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Abstract. The spectrum of the Cesàro operator C, which is always
continuous (but never compact) when acting on the classical Korenblum
space and other related weighted Fréchet or (LB) spaces of analytic
functions on the open unit disc, is completely determined. It turns out
that such spaces are always Schwartz but, with the exception of the
Korenblum space, never nuclear. Some consequences concerning the
mean ergodicity of C are deduced.

1. Introduction and main results.

Let H(D) denote the Fréchet space of all analytic functions f : D → C
equipped with the topology of uniform convergence on the compact subsets
of D := {z ∈ C : |z| < 1}. The classical Cesàro operator C is given by

f 7→ C(f) : z 7→ 1

z

∫ z

0

f(ζ)

1− ζ
dζ, z ∈ D \ {0}, and C(f)(0) = f(0),

(1.1)
for f ∈ H(D). It is a Fréchet space isomorphism of H(D) onto itself. In

terms of the Taylor coe�cients f̂(n) := f (n)(0)
n!

, for n ∈ N0, of functions

f(z) =
∑∞

n=0 f̂(n)z
n ∈ H(D) one has the description

C(f)(z) =
∞∑
n=0

( 1

n+ 1

n∑
k=0

f̂(k)
)
zn, z ∈ D. (1.2)

The linear operator C is said to act in a vector subspace X ⊆ H(D) if
it maps X into itself. Of particular interest is the situation when X is a
Fréchet space, i.e., a complete metrizable locally convex space (in particular,
a Banach space) or a countable inductive limit of Banach spaces, i.e. an
(LB)-space. Two fundamental questions arise: Is C : X → X continuous
and, if so, what is its spectrum?
The continuity, compactness and spectrum of generalized Cesàro oper-

ators on Banach spaces of analytic functions on D have attracted much
attention; see [7, 8, 10, 11] and the survey papers [6, 34]. Aleman and
Persson [9, 31] investigated in detail the spectrum of generalized Cesàro
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operators on various spaces of analytic functions, including Hardy spaces,
weighted Bergman spaces and Dirichlet spaces. For a detailed account of
the development of research in this direction, we refer to the introduction
of [9].
For each γ > 0, the growth classes of analytic functions

A−γ := {f ∈ H(D) : ∥f∥−γ := sup
z∈D

(1− |z|)γ|f(z)| < ∞}

and

A−γ
0 := {f ∈ H(D) : lim

|z|→1−
(1− |z|)γ|f(z)| = 0 }

play an important role in [9, 31]. Both are Banach spaces when endowed
with the norm ∥ · ∥−γ. The space A−γ

0 , which is a closed subspace of A−γ,
coincides with the closure of the polynomials on A−γ, [16]. These Banach
spaces, as well as their intersections and unions, play a relevant and im-
portant role in connection with the interpolation and sampling of analytic
functions; see [24, Section 4.3]. They are particular examples of weighted
Banach spaces H∞

v and H0
v of analytic functions on D which have been

investigated by many authors since the work of Shields and Williams [33];
see, for example, [13, 14, 15, 16, 28] and the references therein.
For each pair 0 < µ1 < µ2 we have A−µ1 ⊆ A−µ2

0 , with the natural
inclusion being continuous. Moreover, for each γ > 0, A−γ is canonically
isomorphic to the bidual Banach space (A−γ

0 )′′ of A−γ
0 , [16, 33]. In terms of

this biduality the operator C : A−γ → A−γ is precisely the bidual operator
of C : A−γ

0 → A−γ
0 .

We recall the following result [9, Theorem 5.1 and Corollary 5.1], [31,
Theorem 4.1] of Aleman and Persson concerning the eigenvalues and spec-
trum of C on A−γ

0 and A−γ; it will be quoted on several occasions. Further
properties of C which complement this result occur in [3].

Theorem 1.1. Let γ > 0. Both of the Cesàro operators C : A−γ
0 → A−γ

0

and C : A−γ → A−γ are continuous and satisfy the following properties.

(i) σpt(C;A
−γ
0 ) = { 1

m
: m ∈ N, m < γ}.

(ii) σ(C;A−γ
0 ) = σpt(C;A

−γ
0 ) ∪

{
λ ∈ C :

∣∣∣λ− 1
2γ

∣∣∣ ≤ 1
2γ

}
.

(iii) Let

∣∣∣λ− 1
2γ

∣∣∣ < 1
2γ

( equivalently, Re
(
1
λ

)
> γ). The range Im(λI−C)

of λI − C is closed in A−γ
0 and has codimension 1 in A−γ

0 .

Moreover, the spectra of C acting in A−γ are given as follows.

(iv) σpt(C;A
−γ) = { 1

m
: m ∈ N, m ≤ γ}.

(v) σ(C;A−γ) = σ(C;A−γ
0 ).

The purpose of this paper is to investigate the Cesàro operator C in spaces
that arise as unions or as intersections of growth spaces de�ned as follows
for each γ ≥ 0. We begin with the (decreasing) intersection
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A−γ
+ := ∩µ>γA

−µ = {f ∈ H(D) : sup
z∈D

(1− |z|)µ|f(z)| < ∞ ∀µ > γ},

in which case also

A−γ
+ = ∩µ>γA

−µ
0 = {f ∈ H(D) : lim

|z|→1−
(1− |z|)µ|f(z)| = 0 ∀µ > γ}.

Then A−γ
+ is a Fréchet space when endowed with the lc-topology generated

by the increasing sequence of norms |||f |||k := supz∈D(1 − |z|)γ+ 1
k |f(z)|, for

f ∈ A−γ
+ and each k ∈ N. We note, for 0 < µ1 < µ2, that the natural

inclusion A−µ1 ⊆ A−µ2

0 is actually a compact operator between Banach
spaces. This follows from [17, Theorem 3.3], for example, if we substitute
there φ(z) := z, for z ∈ D, with v(z) := (1−|z|)µ1 and w(z) := (1−|z|)µ2 (in
which case v = ṽ) satisfying lim|z|→1− v(z) = lim|z|→1− w(z) = 0 and observe

that H∞
v = A−µ1 (resp. H∞

w = A−µ2) and H0
v = A−µ1

0 (resp. H0
w = A−µ2

0 ).
Consequently, A−γ

+ is a Fréchet Schwartz space, [25, �21.1 Example 1(b)].
In particular, bounded subsets of A−γ

+ are relatively compact as A−γ
+ is also

a Fréchet Montel space, [29, Remark 24.24]. Moreover, for every µ > γ > 0
we have A−γ ⊆ A−γ

+ ⊆ A−µ
0 with continuous inclusions. Since A−γ

+ contains
the polynomials, it is dense in A−µ

0 for every µ > γ. In addition, since
evaluations at points of D are continuous linear functionals on each Banach
space A−µ

0 for µ > 0, [33, Lemma 1], they are also continuous on A−γ
+ for

each γ ≥ 0.
Consider now the (increasing) union

A−γ
− := ∪µ<γA

−µ = {f ∈ H(D) : sup
z∈D

(1− |z|)µ|f(z)| < ∞ for some µ < γ}

in which case also

A−γ
− = ∪µ<γA

−µ
0 = {f ∈ H(D) : lim

|z|→1−
(1− |z|)µ|f(z)| = 0 for some µ < γ},

for each 0 < γ ≤ ∞. Each space A−γ
− is endowed with the �nest lc-

topology such that all the natural inclusion maps A−µ ⊆ A−γ
− , for µ < γ,

are continuous. In particular, since A−µ1 ⊆ A−µ2 compactly whenever
0 < µ1 < µ2, the space A−γ

− = ∪k∈NA
−(γ− 1

k
) is the complete (DFS)-space

A−γ
− := ind

k
A−(γ− 1

k
) = ind

k
A

−(γ− 1
k
)

