ(C;Eα) ∪ {0} = Σ0.

Proof. By Proposition 2.3 we have Σ = σpt(C;Eα) ⊆ σ(C;Eα) and hence,

Σ0 = Σ ⊆ σ(C;Eα) ⊆ σ∗(C;Eα).

Moreover, Proposition 2.4 yields 0 ̸∈ σ(C;Eα). So, it remains to show that
(C \ Σ0) ⊆ ρ∗(C;Eα). To this end, we need to show, for each λ ∈ C \ Σ0, that
there exists δ > 0 with the property that (C − µI)−1 : Eα → Eα is continuous
for each µ ∈ B(λ, δ) and the set {(C − µI)−1 : µ ∈ B(λ, δ)} is equicontinuous in
L(Eα). We recall that (C− µI)−1 : CN → CN exists in L(CN) for each µ ∈ C \Σ.

For this proof we select the weights vk(n) = e−kαn , n ∈ N, for each k ∈ N. Fix
λ ∈ C \Σ0. First, choose δ1 > 0 such that B(λ, δ1)∩Σ0 = ∅. Later δ > 0 will be
selected in such a way that 0 < δ < δ1.
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According to Lemma 5.4 in the Appendix it su�ces to �nd a δ > 0 satisfying
the following condition: for each k ∈ N there exists l ∈ N with l ≥ k and Dk > 0
such that

ql((C− µI)−1x) ≤ Dkqk(x), ∀µ ∈ B(λ, δ), x ∈ c0(vk). (2.16)

Case (i). Suppose that
∣∣λ− 1

2

∣∣ > 1
2 (equivalently, a(λ) < 1, [4, Remark 3.5]).

To establish the condition (2.16) we proceed as follows. Fix k ∈ N. Since a(λ) < 1,
we can select ε > 0 such that a(λ) < 1 − ε. By continuity of the function

a : C\{0} → R there exists δ2 ∈ (0, δ1) such that a(µ) < 1−ε for all µ ∈ B(λ, δ2).
Applying Lemma 2.8 (with vk in place of w), it follows that there exist δ ∈ (0, δ2)
and Mk,λ > 0 satisfying

qk((C− µI)−1x) ≤
Mk,λ

1− a(µ)
qk(x) ≤

Mk,λ

ε
qk(x)

for all µ ∈ B(λ, δ) and x ∈ c0(vk). So, inequality (2.16) is then satis�ed with

l := k and Dk :=
Mk,λ

ε . Since k ∈ N is arbitrary, condition (2.16) holds.

Case (ii). Suppose now that
∣∣λ− 1

2

∣∣ ≤ 1
2 (equivalently, a(λ) ≥ 1, [4, Remark

3.5]). We recall the formula for the inverse operator (C − µI)−1 : CN → CN

whenever µ ̸∈ Σ0, [19, p. 266]. For n ∈ N the n-th row of the matrix for (C−µI)−1

has the entries
−1

nµ2
∏n

k=m

(
1− 1

µk

) , 1 ≤ m < n,

n

1− nµ
=

1
1
n − µ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(C− µI)−1 = Dµ − 1
µ2Eµ, µ ∈ C \ Σ0, (2.17)

where the diagonal operator Dµ = (dnm(µ))n,m∈N is given by dnn(µ) := 1
1
n
−µ

and dnm(µ) := 0 if n ̸= m. The operator Eµ = (enm(µ))n,m∈N is then the lower
triangular matrix with e1m(µ) = 0 for all m ∈ N, and for every n ≥ 2 with
enm(µ) := 1

n
∏n

k=m

(
1− 1

µk

) if 1 ≤ m < n and enm(µ) := 0 if m ≥ n.

Since d0(λ) := dist(B(λ, δ1),Σ0) > 0, we have |dnn(µ)| ≤ 1
d0(λ)

for all µ ∈
B(λ, δ1) and n ∈ N. Fix k ∈ N. Then, for every x ∈ c0(vk) and µ ∈ B(λ, δ1), we
have

qk(Dµ(x)) = sup
n∈N

|dnn(µ)xn|vk(n) ≤
1

d0(λ)
sup
n∈N

|xn|vk(n) =
1

d0(λ)
qk(x).

So, {Dµ : µ ∈ B(λ, δ1)} ⊆ L(c0(vk)). Moreover, for every l ∈ N with l ≥ k it
follows that

ql(Dµ(x)) ≤ qk(Dµ(x)) ≤
1

d0(λ)
qk(x), ∀x ∈ c0(vk), µ ∈ B(λ, δ1). (2.18)

Via (2.17) it remains to investigate the operator Eµ : Eα → Eα in order to show
the validity of condition (2.16) for (C−µI)−1. To this end we �rst observe, for each
k ∈ N, that c0(vk) is isometrically isomorphic to c0 via the linear multiplication
operator Φk : c0(vk) → c0 given by Φk(x) := (vk(n)xn), for x = (xn) ∈ c0(vk). Of
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course, each Φk is also a bicontinuous isomorphism of CN onto CN. So, it su�ces
to show, for every k ∈ N, that there exist l ∈ N with l ≥ k and Dk > 0 such that
∥ΦlEµΦ

−1
k x∥0 ≤ Dk∥x∥0 for all x ∈ c0 and µ ∈ B(λ, δ1); here ∥ · ∥0 denotes the

usual norm of c0. For each k, l ∈ N with l ≥ k, de�ne Ẽµ,k,l := ΦlEµΦ
−1
k ∈ L(CN),

for µ ∈ C \ Σ0.

Fix k ∈ N. For each l ≥ k the operator Ẽµ,k,l, for µ ∈ B(λ, δ1), is the restriction
to c0 of

Ẽµ,k,l(x) =
(
(Ẽµ,k,l(x))

)
=

(
vl(n)

n−1∑
m=1

enm(µ)

vk(m)
xm

)
, x = (xn) ∈ CN,

with (Ẽµ,k,l(x))1 := 0. Moreover, observe that Ẽµ,k,l = (ẽk,lnm(µ))n,m∈N is the lower

triangular matrix given by ẽk,l1m(µ) = 0 for m ∈ N and ẽk,lnm(µ) = vl(n)
vk(m)enm(µ) for

n ≥ 2 and 1 ≤ m < n.
So, it su�ces to verify, for some l ≥ k and δ > 0, that Ẽµ,k,l ∈ L(c0) for

