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E-46071 Valencia, SPAIN
e-mail: jbonet@mat.upv.es

M. Langenbruch
University Oldenburg
Dep. Mathematics
D-26111 Oldenburg (Germany)
e-mail: michael.langenbruch@uni-oldenburg.de

Abstract

We report on the mathematical work of Pawe l Domański (AMU Poznań).

1 Introduction

Pawe l Domański was born on the 5th of June 1959, and died much too early the 4th of August
2016. He studied Mathematics at the Adam Mickiewicz University, Poznań (Poland), and he
presented his Ph.D. Thesis at this University in 1987 and his Habilitation in 1991. He was Full
professor at this University since 2003. He got several awards and international recognitions:
Corresponding Foreign Member of Real Academia de Ciencias Exactas, F́ısicas y Naturales of
Spain since 2009, member of the Committee of Mathematics of the Polish Academy of Science
from 2007 till 2015, J. Marcinkiewicz Award of the Polish Mathematical Society for the best
mathematical work of a student in Poland in 1987; Banach Award of the Polish Mathematical
Society in 1991; Award of 3rd Section of the Academy of Sciences of Poland in 1993; Scientific
Award of the Ministry of Education of Poland for joint works with D. Vogt in 2001.

He was executive Editor of Studia Mathematica, editor of Functiones et Approximatio
(Poznań) and member of the scientific Committee of Revista RACSAM of the Real Academia
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de Ciencias Exactas F́ısicas y Naturales, and Main Researcher of the grant MAESTRO of Na-
tional Center of Science in Poland with budget of around 500.000 euro (2014-2019). He was
Alexander von Humboldt fellow at the University of Wuppertal (hosted by Prof. D. Vogt) in
01.09.1991-30.04.1993, 15.09-15.12.2000 and 1.10- 31.12.2006.

Pawe l was an excellent mathematician highly estimated in the international mathematical
community with an impressively wide interest and knowledge in many related areas of math-
ematics, especially in Mathematical Analysis: functional analysis, Banach spaces, topological
algebras, homological algebras, complex analysis of one and several variables and partial dif-
ferential operators, among many other topics. Thus he could easily contribute with new ideas,
techniques and deep results. He was a very good lecturer, as well as a clear expositor in papers
and surveys creating a very active group of young mathematicians in Poznań. Above all, he was
a very good friend, always ready to help and very generous. We miss him very much.

In this paper we try to present a selection of results of Pawe l, among his many relevant and
important contributions to functional analysis and related areas. We hope that our presentation
will give the reader an idea of the originality, creativity and deepness of the work of our dear
friend Pawe l Domański.

2 The early work
s.early

Since the late seventies there was a growing interest in the group around Drewnowski at Poznań
in non-locally convex topological vector spaces and F -spaces (i.e. complete metrizable topological
vector spaces). Several deep results had been obtained by Kalton, Peck and Roberts. The
atmosphere of those times is nicely described in the paper about Drewnowski’s work by Domański
and Wnuk [D86].

In order to state some of the first results of Domański, we recall that a topological vector
space is minimal if there is no strictly weaker vector Hausdorff topology on the space. Minimal
locally convex spaces are precisely the products of copies of the scalar field. Drewnowski had
defined in 1977 the q-minimal spaces as those for which every Hausdorff quotient is minimal.
They played an important role in the theory of F -spaces. The first example of a minimal non-
locally convex F -space was obtained in 1995 by Kalton [32] modifying the famous method of
Gowers and Maurey [21]. It is still an open question whether there are q-minimal non-locally
convex F -spaces.

In the first papers of Domański in this direction [D28] and [D30], he improved an example
of Lohman and Stiles and gave an example of a complete non-separable topological vector space
embeddable into the product of 2ℵ0 copies of the Banach space c0. He later extended this result
by showing that the product of 2ℵ0 topological vector spaces contains a nonseparable closed
subspace if each factor admits a strongly regular semibasic sequence. This holds on every non-
minimal F -space, by a theorem of Kalton and Shapiro. The later result was also extended in
[D28] by proving that these semibasic sequences exist in every topological vector space whose
completion is not q-minimal.