0 ,

which is necessarily a Schwartz space, [29, Proposition 25.20]. Of course, the
inductive limit is taken over all k ∈ N such that (γ − 1

k
) > 0. Fürthermore,

the (LB)-space A−γ
− is regular, i.e., every bounded set B ⊆ A−γ

− is contained
and bounded in the Banach space A−µ for some 0 < µ < γ.
The well known Korenblum space A−∞

− , [26], denoted simply by A−∞, is
de�ned via

A−∞ := ∪0<γ<∞A−γ = ∪n∈NA
−n
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and is endowed with the �nest lc-topology such that all the natural inclusion
maps A−n ⊆ A−∞ are continuous, that is, A−∞ = ind nA

−n. Again the
inductive limit is regular and A−∞ is a Schwartz space. Further information
can be found in [24, Section 4.3]. We mention, for all γ > 0, that A−γ

− ⊆
A−γ

0 ⊆ A−γ ⊆ A−γ
+ with continuous inclusions. In particular, all evaluations

at points of D are continuous linear functionals on each space A−γ
− , for 0 <

γ ≤ ∞. Since the polynomials lie in A−γ
− for all 0 < γ ≤ ∞, it is clear that

A−γ
− is dense in A−γ

0 for all 0 < γ < ∞. Each Cesàro operator C : A−γ
− →

A−γ
− (and C : A−γ

+ → A−γ
+ ) is continuous because, by Theorem 1.1, it acts

continuously in each step. Since every closed linear map between (LF)-
spaces is continuous, it follows that all the natural inclusions A−γ

+ ⊆ H(D)
for γ ≥ 0 and A−γ

− ⊆ H(D) for 0 < γ ≤ ∞ are continuous.
Let X be a locally convex Hausdor� space (brie�y, lcHs) and ΓX a system

of continuous seminorms determining the topology of X. Let X ′ denote the
space of all continuous linear functionals on X. The family of all bounded
subsets of X is denoted by B(X). Denote the identity operator on X by I.
Let L(X) denote the space of all continuous linear operators from X into
itself. For T ∈ L(X), the resolvent set ρ(T ) of T consists of all λ ∈ C such
that R(λ, T ) := (λI − T )−1 exists in L(X). The set σ(T ) := C \ ρ(T ) is
called the spectrum of T . The point spectrum σpt(T ) of T consists of all
λ ∈ C such that (λI − T ) is not injective. If we need to stress the space X,
then we also write σ(T ;X), σpt(T ;X) and ρ(T ;X). Given λ, µ ∈ ρ(T ) the
resolvent identity R(λ, T )−R(µ, T ) = (µ−λ)R(λ, T )R(µ, T ) holds. Unlike
for Banach spaces, it may happen that ρ(T ) = ∅ or that ρ(T ) is not open in
C. This is why some authors prefer the subset ρ∗(T ) of ρ(T ) consisting of
all λ ∈ C for which there exists δ > 0 such that B(λ, δ) := {z ∈ C : |z−λ| <
δ} ⊆ ρ(T ) and {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous in L(X). If X
is a Fréchet space or even an (LF)-space, then it su�ces that such sets are
bounded in Ls(X), where Ls(X) denotes L(X) endowed with the strong
operator topology τs which is determined by the seminorms T 7→ qx(T ) :=
q(Tx), for all x ∈ X and q ∈ ΓX . The advantage of ρ∗(T ), whenever it
is non-empty, is that it is open and the resolvent map R : λ 7→ R(λ, T ) is
analytic from ρ∗(T ) into Lb(X), [2, Proposition 3.4]. Here Lb(X) denotes
L(X) endowed with the topology τb of uniform convergence on members of
B(X); it is determined by the seminorms T 7→ qB(T ) := supx∈B q(Tx), for
all B ∈ B(X) and q ∈ ΓX . De�ne σ

∗(T ) := C \ ρ∗(T ), which is a closed set
containing σ(T ). If T ∈ L(X) with X a Banach space, then σ(T ) = σ∗(T ).
In [2, Remark 3.5(vi), p.265] an example of a continuous linear operator T

on a Fréchet space X is presented such that σ(T ) ⊂ σ∗(T ) properly. For
unde�ned concepts concerning lcHs', see [25, 29]. We introduce the notation
Σ := { 1

m
: m ∈ N} and Σ0 := {0} ∪ Σ.

The �rst main result of this paper is the following one.

Theorem 1.2. (a) Let γ ∈ (0,∞).
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(i) σpt(C;A
−γ
+ ) = { 1

m
: m ∈ N, m ≤ γ}.

(ii) σ(C;A−γ
+ ) = {0} ∪ σpt(C;A

−γ
+ ) ∪ {λ ∈ C : |λ− 1

2γ
| < 1

2γ
}.

(iii) σ∗(C;A−γ
+ ) = σ(C;A−γ

+ ).

(b) Let γ = 0.

(i) σpt(C;A
−0
+ ) = ∅.

(ii) σ(C;A−0
+ ) = {0} ∪ {λ ∈ C : Re(λ) > 0}.

(iii) σ∗(C;A−0
+ ) = σ(C;A−0

+ ).

Observe that the spectra σ(C;A−γ
+ ), for γ ∈ (0,∞), are bounded but not

closed sets in C and that σpt(C;A
−γ
+ ) = ∅ with σ(C;A−γ

+ ) = {0} ∪ {λ ∈ C :
|λ− 1

2γ
| < 1

2γ
} whenever 0 < γ < 1. Moreover, σ(C;A−0

+ ) is unbounded and
not closed in C.
The second main result is the following one.

Theorem 1.3. (a) Let γ ∈ (0,∞).

(i) σpt(C;A
−γ
− ) = { 1

m
: m ∈ N, m < γ}.

(ii) σ(C;A−γ
− ) = σpt(C;A

−γ
− ) ∪ {λ ∈ C : |λ− 1

2γ
| ≤ 1

2γ
}.

(iii) σ∗(C;A−γ
− ) = σ(C;A−γ

− ).

(b) For the Korenblum space A−∞ the following properties hold.

(i) σ(C;A−∞) = σpt(C;A
−∞) = Σ.

(ii) σ∗(C;A−∞) = Σ0.

Note that the spectra σ(C;A−γ
− ), for 0 < γ < ∞, are compact sets in

C and that σpt(C;A
−γ
− ) = ∅ with σ(C;A−γ

− ) = {λ ∈ C : |λ − 1
2γ
| ≤ 1

2γ
}

whenever 0 < γ ≤ 1. In the Korenblum space A−∞ the spectrum of C is
precisely Σ and hence, it is bounded but not compact in C.
Recall that an operator T ∈ L(X), with X a lcHs, is compact (resp.

weakly compact) if there exists a neighbourhood U of 0 such that T (U) is
a relatively compact (resp. relatively weakly compact) subset of X. If T
is compact, then σ(T ;X) is a compact set in C and every non-zero point
of σ(T ;X) is isolated, [22, Theorem 9.10.2], [23, p.204]. This fact, together
with Theorems 1.2 and 1.3, yields the following result.

Proposition 1.4. The Cesàro operator C fails to be compact in the Frèchet

spaces A−γ
+ for 0 ≤ γ < ∞, in the (DFS)-spaces A−γ

− for 0 < γ < ∞, and

in the Korenblum space A−∞.

Since the spaces A−γ
+ for 0 ≤ γ < ∞ and A−γ

− for 0 < γ ≤ ∞ are
all Montel, there is no distinction between weakly compact and compact
operators in these spaces, i.e., C also fails to be weakly compact in all of
these spaces.
Section 2 is devoted to the proofs of Theorem 1.2 and Theorem 1.3. An

application to the operator of di�erentiation is given in Proposition 2.10.
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Section 3 determines the mean ergodic properties of C when acting in
the spaces A−γ

+ (resp. A−γ
− ); these properties depend critically on whether

γ < 1 or γ ≥ 1 (resp. γ ≤ 1 or γ > 1); see Propositions 3.3 and 3.4.
Both the Korenblum space A−∞ and its ambient space H(D) are known

to be nuclear. In Section 4 it is shown that this situation is special: the
spaces A−γ

+ for 0 ≤ γ < ∞ and A−γ
− for 0 < γ < ∞ all fail to be nuclear.