µ ∈ B(λ, δ) and {Ẽµ,k,l : µ ∈ B(λ, δ)} is equicontinuous in L(c0). To prove this
�rst observe from the de�nition of enm(µ) that Lemma 2.7 implies, for every

l ≥ k, every m, n ∈ N and all µ ∈ B(λ, δ2) that

|ẽk,lnm(µ)| = vl(n)

vk(m)
|enm(µ)| ≤ D′

λ

na(µ)−1vl(n)

ma(µ)vk(m)
, (2.19)

for some constant D′
λ > 0 and δ2 ∈ (0, δ1). Because the function a : C \ {0} → R

is continuous, there exists δ ∈ (0, δ2) such that a(λ)− 1
2 < a(µ) < a(λ)+ 1

2 , for all

µ ∈ B(λ, δ). This implies, for each µ ∈ B(λ, δ) that a(µ) > a(λ) − 1
2 ≥ 1

2 ; recall

that a(λ) ≥ 1. Let c := max{2, a(λ) + 1
2}. According to Lemma 2.2 there exists

t ∈ N such that Sλ := supn∈N nce−tαn < ∞. Set l := k + t. By (2.19) and the

fact that ẽk,lnm(µ) = 0 for 1 ≤ m < n, it follows for every n ∈ N and µ ∈ B(λ, δ)
that

∞∑
m=1

|ẽk,lnm(µ)| =
n−1∑
m=1

|ẽk,lnm(µ)| ≤ D′
λn

a(µ)−1vl(n)
n−1∑
m=1

1

ma(µ)vk(m)

= D′
λn

a(µ)−1e−lαn

n−1∑
m=1

ekαm

ma(µ)
≤ D′

λn
a(µ)−1e−lαn

n−1∑
m=1

ekαm

≤ D′
λn

a(µ)−1e−lαn(n− 1)ekαn ≤ D′
λn

a(µ)e(k−l)αn

= D′
λn

a(µ)e−tαn ≤ D′
λn

ce−tαn ≤ D′
λSλ.

Hence, for every µ ∈ B(λ, δ), we have the inequality

sup
n∈N

∞∑
m=1

|ẽk,lnm(µ)| ≤ D′
λSλ,

that is, condition (ii) of Lemma 2.1 in [4] is satis�ed for all µ ∈ B(λ, δ). Moreover,

since na(µ)−1vl(n) = na(µ)−1e−lαn = na(µ)−1−cnce−tαne−kαn → 0 for n → ∞
(because Sλ = supn∈N nce−tαn < ∞, e−kαn ≤ 1, and a(µ) < a(λ) + 1

2 ≤ c + 1),

the inequality (2.19) implies for each �xed µ ∈ B(λ, δ) and m ∈ N that

lim
n→∞

ẽk,lnm(µ) = 0.
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Also the condition (i) of Lemma 2.1 in [4] is satis�ed, for all µ ∈ B(λ, δ). Ac-

cordingly, [4, Lemma 2.1] implies, for every µ ∈ B(λ, δ), that Ẽµ,k,l ∈ L(c0)
with ∥Ẽµ,k,l∥op ≤ D′

λSλ, that is, {Ẽµ,k,l : µ ∈ B(λ, δ)} is equicontinuous in L(c0).
Finally, in view of (2.18), we have shown that condition (2.16) is indeed satis-
�ed. �
Corollary 2.10. For α with αn ↑ ∞ the following assertions are equivalent.

(i) Eα is nuclear.

(ii) σ(C;Eα) = σpt(C;Eα).
(iii) σ(C;Eα) = Σ.

Proof. (i)⇒(ii) and (i)⇒(iii) are clear from Proposition 2.9(i).
(ii)⇒(i). The equality in (ii) together with the fact that σpt(C;Eα) ⊆ Σ (see the

discussion prior to Proposition 2.3) implies 0 ∈ ρ(C;Eα). Hence, Eα is nuclear;
see Proposition 2.4.

(iii)⇒(i). The equality in (iii) implies 0 ∈ ρ(C;Eα) and so Eα is nuclear (cf.
Proposition 2.4). �

Recall that an operator T ∈ L(X), with X a lcHs, is compact (resp. weakly

compact) if there exists a neighbourhood U of 0 such that T (U) is a relatively
compact (resp. relatively weakly compact) subset of X.

Corollary 2.11. Let α satisfy αn ↑ ∞ with Eα nuclear. Then the Cesàro operator

C ∈ L(Eα) is neither compact nor weakly compact.

Proof. Since Eα is Montel, there is no distinction between C being compact or
weakly compact. So, suppose that C is compact. Then σ(C;Eα) is necessarily a
compact set in C, [11, Theorem 9.10.2], which contradicts Proposition 2.9(i). �

The identity C = ∆diag(( 1n))∆ holds in L(CN) and all the three operators

C,∆ and diag(( 1n)) are continuous; see the discussion prior to Proposition 2.3.
For every positive sequence αn ↑ ∞ we also have that C ∈ L(Eα) (cf. Proposition
2.1) and diag(( 1n)) ∈ L(Eα) (because diag(( 1n)) ∈ L(c0(vk)) for every k ∈ N).
If ∆ acts in Eα, then ∆en ∈ Eα for all n ∈ N and so σpt(C;Eα) = Σ; see
(2.2). Accordingly, Eα is necessarily nuclear via Proposition 2.3. However, this
condition alone is not su�cient for the continuity of ∆.

Proposition 2.12. For α with αn ↑ ∞ the following assertions are equivalent.

(i) The operator ∆ ∈ L(Eα).
(ii) supn∈N

n
αn

< ∞.

Proof. For each k ∈ N, the surjective isometric isomorphism Φk : c0(vk) → c0 was
de�ned in the proof of Proposition 2.9. Because Eα = ind k c0(vk) it follows that
∆ ∈ L(Eα) if and only if for each k ∈ N there exists l ∈ N with l > k such that
∆ : c0(vk) → c0(vl) is continuous. Moreover, the continuity of ∆ : c0(vk) → c0(vl)
is equivalent to continuity of the operator Dk,l : c0 → c0, where D

k,l := Φl∆Φ−1
k .

Note that Φl = diag((vl(n))) and Φ−1
k = diag(( 1

vk(n)
)) are diagonal matrices

and ∆ = (∆nm)n,m∈N is a lower triangular matrix, a direct calculation shows

that Dk,l = (dk,lnm)n,m∈N is the lower triangular matrix where, for each n ∈ N,
dk,lnm = (−1)m−1 vl(n)

vk(m)

(
n−1
m−1

)
, for 1 ≤ m < n and dk,lnm = 0 if m > n. It follows
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from [20, Theorem 4.51-C] that a matrix A = (anm)n,m∈N acts continuously on
c0 if and only if the matrix (|anm|)n,m∈N does so and hence, by the same result
in [20], that ∆ ∈ L(Eα) if and only if for each k ∈ N there exists l ∈ N with l > k

such that the lower triangular matrix (|dk,lnm|)n,m∈N satis�es both

lim
n→∞

|dk,lnm| = lim
n→∞

vl(n)

vk(m)

(
n− 1

m− 1

)
= 0, ∀m ∈ N, (2.20)

and

sup
n∈N

∞∑
m=1

|dk,lnm| = sup
n∈N

n∑
m=1

vl(n)

vk(m)

(
n− 1

m− 1

)
< ∞. (2.21)

Actually, (2.21) implies (2.20). Indeed, if (2.21) holds, then there exists L > 0

satisfying vl(n)
∑n

m=1
1

vk(m)

(
n−1
m−1

)
≤ L for all n ∈ N and hence, as 1

vk(m) = ekαm >

1 for all m ∈ N, also 2n−1vl(n) = vl(n)
∑n

m=1

(
n−1
m−1

)
≤ L for all n ∈ N. Then, for

�xed m ∈ N, it follows that

nm−1vl(n) =
nm−1

2n−1
· 2n−1vl(n) ≤

L · nm−1

2n−1
, n ∈ N.