The second type of problems Domański investigated is concerned with the splitting of twisted
sums and the three space problem. A twisted sum of two topological vector spaces Y and Z is
a topological vector space X with a subspace Y1 isomorphic to Y such that the quotient X/Y1
is isomorphic to Z. The twisted sum is said to split if Y1 is complemented in X. This can be
represented in terms short topologically exact sequences as follows

(∗) 0 → Y → X → Z → 0,
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where j : Y → Z and q : X → Z are open continuous linear maps and j(Y ) = ker q. The
twisted sum X splits if and only if there is a continuous linear right inverse T : Z → X of q,
that is, q ◦ T coincides with the identity on Z. In this case we also say that the topologically
exact sequence (∗) splits. There are two main questions about twisted sums. The first one is
the so-called three-space problem. A property (P) of topological vector spaces is a three-space
property if every twisted sum of Y and Z has (P) whenever Y and Z have property (P). Kalton
proved in 1978 that being a locally convex space is not a three-space property. The second main
question is to characterize those pairs (Y, Z) of topological vector spaces such that every twisted
sum of Y and Z splits. In modern terminology, using homological methods, this is expressed
by writing Ext1(Z, Y ) = 0. Already in the mid eighties there was an extensive literature about
these two problems. See the extensive work of S. Dierolf about the three-space problem reported
by Frerick and Wengenroth in [19] and the seminal paper by Vogt [61]. In his papers [D29],
[D31] and [D32] Pawe l proved among many others the following results:

Theorem 2.1 (1) Every twisted sum of a Banach space Y and a nuclear space Z splits.

(2) Every twisted sum of a nuclear Fréchet space Y and a normed space Z splits if and only
if every twisted sum of Y equal to the scalar field and Z splits. This characterization also
holds if Y is a Banach space and Z is a Köthe sequence space.

(3) A locally convex space Z satisfies that every twisted sum of an arbitrary locally convex
space Y and Z is locally convex if and only if, for every index set I, every twisted sum of
ℓ∞(I) and Z splits.

Some years later, in 1992, Pawe l wrote the paper [D22] with C. Fernández, J.C. Dı́az and
S. Dierolf on the three-space problem for dual Fréchet spaces. A Fréchet space is called a dual
space if it is the strong dual of a barrelled (DF)-space in the sense of Grothendieck. It was
proved in the paper that the twisted sum X of two dual Fréchet spaces Y and Z need not be a
dual Fréchet space. However, they also proved that this is the case if every bounded set B in Z
is contained in the image q(A) of a bounded set A in X by the open surjection q : X → Z.

3 Injective locally convex spaces
s.injective

Pawe l Domański dedicated several papers between 1989 and 1993 to injective locally convex
spaces and related questions about the structure theory of Fréchet spaces. In this section we
briefly report about his work in this direction. A locally convex space is called injective if it
is complemented in any locally convex space containing it. Clearly an injective locally convex
space can be embedded as a complemented subspace of a product

∏
i∈I ℓ∞(Γi) of Banach spaces

ℓ∞(Γi) of bounded families on the set Γi. The product of injective Banach space is an injective
locally convex space. These considerations led L. Nachbin in 1960 to conjecture that every
injective locally convex space should be isomorphic to a product of injective Banach spaces.
This seems to be still an open question. The related problem, asked by Domański, Metafune
and Moscatelli, whether every complemented subspace of a countable product of Banach spaces
is isomorphic to a product of Banach spaces, was solved in the negative by M.I. Ostrovskii in
[47] in 1996. Later on in 2001, Chigogidze [11] proved that every injective locally convex space
is isomorphic to a product of injective Fréchet spaces.

Motivated by Nachbin’s question mentioned above, Pawe l contributed many interesting re-
sults. In [D33] he proved that a complemented subspace of a arbitrary product of Hilbert spaces
is isomorphic to a product of Hilbert spaces. On the other hand, in the joint article [D77] with
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Ortyński they presented a systematic study of complemented subspaces of products of Banach
spaces which are L1-predual spaces or ℓp(Γ), 1 ≤ p ≤ ∞. As a consequence of their results they
proved that (ℓp)

M, 1 ≤ p ≤ ∞ is primary for each cardinal number M. A locally convex X is
primary if each time one has the topological decomposition X = Y ⊕ Z, then either Y or Z is
isomorphic to X. Extending a result due to Lindenstrauss they also proved that an injective
locally convex space is isomorphic to a product of copies of the scalar field or it contains a copy
of ℓ∞. The following result was proved in [D34].

Theorem 3.1 Let X be a Hausdorff locally compact topological space. If the space C(X) of
continuous functions on X endowed with the topology of uniform convergence on compact sets is
injective, then it either contains a copy of

∏
i∈N ℓ∞(Γi),Γi uncountable, or C(X) is isomorphic

to
∏

i∈NC(Xi), where each Xi is a compact-open subset of X.