In an Appendix at the end of the paper we present two abstract results
(one from [4] and the other one new) concerning the spectra of operators
in Fréchet spaces and in inductive limits of Banach spaces, which are used
on various occasions in Section 2.

2. Proofs of the main results

We begin immediately with the proof of Theorem 1.2, which is obtained
as a consequence of several propositions.

Proposition 2.1. Let 0 ≤ γ < ∞. Then

σpt(C;A
−γ
+ ) = { 1

m
: m ∈ N, m ≤ γ}. (2.1)

In particular, σpt(C;A
−γ
+ ) = ∅ whenever 0 ≤ γ < 1.

Proof. Fix λ ∈ σpt(C;A
−γ
+ ). Then there exists f ∈ A−γ

+ satisfying Cf = λf .

Applying Theorem 1.1(i) for (γ+1) > 0 in place of γ and noting f ∈ A
−(γ+1)
0

it follows that λ = 1
m

for some unique m ∈ N with m < (γ + 1). But, for

every µ > γ we also have that f ∈ A−µ
0 with Cf = 1

m
f in A−µ

0 . Again by
Theorem 1.1(i), now applied to µ in place of γ, it follows that 1

m
< µ holds

for every µ > γ. Accordingly, λ belongs to the right-side of (2.1). On the
other hand, if λ = 1

m
withm ∈ N satisfyingm ≤ γ, then by Theorem 1.1(iv)

there exists f ∈ A−γ ⊆ A−γ
+ satisfying Cf = λf . Therefore, λ ∈ σpt(C;A

−γ
+ ).

This argument implies that σpt(C;A
−γ
+ ) = ∅ for 0 ≤ γ < 1. �

For φ ∈ H∞(D) let Mφ denote the operator in H(D) of multiplication by
φ, in which case Mφ ∈ L(H(D)). The di�erentiation operator D : f 7→ f ′,
for f ∈ H(D), also belongs to L(H(D)). It then follows from (1.1) that
C−1 ∈ L(H(D)) is given by C−1 = M1−zDMz, i.e., for all g ∈ H(D) we have

C−1g(z) = (1− z)(g(z) + zg′(z)), z ∈ D. (2.2)

Concerning the spectrum of C it is known that

σ(C;H(D)) = σpt(C;H(D)) = Σ

and that each eigenvalue 1
n
, for n ∈ N, is simple with corresponding eigen-

vector z 7→ zn−1

(1−z)n
; see pp.71�72 of [9] with g(z) := − log(1 − z) which

corresponds to the Cesàro operator (1.1). In particular, C is always injec-
tive. Furthermore, it is also known, [5, Proposition 2.20], that

σ∗(C;H(D)) = σ(C;H(D)) = Σ0.
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Since the spaces A−γ
+ for 0 ≤ γ < ∞ and A−γ

− for 0 < γ ≤ ∞ are continu-
ously included in H(D), we have

σpt(C;A
−γ
+ ) ⊆ σpt(C;H(D)) = Σ and σpt(C;A

−γ
− ) ⊆ σpt(C;H(D)) = Σ.

For each φ ∈ H∞(D) the operatorMφ also belongs to L(A−γ
+ ) for 0 ≤ γ < ∞

and to L(A−γ
− ) for 0 < γ ≤ ∞. Since Σ is not a compact subset of C the

argument used for proving Proposition 1.4 also shows that C ∈ L(H(D)) is
not a compact operator.
Concerning the point λ = 0 we have the following fact.

Proposition 2.2. Let 0 ≤ γ < ∞. Then 0 ∈ σ(C;A−γ
+ ).

Proof. Suppose �rst that γ > 0. De�ne g0 ∈ H(D) by g0(z) :=
1

(1+z)γ
, for

z ∈ D. Observe, for each z ∈ D, that 1 = |1 + z − z| ≤ |1 + z| + |z| and
so (1−|z|)γ

|1+z|γ ≤ 1. Thus, g0 ∈ A−γ ⊆ A−γ
+ which implies that also (1− z)g0 =

M1−zg0 ∈ A−γ ⊆ A−γ
+ . Suppose that C−1g0 ∈ A−γ

+ . Since M1−zg0 ∈ A−γ
+ , it

follows from (2.2) that z(1−z)g′0 = −γz(1−z) 1
(1+z)γ+1 ∈ A−γ

+ . In particular,

for k = 2 it would follow that |||z(1 − z)g′0|||2 = supz∈D(1 − |z|)γ+ 1
2 |z(1 −

z)| 1
|1+z|γ+1 < ∞. But, each point zm := −1 + 1

m
∈ D, for m ∈ N with

m ≥ 2, satis�es

(1− |zm|)γ+
1
2 |zm(1− zm)|

1

|1 + zm|γ+1
=(

1

m

)γ+ 1
2
(
1− 1

m

)(
2− 1

m

)
mγ+1 ≥ 1

2
m

1
2 ,

with 1
2
m

1
2 → ∞ for m → ∞; contradiction. Thus, C is not surjective on

A−γ
+ and so 0 ∈ σ(C;A−γ

+ ).
For γ = 0, consider g0(z) := log(1 + z) =

∑∞
n=1(−1)n+1 zn

n
, z ∈ D. Since

|g0(z)| ≤ − log(1 − |z|) for each z ∈ D, we have g0 ∈ A−0
+ . Suppose that

C−1g0 ∈ A−0
+ . Then z(1 − z)g′0 = z(1 − z) 1

(1+z)
∈ A−0

+ . In particular, for

k = 2 we would have |||z(1− z)g′0|||2 := supz∈D(1− |z|) 1
2 |z(1− z)| 1

|1+z| < ∞.

But, each point zm := −1 + 1
m

∈ D, for m ∈ N with m ≥ 2, satis�es

(1− |zm|)
1
2 |zm(1− zm)|

1

|1 + zm|
=

(
1

m

) 1
2
(
1− 1

m

)(
2− 1

m

)
m ≥ 1

2
m

1
2 ,

which is again a contradiction. So, 0 ∈ σ(C;A−0
+ ) also in this case. �

Proposition 2.3. Let 0 ≤ γ < ∞. Then

σ(C;A−γ
+ ) = {0} ∪ { 1

m
: m ∈ N, m ≤ γ} ∪ {λ ∈ C : |λ− 1

2γ
| < 1

2γ
}.

For γ = 0 we have

σ(C;A−0
+ ) = {0} ∪ {λ ∈ C : Re(λ) > 0}.
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Proof. Propositions 2.1 and 2.2 imply that

{0} ∪ { 1
m
: m ∈ N, m ≤ γ} ⊆ σ(C;A−γ

+ ), 0 ≤ γ < ∞.

Moreover, Lemma 5.1 in the Appendix, applied to T := C acting on A−γ
+

and to Tn := Cn = C acting on A
−(γ+ 1

n
)

0 , implies that

σ(C;A−γ
+ ) ⊆ ∪n∈Nσ(Cn;A

−(γ+ 1
n
)

0 ).

By Theorem 1.1(i)-(ii) we have, for each γ > 0, that

∪n∈Nσ(Cn;A
−(γ+ 1

n
)

0 ) ⊆ {0}∪{ 1
m
: m ∈ N, m ≤ γ}∪{λ ∈ C : |λ− 1

2γ
| < 1

2γ
},

and for γ = 0 that σ(C;A−0
+ ) ⊆ {0} ∪ {λ ∈ C : Re(λ) > 0}. So, to complete

the proof it remains to show that

{λ ∈ C : |λ− 1
2γ
| < 1

2γ
} ⊆ σ(C;A−γ

+ ), γ > 0,

and that

{λ ∈ C : Re(λ) > 0} ⊆ σ(C;A−0
+ ), γ = 0.