Since (n
m−1

2n−1 )n∈N is a null sequence and
(
n−1
m−1

)
≃ nm−1 for n → ∞ the condition

(2.20) follows. So, we have established that the continuity of ∆ : Eα → Eα is
equivalent to the following
Condition (δ): For every k ∈ N there exists l > k such that (2.21) is satis�ed.

(i)⇒(ii). Since Condition (δ) holds, for the choice k = 1 there exist l ∈ N with
l > 1 and M > 1 such that

2n−1vl(n) = vl(n)
n∑

m=1

(
n− 1

m− 1

)
≤

n∑
m=1

vl(n)

v1(m)

(
n− 1

m− 1

)
≤ M, n ∈ N.

Hence, 2nvl(n) ≤ 2M from which it follows that

exp(n log(2)− lan) ≤ 2M = exp(log(2M)), n ∈ N.

Rearranging this inequality yields

n

αn
≤ l

log(2)
+

log(2M)

αn log(2)
, n ∈ N.

Since αn ↑ ∞, it follows that supn∈N
n
αn

< ∞.

(ii)⇒(i). Choose M ∈ N such that n ≤ Mαn for n ∈ N. In order to verify
Condition (δ) �x k ∈ N. Then l := (k+M) ∈ N and l > k. Since vk is decreasing
on N we have

n∑
m=1

vl(n)

vk(m)

(
n− 1

m− 1

)
≤ vl(n)

vk(n)

n∑
m=1

(
n− 1

m− 1

)
≤ 2n

vl(n)

vk(n)
, n ∈ N.

Furthermore, for each n ∈ N, it is also the case that

2n
vl(n)

vk(n)
= 2ne−αn(l−k) = en log(2)e−Mαn ≤ ene−Mαn ≤ 1.

The previous two sets of inequalities imply (2.21) and hence, Condition (δ) is
satis�ed, i.e., ∆ ∈ L(Eα). �
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Remark 2.13. (i) Clearly supn∈N
n
αn

< ∞ implies Eα is a nuclear space (cf.

Proposition 2.4). On the other hand, the sequence αn := log(n), n ∈ N, has the
property that Eα is nuclear but, ∆ /∈ L(Eα) by Proposition 2.12.

(ii) The continuity of the operators ∆ and D on Eα is unrelated. Indeed,
consider αn :=

√
n, for n ∈ N. Then D is continuous because Eα is both nuclear

and shift stable (cf. Proposition 2.5) whereas ∆ is not continuous (cf. Proposition
2.12). On the other hand, ∆ is continuous on Eα for αn := nn, n ∈ N (via
Proposition 2.12), but D fails to be continuous on this space; see Remark 2.6.

We end this section with an application. Consider the space of germs of
holomorphic functions at 0, namely the regular (LB)-space de�ned by H0 :=

ind k A(B(0, 1k )). Here, for each k ∈ N, A(B(0, 1k )) is the disc algebra consisting

of all holomorphic functions on the open disc B(0, 1k ) ⊆ C which have a continuous

extension to its closure B(0, 1k ): it is a Banach algebra for the norm

∥f∥k := sup
|z|≤ 1

k

|f(z)| = sup
|z|= 1

k

|f(z)|, f ∈ A(B(0, 1k )).

It is known that the linking maps A(B(0, 1k )) → A(B(0, 1
k+1)) for k ∈ N, which

are given by restriction, are injective and absolutely summing. By Köthe duality
theory, H0 is isomorphic to the strong dual of the nuclear Fréchet space H(C). In
particular, H0 is a (DFN)-space. We refer to [9, Section 2, Example 5] and [14,
Ch. 5.27, Sections 3,4] for further information concerning spaces of holomorphic
germs and their strong duals. De�ne α = (αn) by αn := n for n ∈ N in which case

limn→∞
log(n)
αn

= 0. Then H(C) is isomorphic to the power series space Λ1
∞(α)

of in�nite type, [17, Example 29.4(2)], and its strong dual Eα is isomorphic to
H0. Indeed, a topological isomorphism of H0 onto Eα is given by the linear map

which sends f(z) =
∑∞

n=0 anz
n (an element of A(B(0, 1k )) for some k ∈ N) to

(an−1)n∈N ∈ Eα. The proof of this (known) fact relies on the following estimates.

(i) If f ∈ A(B(0, ε)) for some 0 < ε < 1 (with f(z) =
∑∞

n=0 anz
n), then the

Cauchy estimates for f imply |an| ≤ 1
εn max|z|=ε |f(z)| for n ∈ N0 := {0} ∪ N.

Hence, if f ∈ A(B(0, 1k )) for some k ∈ N, then

|an| ≤ kn max
|z|= 1

k

|f(z)| = kn∥f∥k, n ∈ N0.

(ii) Let a := (an)n∈N0 ∈ ℓ∞(vk) for some k ∈ N, where vk(n) := 1
(1+k)n for

n ∈ N0, k ∈ N; we have taken here sk := log(k + 1). Then |an| ≤ qk(a)k
n for

n ∈ N0 and each �xed k ∈ N. Hence, if |z| ≤ 1
2k , then f(z) =

∑∞
n=0 anz

n satis�es

|f(z)| ≤
∞∑
n=0

|an| · |z|n ≤ qk(a)

∞∑
n=0

kn
1

(2k)n
= 2qk(a).

Accordingly, f ∈ A(B(0, 1
2k )).

The above facts, combined with Proposition 2.9 and Corollary 2.11, yield the
following result.

Proposition 2.14. The Cèsaro operator C : H0 → H0 is continuous with spectra

σ(C;H0) = σpt(C;H0) = Σ and σ∗(C;H0) = Σ0.
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In particular, C is not (weakly) compact.

3. The spectrum of C in the non-nuclear case

The aim of this section is to give a complete description of the spectrum of
C ∈ L(Eα) for the case when Eα is not nuclear. It turns out that σ(C;Eα) and
σ∗(C;Eα) are dramatically di�erent to that when Eα is nuclear. The following
fact, which we record for the sake of explicit reference, is immediate from (2.3)
and Propositions 2.3 and 2.4.