In [D37] Domański solved a problem of Wolfe, and in [D38] he introduced certain estimates
of injectivity i(U) of an open subset U in a completely regular Hausdorff topological space X
that enabled him to generalize Banach space results due to Amir and to Isbell and Semadeni.

Pawe l’s article [D35] constitutes an important contribution to the local structure theory of
Fréchet spaces. The aim of this paper is to extend the theory of Banach Lp-spaces of Linden-
strauss and Pe lzyński to the context of locally convex spaces. The main tool of the paper is the
notion of ultrapower of locally convex spaces and in particular an interesting generalization of
the Stern theorem which is proved in the article. The definitions of Lp-spaces and DLp-spaces,
that are the analogues for (DF)-spaces, are technical. They are spaces “full” of subspaces “sim-
ilar” to products (respectively, direct sums) of finite-dimensional ℓp spaces, and similarity is
measured in terms of equicontinuity of the corresponding linear isomorphisms. Among many
other results, the following ones are presented.

Theorem 3.2 (1) For p = 1, 2,∞, every complemented subspace of the product (resp. direct
sum) of infinitely many Lp(µ)-spaces, or L1-predual spaces for p = ∞, is an Lp-space
(resp. DLp-space).

(2) For 1 ≤ p ≤ ∞, the strong dual of a Fréchet Lp-space (resp. (LB)-DLp-space) is a com-
plemented subspace of a space of type ⊕i∈NLq(µi) (resp.

∏
i∈N Lq(µi)) with 1/p + 1/q = 1.

(3) A Fréchet space is injective if and only if it is an L∞-space that is complemented in its
bidual.

(4) If p ̸= 2, then there exist Fréchet Lp-spaces (resp. (LB)-DLp-spaces) that are not isomor-
phic to any complemented subspace of any product (resp. direct sum) of Banach spaces.

Every Fréchet Lp-space is a quojection, that is a Fréchet space such that every quotient with
a continous norm is a Banach space or equivalently a surjective limit of a sequence of Banach
spaces. Moreover, every complete (LB)-DLp-space is a strict (LB)-space. In fact, an extension
of the principle of local reflexivity for quojections and for operators was necessary in the paper
[D35] and it was obtained by Domański in [D36]. Quojections and prequojections (i.e. Fréchet
spaces whose bidual is a quojection) play a relevant role in the structure theory of Fréchet
spaces in connection with several problems. We refer the interested reader to the survey by
Metafune and Moscatelli [46]. In fact, in his paper [D43] Pawe l solved a question of Moscatelli
and constructed a Fréchet space of continuous functions C(X) on a completely regular Hausdorff
space X, that is necessarily a quojection, but it is not isomorphic to a complemented subspace of
a countable product of Banach spaces. Domański’s research in this direction was complemented
in his papers [D39] and [D40].
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In 1987 Pawe l prepared a re-worked and slightly extended version of his Ph.D. thesis, that had
been presented at the University of Poznań under the supervision of Drewnowski. These notes,
entitled “Extensions and liftings of linear operators” were never published. Due to the interest in
extendable and liftable operators around 2000 by authors like Kalton, and Pe lczyński [33], who
quoted in fact Domański’s notes, Pawe l came back to this topic in his paper [D45] about ideals
of extendable and liftable operators. The notes “Extensions and liftings of linear operators”
connect the extension and lifting of operators with the splitting of short exact sequences. They
are mainly concerned with the case of p-Banach spaces. The approach is new and it is based
on operator ideals. This research is also naturally related to injective and projective locally
convex spaces. Many applications, especially relevant for Banach spaces, are collected in the
last chapter. For example L∞ spaces are characterized in terms of liftings and L1 spaces in
terms of extensions. Moreover, a Banach space Z is an L1 space if and only if every short exact
sequence 0 → Y → X → Z → 0 with Y a dual Banach space splits.