Fix γ > 0. Let λ ∈ C satisfy |λ − 1
2γ
| < 1

2γ
and set mγ := max{m ∈

N : 1
m

≥ 1
γ
}. Then there exists n0 ∈ N such that 1

γ+n−1 ≥ 1
mγ+1

and

|λ − 1
2(γ+ 1

n
)
| < 1

2(γ+ 1
n
)
for all n ≥ n0. By Theorem 1.1(iii), the operator

λI−Cn is injective and Im(λI−Cn) is a closed, one-codimensional subspace

of A
−(γ+ 1

n
)

0 for all n ≥ n0. We proceed to show that Im(λI − C) is a proper
closed subspace of A−γ

+ . The argument is as in the proof of [4, Theorem
2.2].
To show that Im(λI − C) is a closed subspace of A−γ

+ , let (gj)j∈N ⊆
Im(λI − C) be a sequence in A−γ

+ converging to g ∈ A−γ
+ . For each j ∈ N

select fj ∈ A−γ
+ such that (λI −C)fj = gj. In particular, (fj)j∈N ⊆ A

−(γ+ 1
n
)

0

(hence, also (gj)j∈N ⊆ A
−(γ+ 1

n
)

0 ) for all n ≥ n0. Since for each n ≥ n0 the

space A−γ
+ ⊆ A

−(γ+ 1
n
)

0 continuously, we have gj → g in the Banach space

A
−(γ+ 1

n
)

0 as j → ∞. But, Im(λI − Cn) is a closed subspace of A
−(γ+ 1

n
)

0

and so g ∈ Im(λI − Cn) for all n ≥ n0. Thus, for each n ≥ n0 there

exists hn ∈ A
−(γ+ 1

n
)

0 satisfying (λI − Cn)hn = g. Moreover, for n ≥ n0 we
have (λI − Cn)hn = g = (λI − Cn+1)hn+1. Since the restriction of Cn to

A
−(γ+ 1

n+1
)

0 coincides with Cn+1 and (λI − Cn) is injective, it follows that
hn = hn+1 for all n ≥ n0. Accordingly, hn0 ∈ A−γ

+ and (λI −C)hn0 = g, i.e.,
g ∈ Im(λI − C).
To see that Im(λI − C) is a proper closed subspace of A−γ

+ assume the
contrary, that is, Im(λI−C) = A−γ

+ . It was already noted that A−γ
+ is dense

in A
−(γ+ 1

n
)

0 for all n ∈ N. This implies, for every n ∈ N, that

A
−(γ+ 1

n
)

0 = A−γ
+ = (λI − C)(A−γ

+ ) ⊆ (λI − Cn)(A
−(γ+ 1

n
)

0 ),
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with all closures taken in A
−(γ+ 1

n
)

0 . This contradicts Im(λI − Cn) being a

closed, one-codimensional subspace of A
−(γ+ 1

n
)

0 for all n ≥ n0. So, (λI − C)
is not surjective, i.e., λ ∈ σ(C;A−γ

+ ).
Consider now γ = 0 in which case A−0

0 = ∩µ>0A
−µ
0 . Let λ satisfy Re(λ) >

0 and choose γ0 ∈ (0, 1) such that |λ− 1
2γ0

| < 1
2γ0

. Then also |λ− 1
2γ
| < 1

2γ

for all 0 < γ ≤ γ0. Observe that

Σ ⊆ {z ∈ C : |z − 1
2γ0

| < 1
2γ0

} ⊆ {z ∈ C : |z − 1
2γ
| < 1

2γ
}

and { 1
m

: m ∈ N,m ≤ γ} = ∅ for all 0 < γ ≤ γ0. In particular, Theorem

1.1(i),(iii) shows that σpt(C;A
−γ
0 ) = ∅, i.e., λI − C is injective on A−γ

0 ,
and that Im(λI − C) is a closed, one-codimensional subspace of A−γ

0 for all
0 < γ ≤ γ0. The proof now continues as above (for the case of γ > 0)
to show that Im(λI − C) is a proper closed subspace of A−0

+ and hence,
λ ∈ σ(C;A−0

+ ). �

Corollary 2.4. Let 0 ≤ γ < ∞. Then σ∗(C;A−γ
+ ) = σ(C;A−γ

+ ).

Proof. This is a direct consequence of Proposition 2.3 and Lemma 5.1 (in

the Appendix), since ∪n∈Nσ(Cn;A
−(γ+ 1

n
)

0 ) ⊆ σ(C;A−γ
+ ) ; this inclusion was

established in the proof of Proposition 2.3. �
Propositions 2.1�2.3 and Corollary 2.4 together provide the complete

proof of Theorem 1.2.

The proof of Theorem 1.3 is also a consequence of several propositions.

Proposition 2.5. Let 0 < γ ≤ ∞. Then

σpt(C;A
−γ
− ) = { 1

m
: m ∈ N, m < γ}.

Proof. Applying Lemma 5.2(i) of the Appendix to T := C acting in A−γ
− and

Tn := Cn = C acting in A
−(γ− 1

n
)

0 together with Theorem 1.1(i), we obtain
that

σpt(C;A
−γ
− ) = ∪n∈Nσpt(Cn;A

−(γ− 1
n
)

0 ) = ∪n∈N{ 1
m
: m ∈ N, m < (γ − 1

n
)}

= { 1
m
: m ∈ N, m < γ}.

The case of the Korenblum space, i.e., γ = ∞, follows similarly. �
Proposition 2.6. Let 0 < γ < ∞. Then

σ(C;A−γ
− ) ⊆ { 1

m
: m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2γ
| ≤ 1

2γ
}.

Proof. Applying Lemma 5.2(ii) of the Appendix to T := C acting in A−γ
−

and Tn := Cn = C acting in A
−(γ− 1

n
)

0 we obtain that

σ(C;A−γ
− ) ⊆ ∩m∈N, m>γ−1(∪∞

n=mσ(Cn;A
−(γ− 1

n
)

0 )).
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On the other hand, Theorem 1.1(ii) implies, for every n ∈ N with n > γ−1,
that

σ(C;A−(γ− 1
n
)) = { 1

m
: m ∈ N, m < (γ− 1

n
)}∪{λ ∈ C : |λ− 1

2(γ− 1
n
)
| ≤ 1

2(γ− 1
n
)
}.

Since, for each m,n ∈ N satisfying n ≥ m > γ−1, we have

{λ ∈ C : |λ− 1
2(γ− 1

n
)
| ≤ 1

2(γ− 1
n
)
} ⊆ {λ ∈ C : |λ− 1

2(γ− 1
m
)
| ≤ 1

2(γ− 1
m
)
},

it follows that

σ(C;A−γ
− ) ⊆ { 1

m
: m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2γ
| ≤ 1

2γ
}.

�
Proposition 2.7. Let 0 < γ < ∞. Then

{ 1
m
: m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2γ
| < 1

2γ
} ⊆ σ(C;A−γ

− ).

Proof. First, Proposition 2.5 implies { 1
m
: m ∈ N, m < γ} ⊆ σ(C;A−γ

− ).

Assume there exists λ ∈ C satisfying |λ − 1
2γ
| < 1

2γ
but, λ ̸∈ σ(C;A−γ

− ).

Then (λI − C)(A−γ
− ) = A−γ

− . On the other hand, Theorem 1.1(iii) yields
that (λI − C)(A−γ

0 ) is a closed, one-codimensional subspace of A−γ
0 . The

density of A−γ
− in A−γ

0 then implies that

A−γ
0 = A−γ

− = (λI − C)(A−γ
− ) ⊆ (λI − C)(A−γ

0 ),

with all closures taken in A−γ
0 . Hence, (λI−C)(A−γ

0 ) = A−γ
0 ; contradiction.

�
Proposition 2.8. Let 0 < γ < ∞. Then

σ(C;A−γ
− ) = { 1

m
: m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2γ
| ≤ 1

2γ
}.