Proposition 3.1. For α with αn ↑ ∞ the following assertions are equivalent.

(i) Eα is not nuclear.

(ii) σpt(C;Eα) = {1}.
(iii) 0 ∈ σ(C;Eα).

The following general result will be useful in the sequel. For each r > 0 we
adopt the notation D(r) := {λ ∈ C : |λ− 1

2r | <
1
2r}.

Proposition 3.2. Let α satisfy αn ↑ ∞. Then

Σ ⊆ σ(C;Eα) ⊆ D(1).

Proof. Since C ∈ L(Eα), its dual operator C
′ is de�ned, continuous on the strong

dual E′
α =

∩
k∈N ℓ1(

1
vk
) = proj k ℓ1(

1
vk
) of Eα = ind k c0(vk) and is given by the

formula

C′y :=
( ∞∑

j=n

yj
j

)
n∈N

, y = (yn) ∈ E′
α;

see (3.7) in [4, p. 774], for example, after noting that E′
α ⊆ ℓ1(

1
v1
). Given λ ∈ Σ

there is m ∈ N with λ = 1
m . De�ne u(m) by u

(m)
n :=

∏n−1
k=1(1−

1
λk ) for 1 < n ≤ m

(with u
(m)
1 := 1) and u

(m)
n := 0 for n > m. It is routine to verify that u(m) ∈ E′

α

(as u(m) ∈ φ) and C′u(m) = 1
mu(m), i.e., λ ∈ σpt(C

′;E′
α). It follows that λ ∈

σ(C;Eα). Indeed, if not, then λ ∈ ρ(C;Eα) and so (C − λI)(Eα) = Eα. This
implies, for each z ∈ Eα that there exists x ∈ Eα satisfying (C−λI)x = z. Hence,

⟨z, u(m)⟩ = ⟨(C− λI)x, u(m)⟩ = ⟨x, (C′ − λI)u(m)⟩ = 0,

that is, ⟨z, u(m)⟩ = 0 for all z ∈ Eα. Since u(m) ̸= 0, this is a contradiction. So,
λ ∈ σ(C;Eα). This establishes that Σ ⊆ σ(C;Eα).

According to Lemma 2.8 we see that σ(Ck; c0(vk)) ⊆ D(1) for all k ∈ N, where
Ck : c0(vk) → c0(vk) is the restriction of C ∈ L(CN). Hence,∩

m∈N

( ∞∪
k=m

σ(Ck; c0(vk))
)
⊆ D(1)

and so σ(C;Eα) ⊆ D(1); see Lemma 5.5 in the Appendix. �

The following result identi�es a large part of σ(C;Eα).

Proposition 3.3. Let α satisfy αn ↑ ∞ and such that Eα is not nuclear. Then

{0, 1} ∪D(1) ⊆ σ(C;Eα) ⊆ D(1).
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Proof. It follows from Propositions 3.1 and 3.2 that Σ0 ⊆ σ(C;Eα) ⊆ D(1). So, it
remains to verify that (D(1)\Σ) ⊆ σ(C;Eα). This is achieved via a contradiction
argument.

Let λ ∈ D(1) \ Σ and suppose that λ ∈ ρ(C;Eα). Note that β := Re( 1λ) > 1.

Since (C−λI)−1 : Eα → Eα is continuous, for k = 1 there exists l ∈ N with l > 1
such that (C− λI)−1 : c0(v1) → c0(vl) is continuous. In the notation of the proof

of Proposition 2.9 it follows that the linear map Ẽλ,1,l : c0 → c0 is continuous,

where Ẽλ,1,l = (ẽ1,lnm(λ))n,m∈N is the lower triangular matrix given by

ẽ1,lnm(λ) =
vl(n)

v1(m)
enm(λ), ∀n ≥ 2, 1 ≤ m < n, (3.1)

and ẽ1,lnm(λ) = 0 otherwise. Here en,m(λ) = 1
n
∏n

k=m(1− 1
λk

)
if 1 ≤ m < n and

enm(λ) = 0 if m ≥ n. According to the inequality (3.10) in [4, p. 776], there exist
positive constants c, d such that

c

n1−β
≤ |en1(λ)| ≤

d

n1−β
, n ≥ 2. (3.2)

Since Ẽλ,1,l ∈ L(c0), a well known criterion, [4, Lemma 2.1], [20, Theorem 4.51-C],
implies that necessarily

lim
n→∞

ẽ1,lnm(λ) = 0, m ∈ N. (3.3)

It now follows from (3.1), the left-inequality in (3.2), and (3.3) with m = 1, that

lim
n→∞

nβ−1e−lαn = lim
n→∞

nβ−1vl(n) = 0.

Since β > 1, it follows from Lemma 2.2 that supn∈N
log(n)
αn

< ∞ which contradicts

the non-nuclearity of Eα (cf. Proposition 2.3). Hence, no λ ∈ D(1) \ Σ exists
with λ ∈ ρ(C;Eα). �

We now come to the main result of this section.

Proposition 3.4. Let α satisfy αn ↑ ∞ and such that Eα is not nuclear.

(i) If supn∈N
log(log(n))

αn
< ∞, then

σ(C;Eα) = {0, 1} ∪D(1) and σ∗(C;Eα) = D(1).

(ii) If supn∈N
log(log(n))

αn
= ∞, then

σ(C;Eα) = D(1) = σ∗(C;Eα).

Proof. In the notation of the proof of Proposition 2.9, for each λ ∈ C \ Σ0 the
inverse operator (C− λI)−1 ∈ L(CN ) satis�es

(C− λI)−1 = Dλ − 1

λ2
Eλ;

see (2.17). It is also argued there (as a consequence of the fact that the diagonal
in Dλ is a bounded sequence) that (C − λI)−1 : Eα → Eα is continuous if
and only if Eλ ∈ L(Eα); the nuclearity of Eα is not used for this part of the
argument. Moreover, since Eα is an inductive limit, general theory yields that
Eλ ∈ L(Eα) if and only if for each k ∈ N there exists l ∈ N with l > k such

that Eλ : c0(vk) → c0(vl) is continuous. With Ẽλ,k,l = (ẽk,lnm(λ))n,m∈N, where
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ẽk,lnm(λ) := vl(n)
vk(m)enm(λ) for n,m ∈ N, it follows via the argument used in Case (ii)

of the proof of Proposition 2.9 (see also the proof of Proposition 3.3, where k = 1
can be replaced by an arbitrary k ∈ N) that Eλ : c0(vk) → c0(vl) is continuous

if and only if Ẽλ,k,l : c0 → c0 is continuous. Via [20, Theorem 4.51-C] this is
equivalent to both of the following conditions being satis�ed:

lim
n→∞

|ẽk,lnm(λ)| = lim
n→∞

vl(n)

vk(m)
|enm(λ)| = 0, ∀m ∈ N, (3.4)

and

sup
n∈N

∞∑
m=1

vl(n)

vk(m)
|enm(λ)| = sup

n∈N

n−1∑
m=1

vl(n)

vk(m)
|enm(λ)| < ∞. (3.5)