Proof. By Propositions 2.6 and 2.7 it remains to establish that

{λ ∈ C : |λ− 1
2γ
| = 1

2γ
} ⊆ σ(C;A−γ

− ).

So, �x λ ∈ C such that |λ − 1
2γ
| = 1

2γ
, in which case Re

(
1
λ

)
= γ. By [31,

Proposition 4], the constant function 1 ̸∈ (λI − C)(A−γ
0 ). Since 1 ∈ A−γ

−
and A−γ

− ⊆ A−γ
0 , it follows that (λI −C) : A−γ

− → A−γ
− is not surjective, i.e.,

λ ∈ σ(C;A−γ
− ). �

Proposition 2.9. Let 0 < γ < ∞. Then

σ∗(C;A−γ
− ) = σ(C;A−γ

− ).

Proof. It is always the case that σ(C;A−γ
− ) ⊆ σ∗(C;A−γ

− ); see Section 1.
To establish the reverse inclusion, �x λ ̸∈ σ(C;A−γ

− ). By Proposition 2.8
the set σ(C;A−γ

− ) is compact and so there exist r > 0 and n0 ∈ N with
n0 >

1
γ
such that

B(λ, r) ∩ ({ 1
m
: m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2(γ− 1
n0

)
| ≤ 1

2(γ− 1
n0

)
}) = ∅.
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Applying Theorem 1.1(ii) it follows that B(λ, r) ∩ σ(Cn;A
−(γ− 1

n
)

0 ) = ∅, for
every n ≥ n0, that is,

B(λ, r) ⊆ ρ(Cn;A
−(γ− 1

n
)

0 ), n ≥ n0,

where Cn is the restriction of C toA
−(γ− 1

n
)

0 . Therefore, the set {R(µ,Cn) : µ ∈
B(λ, r)} is equicontinuous, that is, operator norm bounded in L(A−(γ− 1

n
)

0 )
for every n ≥ n0; here, R(µ,Cn) denotes the inverse of the bijective op-

erator (µI − Cn) : A
−(γ− 1

n
)

0 → A
−(γ− 1

n
)

0 for µ ∈ B(λ, r). The claim is that

the set {R(µ,C) : µ ∈ B(λ, r)} is equicontinuous in L(A−γ
− ), where now

R(µ,C) denotes the inverse of the bijective operator (µI − C) : A−γ
− → A−γ

−
for µ ∈ B(λ, r). This would verify that λ ̸∈ σ∗(C;A−γ

− ).

To establish the claim it su�ces to show that {R(µ,C)f : µ ∈ B(λ, r)} is
a bounded set in A−γ

− for all f ∈ A−γ
− . This is because A−γ

− is a (DFS)-space
(hence, barrelled) and so the Banach-Steinhaus principle is applicable. So,

�x f ∈ A−γ
− . Then f ∈ A

−(γ− 1
n
)

0 for some n ≥ n0. So, {R(µ,Cn)f : µ ∈
B(λ, r)} is a bounded set in A

−(γ− 1
n
)

0 and hence, also in A−γ
− . Since the

restrictionR(µ,C)|
A

−(γ− 1
n )

0

= R(µ,Cn) for µ ∈ B(λ, r), the proof is complete.

�

It remains to complete the proof of part (b) of Theorem 1.3 for C acting

in the Korenblum space A−∞ = A−∞
− .

To this e�ect, observe that Proposition 2.5, with γ = ∞, shows that
σpt(C;A

−∞) = Σ. Suppose that λ ∈ C \ Σ0. Then there exists n(0) ∈ N
such that λ /∈ Σ ∪ {z ∈ C : |z − 1

2n(0)
| ≤ 1

n(0)
}. Therefore λ /∈ σ(Cn;A

−n)

for each n ≥ n(0) where Cn := C|A−n ; see Theorem 1.1(i),(ii). By Lemma
5.2(ii) in the Appendix we can conclude that λ /∈ σ(C;A−∞). Hence, we
have established that

Σ = σpt(C;A
−∞) ⊆ σ(C;A−∞) ⊆ Σ0. (2.3)

Next we prove that 0 /∈ σ(C;A−∞). As observed above (see (2.2)), C−1 ∈
L(H(D)) is given by C−1 = M1−zDMz. Clearly both Mz,M1−z belong
to L(A−∞). Actually, also D ∈ L(A−∞), [30, Remark 1]. Accordingly,
C−1 = M1−zDMz ∈ L(A−∞), that is, 0 ∈ ρ(C;A−∞). So, we have veri�ed
that σ(C;A−∞) = σpt(C;A

−∞) = Σ, which is precisely part (i) of Theorem
1.3(b).

The inclusion σ(C;A−∞) ⊆ σ∗(C;A−∞) holds in general. Suppose that

λ /∈ σ(C;A−∞) = Σ0; see (2.3). By the argument leading to (2.3), there

exist n(0) ∈ N and r > 0 such that B(λ, r) ∩ σ(Cn;A
−n) = ∅ for each

n ≥ n(0), where Cn := C|A−n
0
. Moreover, the set {R(µ,Cn) : µ ∈ B(λ, r)}

is equicontinuous, that is, operator norm bounded in L(A−n
0 ) for every
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n ≥ n(0), where R(µ,Cn) denotes the inverse of the bijective operator

(µI − Cn) : A
−n
0 → A−n

0 for µ ∈ B(λ, r). The proof that {R(µ,C) : µ ∈
B(λ, r)} is equicontinuous in L(A−∞) is now similar to that in the proof of
Proposition 2.9; here, R(µ,C) denotes the inverse of the bijective operator

(µI−C) : A−∞ → A−∞ for µ ∈ B(λ, r). Accordingly, λ ̸∈ σ∗(C;A−∞). This

shows that σ∗(C;A−∞) ⊆ σ(C;A−∞). The proof of part (ii) of Theorem
1.3(b) is thereby complete.
We end this section with the following application of the main results.

Proposition 2.10. The di�erentiation operator D belongs to L(A−∞) and

σ(D;A−∞) = σpt(D;A−∞) = C. (2.4)

The operator D fails to act in A−γ
+ for every 0 ≤ γ < ∞ and in A−γ

− for

every 0 < γ < ∞.

Proof. We already observed earlier that D ∈ L(A−∞). Since fλ(z) := eλz,
for z ∈ D, belongs to A−∞ for every λ ∈ C and satis�es Dfλ = λfλ, it is
immediate that (2.4) holds.
Fix 0 ≤ γ < ∞ and suppose that D ∈ L(A−γ

+ ). Since both Mz,M1−z ∈
L(A−γ

+ ), it would follow that M1−zDMz ∈ L(A−γ
+ ). But, M1−zDMz =

C−1 holds in H(D) and hence, this identity is also valid in L(A−γ
+ ), i.e.,

0 ∈ ρ(C;A−γ
+ ). This contradicts parts (a)(ii) and (b)(ii) of Theorem 1.2.

Accordingly, D does not act in A−γ
+ .

For each 0 < γ < ∞, a similar argument can be used to show (via
Theorem 1.3(a)(ii)) that D also fails to act in A−γ

− . �

3. Mean ergodicity.

An operator T ∈ L(X), with X a lcHs, is power bounded if {T n}∞n=1 is
an equicontinuous subset of L(X). For a Banach space X, this means that
supn∈N ∥T n∥op < ∞. Given T ∈ L(X), the averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (3.1)

are called the Cesàro means of T . The operator T is said to be mean

ergodic (resp., uniformly mean ergodic) if {T[n]}∞n=1 is a convergent sequence

in Ls(X) (resp., in Lb(X)). It follows from (3.1) that Tn

n
= T[n]− n−1

n
T[n−1],

for n ≥ 2. Hence, τs-limn→∞
Tn

n
= 0 whenever T is mean ergodic. A

relevant text for mean ergodic operators is [27]; see also [1, 21]. Every
power bounded operator on a Montel Fréchet space or an (LF)-space which
is Montel is necessarily uniformly mean ergodic, [1, Proposition 2.8].
The Fréchet space H(D) is isomorphic to the power series space Λ0(α)

of �nite type (for the weight α := (n)n∈N). This isomorphism, speci�ed by
sending f ∈ H(D) to the sequence of its Taylor coe�cients, transforms C ∈
L(H(D)) into the discrete Cesàro operator acting in the Fréchet space CN0 ;
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see (1.2). Accordingly, the following result is a straight-forward consequence
of Propositions 3.1�3.3 in [5].

Proposition 3.1. The Cesàro operator C ∈ L(H(D)) is power bounded and

uniformly mean ergodic. In particular, Im(I − C) is a closed subspace of

H(D) and
H(D) = Ker(I − C)⊕ Im(I − C).

Actually, Im(I−C)m is a closed subspace of H(D) for all m ∈ N. Moreover,

the sequence of iterates {Cm}m∈N is convergent in Lb(H(D)).

The following result will be needed for later proofs.

Lemma 3.2. (i) The Cesàro operator C ∈ L(H(D)) satis�es both
Ker(I − C) = span{1/(1− z)}

and

Im(I − C) = Im(I − C) = {h ∈ H(D) : h(0) = 0}.
(ii) Let X be a barrelled lcHs of analytic functions on D which contains

the constant functions, is continuously included in H(D) and such

that C : X → X is continuous. If C : X → X is mean ergodic, then

1/(1− z) ∈ X.

Proof. (i) This is proved by Persson in [31, Section 2]; see (2.4) and (2.5)
on p.1184 with λ = 1.
(ii) Assume that C : X → X is continuous and mean ergodic. Then

X = Ker(I − CX)⊕ Im(I − CX)
X
, (3.2)

where CX denotes the restriction of C to X and the closure of Im(I−CX) is
formed in X, [1, Theorem 2.4]. If 1/(1−z) /∈ X, then Ker(I−CX) = {0} by
part (i). Since Im(I − CX)

X
⊆ Im(I − C), it follows from part (i) and (3.2)

that X ⊆ {h ∈ H(D) : h(0) = 0}. This is a contradiction, since 1 ∈ X. �
We �rst treat C when it acts in the Fréchet spaces A−γ

+ for 0 ≤ γ < ∞.

Proposition 3.3. (i) Let 1 ≤ γ < ∞. Then C ∈ L(A−γ
+ ) is both power

bounded and uniformly mean ergodic.

(ii) Let 0 ≤ γ < 1. Then C ∈ L(A−γ
+ ) is neither power bounded nor

mean ergodic.

Proof. (i) Fix γ ∈ [1,∞). Then A−γ
+ = ∩∞

k=1A
−(γ+ 1

k
). By Theorem 2.3(i)

of [3], C ∈ L(A−(γ+ 1
k
)) has operator norm equal to 1 in each Banach space

A−(γ+ 1
k
), k ∈ N. From the de�nition of the norms ||| · |||k, for k ∈ N, which

determine the topology of the Fréchet space A−γ
+ it is routine to verify that

C ∈ L(A−γ
+ ) is power bounded. Since A−γ

+ is Montel, we can apply [1,
Proposition 2.8] to conclude that C is uniformly mean ergodic.
(ii) Suppose now that 0 ≤ γ < 1. Since A−γ

+ is Montel, if C is power
bounded on A−γ

+ , then it is necessarily (even uniformly) mean ergodic, [1,



14 A.A. Albanese, J. Bonet and W. J. Ricker

Proposition 2.8]. Then, by Lemma 3.2(ii), the function 1/(1 − z) ∈ A−γ
+

and hence, 1/(1− z) ∈ A−1
0 because γ < 1. This is impossible as 1−|z|

|1−z| = 1

for all real z ∈ [0, 1). �

We now turn to the (DFS)-spaces A−γ
− for 0 < γ ≤ ∞.

Proposition 3.4. (i) Let 1 < γ ≤ ∞. Then C ∈ L(A−γ
− ) is both power

bounded and uniformly mean ergodic.

(ii) Let 0 < γ ≤ 1. Then C ∈ L(A−γ
− ) is neither power bounded nor

mean ergodic.

Proof. (i) Fix 1 < γ ≤ ∞. Then A−γ
− is the increasing union of the Banach

spaces A−µ, for 1 < µ < γ. Moreover, C has operator norm equal to 1 on
each space A−µ, for 1 < µ < γ, [3, Theorem 2.3(i)]. Fix f ∈ A−γ

− . Then
the orbit {Cmf : m ∈ N} of f is contained and bounded in one of Banach
space steps of the inductive limit. Hence, {Cm : m ∈ N} is a bounded
set in Ls(A

−γ
− ) and so, by the Banach Steinhaus principle, it is necessarily

equicontinuous in L(A−γ
− ) as the space A−γ

− is barrelled. Since the space
A−γ

− is Montel, Proposition 2.8 of [1] implies that C is uniformly mean er-
godic.

(ii) Fix γ ∈ (0, 1]. If C is power bounded on A−γ
− , then it is (uniformly)

mean ergodic because A−γ
− is a Montel space, [1, Proposition 2.8]. Then

Lemma 3.2(ii) implies that 1/(1− z) ∈ A−γ
− . By the de�nition of A−γ

− there
exists µ < γ ≤ 1 such that 1/(1 − z) ∈ A−µ. This is a contradiction as
µ < 1. �

For the mean ergodic properties of C acting in the Banach spaces A−γ,
for γ > 0, we refer to Section 2 of [3].

Concerning the dynamics of C recall that T ∈ L(X), with X a separable
lcHs, is hypercyclic if there exists x ∈ X such that the orbit {T nx : n ∈ N0}
is dense in X. If, for some z ∈ X, the projective orbit {λT nz : λ ∈ C, n ∈
N0} is dense in X, then T is called supercyclic. Clearly, hypercyclicity
implies supercyclicity.

Proposition 3.5. The Cesàro operator C is not supercyclic in all of the

spaces A−γ
+ , γ ≥ 0, and A−γ

− , 0 < γ ≤ ∞.

Proof. For the weight α := (n)n∈N, in which case the power series space
Λ0(α) ≃ H(D), it is proved in [5, Proposition 3.5] that C is not super-
cyclic on H(D). Since all of the listed spaces are dense and continuously
included in H(D), the supercyclicity of any one of them would imply that
C ∈ L(H(D)) is supercyclic. �
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4. Non-Nuclearity of A−γ
+ and A−γ

− .

That the Fréchet space H(D) is nuclear is a classical fact, [29, Example
28.9(4)], [32, Theorem 6.4.2]. Concerning its canonically imbedded sub-
spaces A−γ

+ and A−γ
− we have the following result.

Proposition 4.1. (i) The Korenblum space A−∞ is nuclear.

(ii) Each Fréchet space A−γ
+ for 0 ≤ γ < ∞, and each (DFS)-space A−γ

− ,

for 0 < γ < ∞, is a Schwartz space but, fails to be nuclear.