Next, if λ /∈ {0, 1} belongs to the boundary ∂D(1) ofD(1), then β := Re( 1λ) = 1
and λ /∈ Σ0. Accordingly, Lemma 3.3 of [4] ensures the existence of positive
constants c, d such that c ≤ |en1(λ)| ≤ d for all n ∈ N and

c

m
≤ |enm(λ)| ≤ d

m
, ∀n ∈ N, 2 ≤ m < n. (3.6)

In order to deduce (3.6) from [4, Lemma 3.3] we have used the formula

|enm(λ)| = 1

(m− 1)
·
(m− 1)

∏m−1
k=1 |1− 1

λk |
n
∏n

k=1 |1−
1
λk |

, ∀n ∈ N, 2 ≤ m < n.

Henceforth we use vr(n) := e−rαn for all r, n ∈ N. Note that (3.4) is satis�ed for
every λ ∈ ∂D(1) \ {0, 1}. Indeed, for �xed m ∈ N, we have via (3.6) that

vl(n)

vk(m)
|enm(λ)| ≤ dekαm

melαn
≤ d′

elαn
, n ∈ N,

from which (3.4) is clear.

(i) Since supn∈N
log(log(n))

αn
< ∞, there exists M ∈ N such that log(log(n)) ≤

Mαn, equivalently log(n) ≤ eMαn for n ∈ N. Fix λ ∈ ∂D(1)\{0, 1}; in particular,
λ /∈ Σ0. Given k ∈ N de�ne l := k +M . Then, for every n ≥ 2, it follows from
(2.8), (3.6) and (l − k) = M that

n−1∑
m=1

vl(n)

vk(m)
|enm(λ)| ≤ d

elαn

n−1∑
m=1

ekαm

m
≤ dekαn

elαn

n−1∑
m=1

1

m

≤ 1 + log(n)

eMαn
= e−Mαn +

log(n)

eMαn
≤ 2.

Accordingly, (3.5) is satis�ed. Since (3.4) holds, we conclude that Ẽλ,k,l : c0 → c0
is continuous, equivalently that (C − λI)−1 ∈ L(Eα). It follows that ∂D(1) \
{0, 1} ⊆ ρ(C;Eα) and so σ(C;Eα) = {0, 1} ∪D(1); see Proposition 3.3.

It was shown in the proof of Proposition 3.2 that
∪∞

k=1 σ(Ck; c0(vk)) ⊆ D(1).

Since σ(C;Eα) = {0, 1}∪D(1), we have σ(C;Eα) = D(1) and so
∪∞

k=1 σ(Ck; c0(vk)) ⊆
σ(C;Eα). It follows from Lemma 5.5(iii) in the Appendix that σ∗(C;Eα) = D(1).
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(ii) Fix λ ∈ ∂D(1) \ {0, 1}. Observe �rst, for k = 1 and l ∈ N arbitrary, that it
follows from (2.8) and (3.6) that

n−1∑
m=1

vl(n)

vk(m)
|enm(λ)| ≥ c

elαn

n−1∑
m=1

eαm

m
≥ ceα1

elαn

n−1∑
m=1

1

m
≥ c log(n)

elαn
, (3.7)

for all n ≥ 2. Suppose now that λ ∈ ρ(C;Eα). Then for k = 1 there exists
l ∈ N with l > 1 such that (3.5) is satis�ed. It then follows from (3.7) that

supn∈N
log(n)
elαn

< ∞. So, there exists K > 1 such that log(n) ≤ Kelαn , equivalently
that

log(log(n)) ≤ lαn + log(K), n ≥ 3.

A rearrangement yields log(log(n))
αn

≤ l+ log(K)
αn

for n ≥ 3, and so supn∈N
log(log(n))

αn
<

∞; contradiction! So, no λ ∈ ∂D(1) \ {0, 1} exists which satis�es λ ∈ ρ(C;Eα),
i.e., ∂D(1)\{0, 1} ⊆ σ(C;Eα). It now follows from Proposition 3.3 that σ(C;Eα) =

D(1).

It was observed in the proof of part (i) that
∪∞

k=1 σ(Ck; c0(vk)) ⊆ D(1). Since

D(1) = σ(C;Eα) = σ(C;Eα), it again follows from Lemma 5.5(iii) in the Appen-
dix that σ∗(C;Eα) = σ(C;Eα). �

Remark 3.5. (i) Let α satisfy αn ↑ ∞. Then σ(C;Eα) is a compact subset

of C if and only if supn∈N
log(log(n))

αn
= ∞. This follows from Corollary 2.10,

Proposition 3.4 and the fact that the condition supn∈N
log(log(n))

αn
= ∞ implies

supn∈N
log(n)
αn

= ∞, i.e., Eα is automatically non-nuclear.

(ii) The sequence αn := log(log(n)) for n ≥ 33 > ee (with 1 < α1 < . . . <
α26 < log(log(33)) arbitrary) satis�es 1 < αn ↑ ∞ with Eα not nuclear and

supn∈N
log(log(n))

αn
< ∞. Proposition 3.4(i) shows that σ(C;Eα) = {0, 1} ∪ D(1).

On the other hand, the sequence αn := log(log(log(n))) for n ≥ 327 > ee
e
(with

1 < α1 < . . . < α327−1 < log(log(log(327))) arbitrary) satis�es 1 < αn ↑ ∞ with

Eα not nuclear and supn∈N
log(log(n))

αn
= ∞. In this case Proposition 3.4(ii) reveals

that σ(C;Eα) = D(1).

4. Mean ergodicity of the Cesàro operator.

An operator T ∈ L(X), with X a lcHs, is power bounded if {Tn}∞n=1 is an
equicontinuous subset of L(X). Given T ∈ L(X), the averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N,

are called the Cesàro means of T . The operator T is said to be mean ergodic

(resp. uniformly mean ergodic) if {T[n]}∞n=1 is a convergent sequence in Ls(X)
(resp., in Lb(X)). A relevant text for mean ergodic operators is [15].

Proposition 4.1. Let αn ↑ ∞. The Cesàro operator C ∈ L(Eα) is power bounded
and uniformly mean ergodic. In particular,

Eα = Ker(I − C)⊕ (I − C)(Eα) (4.1)
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with

Ker(I − C) = {1} and (I − C)(Eα) = {x ∈ Eα : x1 = 0} = span{en}n≥2. (4.2)

Proof. Since each weight vk for k ∈ N is decreasing, it is known that C ∈ L(c0(vk))
and qk(Cx) ≤ qk(x) for all x ∈ c0(vk), [4, Corollary 2.3(i)]. It follows, via (2.1),
for every k ∈ N that

qk(C
mx) ≤ qk(x), ∀x ∈ c0(vk), m ∈ N.