Concerning the proof of Proposition 4.1 it was already argued in Section
1 that all the spaces listed in Proposition 4.1 are Schwartz spaces. So, we
only need to establish the claims related to nuclearity.
In relation to part (i) of Proposition 4.1, the Korenblum space A−∞ is

known to be isomorphic to the strong dual of the Fréchet space A∞(D)
consisting of all analytic functions on D which are C∞ on D; see, e.g., [12],
[30]. Since A∞(D) is isomorphic to the nuclear Fréchet space s of all rapidly
decreasing sequences, it follows that A−∞ is nuclear.
The proof of the non-nuclearity of the spaces in part (ii) of Proposition

4.1 proceeds via a series of steps and relies on an important result of T.
Domenig, [19], [20]. In order to formulate this result we �rst require some
preliminaries.
Consider the following dyadic lattice η = (ηk)k∈N0 and its associated

partition (Qk)k∈N0 of D, [19, p.16], [20, p.329]. For each n ∈ N0 de�ne the
2n complex numbers

ηk := (1− 2−n) exp(2πi(k − 2n + 1
2
)2−n), 2n ≤ k < 2n+1, (4.1)

which then generate the associated 2n polar rectangles

Qk := {w ∈ D : |ηk| ≤ |w| ≤ 1+|ηk|
2

,−π(1−|ηk|) ≤ (arg(w)−arg(ηk)) < π(1−|ηk|)},

for each 2n ≤ k < 2n+1. Given any pair of numbers s, t > 0, let ξ(s, t) =
(ξk(s, t))k∈N0 be the positive sequence given by

ξk(s, t) := (1− |ηk|2)−s sup
w∈Qk

(1− |w|2)t, k ∈ N0, (4.2)

and de�ne the equivalent sequence ξ∗(s, t) = (ξ∗k(s, t))k∈N0 by

ξ∗k(s, t) := (1− |ηk|)−s sup
w∈Qk

(1− |w|)t, k ∈ N0. (4.3)

Setting φ(z) := z, for z ∈ D, the sequence ξ(s, t) given by (4.2) is precisely
the sequence ξ de�ned in [19, p.53], [20, p.348]. The equivalence of ξ(s, t)
and ξ∗(s, t) is immediate from the inequalities

1− |z| ≤ 1− |z|2 = (1 + |z|)(1− |z|) ≤ 2(1− |z|), z ∈ D, (4.4)

which imply that

2−sξ∗k(s, t) ≤ ξk(s, t) ≤ 2tξ∗k(s, t), k ∈ N0, s, t > 0. (4.5)
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Lemma 4.2. Let 0 < s < t. Then, for each n ∈ N0, we have

1

2t
· 1

(2n)t−s
≤ ξ∗k(s, t) ≤

1

(2n)t−s
, 2n ≤ k < 2n+1. (4.6)

Proof. Fix n ∈ N0. It follows from (4.1) that |ηk| = 1 − 2−n and hence,

that 1 − (1+|ηk|)
2

= 2−(n+1) for all 2n ≤ k < 2n+1. It is then clear from the
de�nition of Qk that

2−(n+1) ≤ 1− |w| ≤ 2−n, w ∈ Qk, 2n ≤ k < 2n+1,

which in turn implies that

2−(n+1)t ≤ sup
w∈Qk

(1− |w|)t ≤ 2−nt, 2n ≤ k < 2n+1.

Since (1 − |ηk|) = 2−n for 2n ≤ k < 2n+1, it follows from the previous
inequality and (4.3) that

(2−n)−s(2−(n+1)t) ≤ ξ∗k(s, t) ≤ (2−n)−s2−nt, 2n ≤ k < 2n+1,

which is precisely (4.6). �
Remark 4.3. (i) The inequalities (4.5) and (4.6) show, for each pair 0 <
s < t, that both sequences ξ(s, t) and ξ∗(s, t) are bounded. Hence, each
diagonal operator Dξ(s,t) (resp. Dξ∗(s,t)) de�ned by mapping x = (xk)k∈N0 ∈
ℓ∞ to (ξk(s, t)xk)k∈N0 (resp. to (ξ

∗
k(s, t)xk)k∈N0 ) belongs to L(ℓ∞) and maps

the closed subspace c0 ⊆ ℓ∞ into c0.
(ii) Given a sequence ξ ∈ CN0 , the diagonal operator Dξ : CN0 → CN0

maps ℓ∞ into ℓ∞ if and only if ξ ∈ ℓ∞. We will require the fact that
Dξ ∈ L(ℓ∞) is nuclear if and only if ξ ∈ ℓ1. Indeed, if ξ ∈ ℓ1, then
Dξ : ℓ1 → ℓ1 is nuclear, [32, p.54]. Since Dξ : ℓ∞ → ℓ∞ is the dual operator
of Dξ : ℓ1 → ℓ1, it is also nuclear, [32, Proposition 3.1.8]. Conversely,
suppose that Dξ ∈ L(ℓ∞) is nuclear. Let J : c0 → ℓ∞ be the (continuous)
canonical inclusion map. Then the restriction Dξ|c0 : c0 → ℓ∞, being equal
to Dξ ◦ J , is also nuclear by the ideal property of nuclear operators. Since
Dξ|c0 takes its values in c0, it follows that Dξ : c0 → c0 is nuclear and hence,
so is its dual operator Dξ : ℓ1 → ℓ1. In particular, ξ ∈ ℓ1, [32, p.54].

To formulate the relevant result of Domenig we require some further
notation. First, for s > 0, we note that the Banach space

Xs := {f ∈ H(D) : ∥f∥Xs := sup
z∈D

(1− |z|2)s|f(s)| < ∞}

as de�ned in [19, p.20], [20, p.348], coincides with A−s as de�ned in Section
1 above and, due to (4.4), the norms ∥ · ∥Xs and ∥ · ∥−s are equivalent.
Moreover, for the particular analytic function φ(z) := z, for z ∈ D, con-
tinuity of the composition operator Cφ : X → Y , acting between Banach
spaces of analytic functions X,Y which are continuously included in H(D),
is equivalent to X being continuously contained in Y . Finally, recalling that
the ideal of absolutely summing operators is maximal, [18, Remark 6.18],
we obtain (for p = q = ∞) the following special case of Theorem 4.2 in [19].
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Proposition 4.4. Let 0 < s < t, in which case A−s ⊆ A−t continuously.

The following statements are equivalent.

(i) The canonical inclusion A−s ⊆ A−t is an absolutely summing oper-

ator.

(ii) The diagonal operator Dξ(s,t) : ℓ∞ → ℓ∞ is absolutely summing.

We can now present the proof of Proposition 4.1(ii). We begin with the
Fréchet spaces A−γ

+ .

So, �x γ ∈ [0,∞). Suppose that A−γ
+ = proj nA

−(γ+ 1
n
) is nuclear. Set

r := (γ + 1
2
) > 0. By the criterion for nuclearity of a projective limit

there exists m ∈ N with m > 2 such that t := (γ + 1
m
) ∈ (γ, r) and the

inclusion map A−t ⊆ A−r is nuclear, [29, Proposition 28.4], [32, Section
4.1.2]. In particular, this inclusion map is then also absolutely summing.
Since 0 < t < r, the diagonal operator Dξ(t,r) : ℓ∞ → ℓ∞ is absolutely
summing (cf. Proposition 4.4). By the same reasoning there exists n ∈ N
with n > m such that s := (γ+ 1

n
) ∈ (γ, t) and the inclusion map A−s ⊆ A−t

is absolutely summing. Since 0 < s < t, Proposition 4.4 again implies that
Dξ(s,t) : ℓ∞ → ℓ∞ is also absolutely summing. By Theorem 3.3.5 of [32,
p.66], the diagonal operator Dξ(s,t)ξ(t,r) = Dξ(s,t)Dξ(t,r) ∈ L(ℓ∞) is nuclear.
Then Remark 4.3(ii) implies that

∑∞
k=0 ξk(s, t)ξk(t, r) < ∞. According to

(4.5) also
∑∞

k=0 ξ
∗
k(s, t)ξ

∗
k(t, r) < ∞. But, for n ∈ N0 �xed, it follows from

Lemma 4.2 that
2n+1−1∑
k=2n

ξ∗k(s, t)ξ
∗
k(t, r) ≥ 2n · 1

2t
· 1

(2n)t−s
· 1

2r
· 1

(2n)r−t
=

1

2r+t
· (2n)1−(r−s).

Since 0 ≤ γ < s < t < r = (γ+ 1
2
) implies that 0 < (r− s) < 1

2
< 1, we can

conclude that the series
∞∑
k=0

ξ∗k(s, t)ξ
∗
k(t, r) =

∞∑
n=0

(
2n+1−1∑
k=2n

ξ∗k(s, t)ξ
∗
k(t, r)

)
≥ 1

2r+t

∞∑
n=0

(2n)1−(r−s)

(4.7)
diverges; contradiction. Hence, A−γ

+ cannot be nuclear.
For the inductive limit spaces A−γ

− we use the criterion that a complete
(LB)-space F = ind n Fn is nuclear if and only if it is dual nuclear if and only
if for every n ∈ N there exists m > n such that the imbedding Fn ↪→ Fm

is nuclear; see, for example, [25, Section 21.5], [29, p.356], [32, Proposition
4.1.6 and Theorem� 4.3.3]. So, �x γ ∈ (0,∞) and suppose that A−γ

− =

ind n≥n0 A
−(γ− 1

n
) is nuclear with n0 ∈ N chosen so that (γ − 1

n
) > 0 for all

n ≥ n0. Select s ∈ (β, γ) where β := max{0, (γ − 1
2
)}. Then there exists

m ∈ N such that t := (γ − 1
m
) ∈ (s, γ) with the inclusion map A−s ⊆ A−t

being nuclear hence, also absolutely summing. According to Proposition
4.4 the diagonal operator Dξ(s,t) ∈ L(ℓ∞) is absolutely summing. By the
same reasoning again there exists n ∈ N such that r := (γ − 1

n
) ∈ (t, γ)

and the inclusion map A−t ⊆ A−r is absolutely summing, which implies
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(via Proposition 4.4) that also Dξ(t,r) is absolutely summing. Arguing as in
the previous paragraph it follows that

∑∞
k=0 ξ

∗
k(s, t)ξ

∗
k(t, r) < ∞. But, the

inequalities 0 ≤ β < s < t < r < γ imply that 0 < (r − s) < 1
2
< 1 and so

the estimate (4.7) again provides a contradiction. Accordingly, A−γ
− cannot

be nuclear.
The proof of Proposition 4.1 is thereby complete.

Remark 4.5. The two step argument used in the proof of Proposition
4.1(ii), i.e., to produce a pair of absolutely summing operators Dξ(s,t) and
Dξ(t,r) whose product is then nuclear, is necessary because Proposition 4.4
is not directly applicable to the ideal of nuclear operators itself as this ideal,
in general, is not maximal, [18, Corollary 6.21].

5. Appendix. Abstract spectral results.

The following result concerning the spectrum of operators on Fréchet
spaces is Lemma 2.1 of [4].

Lemma 5.1. Let X = ∩n∈NXn be a Fréchet space which is the intersection

of a sequence of Banach spaces ((Xn, ∥ · ∥n))n∈N satisfying Xn+1 ⊆ Xn with

∥x∥n ≤ ∥x∥n+1 for each n ∈ N and x ∈ Xn+1. Let T ∈ L(X) satisfy the

following condition:

(A) For each n ∈ N there exists Tn ∈ L(Xn) such that the restriction of

Tn to X (resp. of Tn to Xn+1) coincides with T (resp. with Tn+1).

Then σ(T ;X) ⊆ ∪n∈Nσ(Tn;Xn) and R(λ, T ) coincides with the restriction

of R(λ, Tn) to X for each n ∈ N and λ ∈ ∩n∈Nρ(Tn;Xn).

Moreover, if ∪n∈Nσ(Tn;Xn) ⊆ σ(T ;X), then

σ∗(T ;X) = σ(T ;X).

An analogue of Lemma 5.1 for (LB)-spaces is as follows.

Lemma 5.2. Let E = ind n(En, ∥ · ∥n) be a Hausdor� inductive limit of

Banach spaces. Let T ∈ L(E) satisfy the following condition:

(A) For each n ∈ N the restriction Tn of T to En maps En into itself

and Tn ∈ L(En).

Then the following properties are satis�ed.

(i) σpt(T ;E) = ∪n∈Nσpt(Tn;En).
(ii) σ(T ;E) ⊆ ∩m∈N(∪∞

n=mσ(Tn;En)). Moreover, if λ ∈ ∩∞
n=mρ(Tn;En)

for some m ∈ N, then R(λ, Tn) coincides with the restriction of

R(λ, T ) to En for each n ≥ m.

(iii) If ∪∞
n=mσ(Tn;En) ⊆ σ(T ;E) for some m ∈ N, then

σ∗(T ;E) = σ(T ;E).

Proof. (i) Let λ ∈ σpt(T ;E). Then there exists x ∈ E \ {0} such that Tx =
λx. Since E = ind n(En, ∥ · ∥n), in particular E = ∪∞

n=1En, and condition
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(A) holds, there exists n ∈ N such that x ∈ En \ {0} and Tnx = Tx = λx.
Accordingly, λ ∈ σpt(Tn;En).
Conversely, �x n ∈ N and let λ ∈ σpt(Tn;En). Then there exists x ∈

En \ {0} such that Tnx = λx. Since E = ind n(En, ∥ · ∥n) and condition (A)
holds, x ∈ E \ {0} and Tx = Tnx = λx, that is, λ ∈ σpt(T ;E).
(ii) Fix λ ̸∈ ∩m∈N(∪∞

n=mσ(Tn;En)). Then there exists m ∈ N such that
λ ̸∈ ∪∞

n=mσ(Tn;En), that is, λ ∈ ∩∞
n=mρ(Tn;En). This implies that the

operator (λI − T ) : E → E is bijective. To see this, we proceed as follows.
To show that (λI − T ) : E → E is injective, suppose that (λI − T )x = 0

for some x ∈ E. Then x ∈ En0 for some n0 ∈ N with n0 ≥ m (recall that
En ⊆ En+1 ⊆ E for all n ∈ N) and so, condition (A) yields (λI − Tn0)x = 0
in En0 . Since λ ∈ ρ(Tn0 ;En0), this implies that x = 0.
To check that (λI−T ) : E → E is surjective, �x y ∈ E. Then y ∈ En0 for

some n0 ∈ N with n0 ≥ m. Since λ ∈ ρ(Tn0 ;En0), there exists x ∈ En0 ⊆ E
satisfying (λI −Tn0)x = y in En0 . By condition (A) we have y = (λI −T )x
in E.
Finally, since E is an inductive limit of Banach spaces and (λI − T ) ∈

L(E), the open mapping theorem is valid and so we can conclude that
λ ∈ ρ(T ;E).
Condition (A) implies, for each n ∈ N and λ ∈ C, that the restriction

λI − Tn of λI − T to En maps En into itself and λI − Tn ∈ L(En). The
second assertion in (ii) follows from this observation.
(iii) Since σ(T ;E) ⊆ σ∗(T ;E) with σ∗(T ;E) closed in C, we always have

σ(T ;E) ⊆ σ∗(T ;E). So, it remains to show the reverse inclusion.

If σ(T ;E) = C, then there is nothing to verify. So, suppose there exists

λ ∈ C\σ(T ;E). Then there exists ε > 0 such that B(λ, ε)∩σ(T ;E) = ∅. By
the assumption of (iii) we have B(λ, ε) ⊆ ρ(Tn;En) for each n ≥ m. Suppose
there exists x ∈ E such that A := {R(µ, T )x : µ ∈ B(λ, ε)} /∈ B(E).
Since x ∈ En0 for some n0 ∈ N with n0 ≥ m and R(λ, Tn0) coincides
with the restriction of R(λ, T ) to En0 (by (ii)), it follows that A(n0) :=
{R(µ, Tn0)x : µ ∈ B(λ, ε)} /∈ B(En0) (as En0 is continuously included in E).
But, B(λ, ε) ⊆ ρ(Tn0 ;En0) with En0 a Banach space implies that A(n0) ∈
B(En0); contradiction. Hence, {R(µ, T ) : µ ∈ B(λ, ε)} is a bounded subset
of Ls(E), i.e., an equicontinuous subset of L(E), [29, Propositions 23.27 &
24.16]. Accordingly, λ ∈ ρ∗(T ;E). �
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