Accordingly, for each k ∈ N, (5.5) is satis�ed with l := k andD = 1. Then Lemma
5.4 in the Appendix implies that H := {Cm : m ∈ N} ⊆ L(Eα) is equicontinuous,
i.e., the Cesàro operator C is power bounded in Eα. Since Eα is Montel, it follows
via [1, Proposition 2.8] that the Cesàro operator C is uniformly mean ergodic in
Eα and hence, (4.1) is also satis�ed, [1, Theorem 2.4]. The facts that each x ∈ Eα

belongs to c0(vk) for some k ∈ N, that the inclusion c0(vk) ⊆ Eα is continuous
and that the canonical vectors en := (δnk)k∈N, for n ∈ N, form a Schauder basis in
c0(vk) implies {en : n ∈ N} is a Schauder basis for Eα. The proof of the identities
in (4.2) now follow by applying the same (algebraic) arguments as used in the
proof of [3, Proposition 4.1]. �
Proposition 4.2. Let αn ↑ ∞. The sequence {Cm}m∈N converges in Lb(Eα) to

the projection onto span{1} along (I − C)(Eα).

Proof. Using Proposition 4.1 we proceed as in the proof of the analogous result
when C acts in the Frèchet space Λ0(α), [6, Proposition 3.2]. Indeed, for each
x ∈ Eα, we have that x = y + z with y ∈ Ker(I − C) = span{1} and z ∈
(I − C)(Eα) = span{en}n≥2. So, for each m ∈ N we have Cmx = Cmy + Cmz,
with Cmy = y → y in Eα as m → ∞. The claim is that the sequence {Cmz}m∈N
is also convergent in Eα. Indeed, proceeding as in the proof of Proposition 3.2 of
[6] one shows, for each r ≥ 2 and m, n ∈ N, that |(Cmer)(n)| ≤ 1

r−1am, where

(am)m∈N is a sequence of positive numbers satisfying limm→∞ am = 0. Since

v1(n)|(Cmer)(n)| ≤ v1(n)
r−1 am, for each r ≥ 2 and n,m ∈ N, with 1 ≥ v1(1) ≥ v1(n)

for all n ∈ N it follows that q1(C
mer) ≤ 1

r−1am. We deduce, for each r ≥ 2, that

Cmer → 0 in c0(v1) and hence, also in Eα as m → ∞. Since {Cm}m∈N ⊆ L(Eα) is

equicontinuous and (by (4.2)) the linear span of {en}n≥2 is dense in (I − C)(Eα),

it follows that Cmz → 0 in Eα as m → ∞ for each z ∈ (I − C)(Eα). So, it has
been shown that Cmx = Cmy + Cmz → y in Eα as m → ∞, for each x ∈ Eα,
i.e., {Cm}m∈N converges in Ls(Eα). Since Eα is a Montel space, {Cm}m∈N also
converges in Lb(Eα). �
Proposition 4.3. Let αn ↑ ∞ with Eα nuclear. Then the range (I −C)m(Eα) is
a closed subspace of Eα for each m ∈ N.

Proof. Consider �rst m = 1. Set X(α) := {x ∈ Eα : x1 = 0}. The claim is that

(I − C)(Eα) = (I − C)(X(α)). (4.3)

First recall that each sequence vk, for k ∈ N, is strictly positive and decreasing
with vk ∈ c0 and so (I − C)(c0(vk)) = {x ∈ c0(vk) : x1 = 0} =: Xk and (I −
C)(Xk) = (I − C)(c0(vk)), [4, Lemmas 4.1 and 4.5]. Now, if x ∈ X(α), then
x ∈ Xk for some k ∈ N and hence,

(I − C)x ∈ (I − C)(Xk) = (I − C)(c0(vk)) ⊆ (I − C)(Eα).



THE CESÀRO OPERATOR 21

This establishes one inclusion in (4.3). For the reverse inclusion let x ∈ Eα. Then
x ∈ c0(vk) for some k ∈ N and hence, (I−C)x ∈ (I−C)(c0(vk)) = (I−C)(Xk) ⊆
(I − C)(X(α)). Thus, the reverse inclusion in (4.3) is also valid.

Because of (4.3) and the containment (I − C)(Eα) ⊆ (I − C)(Eα) = X(α),
which is immediate from Proposition 4.1, to show that (I − C)(Eα) is closed
in Eα it su�ces to show that the continuous linear restriction operator (I −
C)|X(α) : Xα → Xα is bijective, actually surjective. Indeed, if (I − C)(X(α)) =
X(α), then (I − C)(Eα) = X(α) by (4.3) and hence, (I − C)(Eα) is a closed
subspace of Eα.

To establish that (I − C)|Xα is bijective we require the identity (X(α), τ) =
ind k Xk, where τ is the relative topology in X(α) induced from Eα. This identity
follows from the general fact that if (E, τ̃) = ind nEn is a (LB)-space and F ⊆ E
is a closed subspace with �nite codimension, then (F, τ̃ |F ) = ind n(F ∩ En) is
also a (LB)-space, [18, Lemma 6.3.1]. Actually, setting ṽk(n) := vk(n+ 1) for all
k, n ∈ N, we have that X(α) is topologically isomorphic to E(α̃) := ind k c0(ṽk).
Indeed, the left-shift operator S : X(α) → E(α̃) given by S(x) := (x2, x3, . . .)
for x = (xn)n∈N ∈ X(α) is such an isomorphism (because, for each k ∈ N, the
left shift operator S : Xk → c0(vk) is a surjective isometry). Consider now the
operator A := S ◦ (I − C)|X(α) ◦ S−1 ∈ L(E(α̃)). The claim is that A is bijective

with A−1 ∈ L(E(α̃)).
To establish the above claim observe, when interpreted to be acting in the space

CN, that the operator A : CN → CN is bijective (which is a routine veri�cation)
and its inverse B := A−1 : CN → CN is determined by the lower triangular matrix
B = (bnm)n,m∈N with entries given as follows: for each n ∈ N we have bnm = 0 if

m > n, bnm = n+1
n if m = n and bnm = 1

m if 1 ≤ m < n. To show that B is also
the inverse of A acting on E(α̃), we only need to verify that B ∈ L(E(α̃)). To
establish this it su�ces to show, for each k ∈ N, that there exists l ≥ k such that
Φṽl ◦B ◦Φ−1

ṽk
∈ L(c0), where for each h ∈ N the operator Φṽh : c0(ṽh) → c0 given

by Φṽh(x) = (ṽh(n + 1)xn) for x ∈ c0(ṽh) is a surjective isometry. To this end,
given k ∈ N set l := k + 1, say. Then the lower triangular matrix corresponding

to Φṽl ◦ B ◦ Φ−1
ṽk

is given by D := ( vl(n+1)
vk(m+1)bnm)n,m∈N. Moreover, for each �xed

m ∈ N, we have

lim
n→∞

vl(n+ 1)

vk(m+ 1)
bnm =

1

mvk(m+ 1)
lim
n→∞

vl(n+ 1) = 0

and, for each n ∈ N, that
∞∑

m=1

vl(n+ 1)

vk(m+ 1)
bnm =

(n+ 1)

n

vl(n+ 1)

vk(n+ 1)
+ vl(n+ 1)

n−1∑
m=1

1

mvk(m+ 1)

≤ 2 + (sl)
−αn+1

n−1∑
m=1

s
αm+1

k

m
≤ 2 +

(
sk
sl

)αn+1 n−1∑
m=1

1

m

≤ 2 +

(
sk
sl

)αn+1

(1 + log(n)) ≤ 2 + 2aαn+1 log(n+ 1),

where a := sk
sl

∈ (0, 1). Since Eα is nuclear, there existsM ≥ 1 such that log(n) ≤
Mαn for all n ∈ N and hence, aαn log(n) ≤ Mαna

αn for n ∈ N. Since f(x) := xax,



22 A.A. Albanese, J. Bonet and W. J. Ricker

for x ∈ (0,∞), satis�es f ′(x) < 0 for x > 1
log( 1

a
)
, the function f is decreasing on

( 1
log( 1

a
)
,∞) which implies supn∈N aαn log(n) < ∞, i.e.,

∑∞
m=1

vl(n+1)
vk(m+1) < ∞ for

each n ∈ N. Thus, both the conditions (i), (ii) of [4, Lemma 2.1] are satis�ed.
Accordingly, Φṽl ◦B◦Φ−1

ṽk
∈ L(c0). The proof that (I−C)(Eα) is closed is thereby

complete.
Since (I −C)(Eα) is closed, (4.1) implies Eα = Ker(I −C)⊕ (I −C)(Eα). The

proof of (2) ⇒ (5) in Remark 3.6 of [3] then shows that (I − C)m(Eα) is closed
in Eα for all m ∈ N. �

An operator T ∈ L(X), with X a separable lcHs, is called hypercyclic if there
exists x ∈ X such that the orbit {Tnx : n ∈ N0} is dense in X. If, for some
z ∈ X the projective orbit {λTnz : n ∈ N0, λ ∈ C} is dense in X, then T is
called supercyclic. Clearly, hypercyclicity implies supercyclicity.

Proposition 4.4. Let α satisfy αn ↑ ∞. Then C ∈ L(Eα) is not supercyclic and

hence, also not hypercyclic.

Proof. It is known that C is not supercyclic in CN, [5, Proposition 4.3]. Since Eα

is dense (as it contains φ) and continuously included in CN, the supercyclicity of
C in any one of the spaces Eα would imply that C ∈ L(CN) is supercyclic. �

5. Appendix

In this section we elaborate on the point raised in Section 1 that the behaviour
of the Cesàro operator on the strong dual (Λ1

0(α))
′ of power series spaces Λ1

0(α) of
�nite type, is not so relevant in relation to continuity. It turns out that C fails to
act in (Λ1

0(α))
′ for every α with αn ↑ ∞ such that (Λ1

0(α))
′ is nuclear. Moreover,

there exist αn ↑ ∞ such that (Λ1
0(α))

′ is not nuclear and C ∈ L((Λ1
0(α))

′) (cf.
Example 5.2) as well as other αn ↑ ∞ such that (Λ1

0(α))
′ is not nuclear and

C /∈ L((Λ1
0(α))

′); see Example 5.3.
In order to be able to formulate the above claims more precisely, let (vk)k∈N

be a sequence of functions vk : N → (0,∞) satisfying vk(n) ↑n ∞, for each k ∈ N,
with vk ≥ vk+1 pointwise on N and limn→∞

vk+1(n)
vk(n)

= 0 for all k ∈ N. Then

ℓ∞(vk) ⊆ c0(vk+1) continuously for each k ∈ N and so

k0(V ) := ind
k

c0(vk) = ind
k

ℓ∞(vk).

In the notation of Köthe echelon spaces λ1(
1
v ) := proj k ℓ1(

1
vk
) is a Fréchet-

Schwartz space whose strong dual space, i.e., the co-echelon space (λ1(
1
v ))

′
β =

ind k ℓ∞(vk) = k0(V ), is a (DFS)-space. It is known that the regular (LB)-space
k0(V ) is nuclear if and only if the Fréchet-Schwartz space λ1(

1
v ) is nuclear if and

only if the Grothendieck-Pietsch criterion is satis�ed: for every k ∈ N there exists

l ∈ N with l > k such that the sequence ( vl(n)vk(n)
)n∈N ∈ ℓ1, [12, Section 21.6]. In

case vk(n) := eαn/k, for k, n ∈ N, with αn ↑ ∞, then k0(V ) is the strong dual of
the �nite type power series space (of order 1) Λ1

0(α) := proj k ℓ1(
1
vk
). This Fréchet

space is nuclear if and only if limn→∞
log(n)
αn

= 0, [17, Proposition 29.6]. When-

ever this nuclearity condition is satis�ed we have Λ1
0(α) = proj j c0(

1
vk
) which is
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precisely the power series space Λ0(α) in which the operator C was investigated
in [6].

For the rest of this section, whenever αn ↑ ∞ we only consider the weights
vk(n) := eαn/k for k, n ∈ N.

Proposition 5.1. Let the sequence αn satisfy αn ↑ ∞ and limn→∞
log(n)
αn

= 0.

Then the Cesàro operator C does not act in k0(V ) = ind k c0(vk).

Proof. Since limn→∞
log(n)
αn

= 0, it follows from Lemma 2.2 of [6] that limn→∞ nte−αn =

0 for each t ∈ N, which implies limn→∞ ne−αn/l = 0 for each l ∈ N. In particular,

sup
n∈N

eαn/l

n
= ∞, ∀l ∈ N. (5.1)

Suppose that C ∈ L(k0(V )), i.e., for every k ∈ N there exists l ∈ N with l > k
such that C : c0(vk) → c0(vl) is continuous. Then, for k := 1 there exists l1 > 1
such that C : c0(v1) → c0(vl1) is continuous, equivalently

M := sup
n∈N

vl1(n)

n

n∑
m=1

1

v1(m)
< ∞, (5.2)

[4, Proposition 2.2(i)]. But, via (5.2), we then have for each n ∈ N that

eαn/l1

n
= v1(1) ·

vl1(n)

nv1(n)
≤ v1(1) ·

vl1(n)

n

n∑
m=1

1

v1(m)
≤ Mv1(1).

This contradicts (5.1) for l := l1. Hence, C does not act in k0(V ). �

Example 5.2. De�ne αn := log(n+ 1) for n ∈ N. Since limn→∞
log(n)
αn

= 1 ̸= 0 ,

the space k0(V ) is not nuclear. To see that C ∈ L(k0(V )) �x any k ∈ N and set

l := k + 1. Noting that vr(n) = (n+ 1)1/r for r, n ∈ N, it follows that

vl(n)

n

n∑
m=1

1

vk(m)
=

(n+ 1)1/l

n

n∑
m=1

1

(m+ 1)1/k
≤ 2(n+ 1)1/l

(n+ 1)

n+1∑
m=1

1

m1/k
, (5.3)

for each n ∈ N. If k = 1, then l = 2 and it follows from (5.3) and the inequality∑n+1
m=1

1
m ≤ 1 + log(n + 1) that the left-side of (5.3) is at most 2(1+log(n+1))

(n+1)1/2
, for

n ∈ N. For k > 1, using the inequality
∑n+1

m=1
1
mδ ≤ 1+ (n+1)1−δ

1−δ , n ∈ N (valid for

each δ ∈ (0, 1)), with δ := 1
k it follows from (5.3) (with l = k + 1) that

vl(n)

n

n∑
m=1

1

vk(m)
≤ (n+ 1)(

1
k+1

−1) +
k(n+ 1)

1
k+1

− 1
k

(k − 1)
, n ∈ N.

In both the cases (i.e., k = 1 and k > 1) we see that supn∈N
vl(n)
n

∑n
m=1

1
vk(m) < ∞

and so C : c0(vk) → c0(vl) is continuous, [4, Proposition 2.2(i)]. Since this is valid
for every k ∈ N and with l := k + 1, it follows that C ∈ L(k0(V )).

Example 5.3. Let (j(k))k∈N ⊆ N be the sequence given by j(1) := 1 and j(k +
1) := 2(k + 1)(j(k))k, for k ≥ 1. Observe that j(k + 1) > k(j(k))k + 1 > j(k) for
all k ∈ N. De�ne β = (βn)n∈N via βn := k(j(k))k for n = j(k), . . . , j(k + 1)− 1.
Then β is non-decreasing with limn→∞ βn = ∞. Let γ = (γn)n∈N be any strictly
increasing sequence satisfying 2 < γn ↑ 3. Then the sequence αn := log(βn + γn),
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for n ∈ N, satis�es 1 < αn ↑ ∞ and limn→∞
log(n)

n ̸= 0, [6, Remark 2.17]. In
particular, k0(V ) it not nuclear. To establish that C does not act in k0(V ) is
su�ces to show, for k := 1, that

sup
n∈N

vl(n)

n

n∑
m=1

1

v1(m)
= ∞, ∀l ∈ N. (5.4)

So, �x any l ∈ N. Select n = j(k), for any k ∈ N, and observe (for this n) that

vl(n)

n

n∑
m=1

1

v1(m)
=

(βj(k) + γj(k))
1/l

j(k)

j(k)∑
m=1

1

βm + γm
≥

(βj(k) + γj(k))
1/l

j(k)
· 1

(β1 + γ1)

≥
(k(j(k))k + γj(k))

1/l

4j(k)
≥ k1/l(j(k))(

k
l
)−1

4
≥ k1/lk(

k
l
)−1

4
,

where we have used 1
β1+γ1

> 1
4 and j(k) ≥ k. Accordingly,

sup
n∈N

vl(n)

n

n∑
m=1

1

v1(m)
≥ sup

k∈N

vl(j(k))

j(k)

j(k)∑
m=1

1

v1(m)
≥ sup

k∈N

k1/lk(
k
l
)−1

4
= ∞.

So, (5.4) is satis�ed and hence, C does not act in k0(V ).
The �nal two (abstract) results are recorded here in order not to disturb the

�ow of the text in earlier sections (where these results are needed). We begin with
a fact which is surely known; a proof is included for the sake of self containment.

Lemma 5.4. Let E = ind k(Ek, ∥ ∥k) be a regular inductive limit of Banach

spaces. Then a subset H ⊆ L(E) is equicontinuous if and only if the following

condition is satis�ed: for every k ∈ N there exists l ∈ N with l ≥ k and D > 0
such that

∥Tx∥l ≤ D∥x∥k, ∀T ∈ H, x ∈ Ek. (5.5)

Proof. First, assume that H is equicontinuous. Fix k ∈ N, in which case the
closed unit ball Bk of Ek is bounded in E. The claim is that C := ∪T∈HT (Bk)
is bounded in E. Indeed, by equicontinuity of H, given any 0-neighbourhood V
in E there exists a 0-neighbourhood U in E such that T (U) ⊆ V for all T ∈ H.
Since Bk is bounded in E, there exists λ > 0 such that Bk ⊆ λU and hence,
T (Bk) ⊆ λT (U) ⊆ λV for all T ∈ H. It follows that C ⊆ λV . Since V is
arbitrary, it follows that C is bounded in E. But, E is regular and so there exists
l ≥ k such that C is contained and bounded in El. Thus, there exists D > 0 such
that ∥Tx∥l ≤ D for all x ∈ Bk and T ∈ H. Accordingly, the stated condition
(5.5) is satis�ed.

Assume that the stated condition (5.5) is satis�ed. Since E is barrelled, the
Banach-Steinhaus principle is available and so it su�ces to show that the set
{Ty : T ∈ H} is bounded in E for each y ∈ E. So, �x y ∈ E in which case y ∈ Ek

for some k ∈ N. Selecting l ≥ k and D > 0 according to condition (5.5), we have
∥Ty∥l ≤ D∥y∥k for all T ∈ H. Hence, the set {Ty : T ∈ H} is bounded in El and
so, also in E. �

The following result occurs in [7, Lemma 5.2].

Lemma 5.5. Let E = ind n(En, ∥ · ∥n) be a Hausdor� inductive limit of Banach

spaces. Let T ∈ L(E) satisfy the following condition:
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(A) For each n ∈ N the restriction Tn of T to En maps En into itself and

belongs to L(En).

Then the following properties are satis�ed.

(i) σpt(T ;E) = ∪n∈Nσpt(Tn;En).
(ii) σ(T ;E) ⊆ ∩m∈N(∪∞

n=mσ(Tn;En)). Moreover, if λ ∈ ∩∞
n=mρ(Tn;En) for

some m ∈ N, then R(λ, Tn) coincides with the restriction of R(λ, T ) to

En for each n ≥ m.

(iii) If ∪∞
n=mσ(Tn;En) ⊆ σ(T ;E) for some m ∈ N, then σ∗(T ;E) = σ(T ;E).
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