4 Joint work with Susanne Dierolf
s.dierolf

A celebrated theorem of Davis, Figiel, Johnson, and Pe lczyński [15] says that every weakly com-
pact operator between Banach spaces factorizes through a reflexive Banach space. In the realm
of locally convex spaces there are two natural candidates for the generalization of (weakly)
compact operators: Either mapping a neighbourhood of the origin into a relatively (weakly)
compact set or mapping all bounded sets into relatively (weakly) compact ones. The former
operators are still called (weakly) compact (and questions reduce quite easily to the Banach
case), while the latter ones are usually called Montel (reflexive) operators. Susanne Dierolf and
Domański considered in [D25] and [D27] the question whether every Montel operator between
Fréchet spaces factorizes through a Fréchet Montel space and, by duality, whether every Montel
operator between (LB)-spaces factorizes through a Montel (LB)-space. They proved for exam-
ple that every Montel operator from a quasinormable Fréchet space into a Fréchet space factors
through a Fréchet Schwartz space, and that every Montel operator from a Köthe echelon space
of order one into a Köthe echelon space of order zero factors through a Fréchet Montel space.
It turned out that this problem was related to a still open question about (LB)-spaces, that is
attributed to Grothendieck. An (LB)-space E = indn∈N En is called regular if every bounded
subset in E is contained and bounded in one of the steps En. Every complete (LB)-space is
regular. It is unknown if the converse holds. There was much research concerning the com-
pleteness of (LB)-spaces and (LF)-spaces in the 1980’s and 1990’s. See Bierstedt, Bonet [5] and
Wengenroth [69]. The following result was obtained in [D25].

Theorem 4.1 Consider the following conditions.

(a) Every regular (LB)-space is complete.

(b) Every Montel operator between (LB)-spaces factorizes through a Montel (LB)-space.

(c) For every complete (LB)-space F the space C(βN, F ) is bornological.

Then (a) ⇒ (b) ⇒ (c) holds.

The proof required a deep investigation of the structure of compact sets in complete (LB)-
spaces. It is also an open problem if the space C(K,X) is bornological, hence an (LB)-space,
for every Hausdorff compact topological space K and every (LB)-space E. This question was
explicitly formulated by Bierstedt and Schmets in the 1977. The following interesting, partial
positive results were presented in [D26] and [D44].
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Theorem 4.2 (1) If E is a Montel (LB)-space, then c0(E) is bornological.

(2) If k∞ is a Köthe co-echelon space of order infinity, then c0(k∞) is bornological.

(3) If K is a Hausdorff compact topological space, then C(K,λp(A)′) is bornological for every
Köthe echelon space λp(A), 1 < p < ∞.

More results about bornological spaces of type C(K,F ) are due to Frerick and Wengenroth
[18]. In joint work with Bonet and Mujica [D19], Domański obtained related results about the
completeness of spaces of vector valued holomorphic germs.

The research about factorization of operators between Fréchet spaces was continued by Pawe l
in the joint work with Juan Carlos Dı́az [D23] in the case of weakly compact and reflexive
operators. Among other results, they proved that if a Fréchet space E is either quasinormable
or a distinguished Köthe echelon space of order one, then every reflexive operator from E into a
Fréchet space F factors through a reflexive Fréchet space. The proof required a careful analysis
of weakly compact subsets of Köthe co-echelon spaces of order infinity.

5 Joint work with Lech Drewnowski. Spaces of operators and
vector valued continuous functions

s.drew

For Banach spaces X and Y we denote by Kw∗(X ′, Y ) the space of all compact weak*-weak con-
tinuous linear operators T : X ′ → Y . It is contained in the space Lw∗(X ′, Y ) of all weak*-weak
continuous linear operators from X ′ into Y . Many examples of operators, vector valued measures
and vector valued functions can be naturally identified with spaces of this type. Drewnowski,
who was the thesis advisor of Domański, investigated the question if copies of c0 and ℓ∞ are
contained in these spaces. This problem is interesting in itself, but it is also relevant in con-
nection with the question whether the small space is complemented in the biggest one. One of
the main motivating problems was whether there exists an infinite dimensional Banach space X
such that the space K(X) of compact operators on X is complemented in the space L(X) of all
continuous operators on X. This problem was only solved in 2011 by Argyros and Haydon [1].
They constructed a Banach space XK such that every continuous operator on XK has the form
λI + K for a scalar λ and a compact operator K. This is the first infinite dimensional Banach
space in which every continuous operator has a nontrivial invariant subspace and for which the
space L(XK) is separable. The construction combines techniques due to Bourgain and Delbaen
as well as more recent tools from the theory of hereditarily indecomposable Banach spaces of
Gowers and Maurey [21].

Drewnowski, inspired by an earlier result of Kalton, proved in 1990 in [16] that the Banach
space Kw∗(X ′, Y ) contains an isomorphic copy of ℓ∞ if and only if either X or Y contain such
a copy. This result implies Kalton’s theorem, but it is more powerful, as it yields consequences
about tensor products and spaces of vector valued measures and continuous functions. The
theorems of Drewnowski triggered a big amount of research on related topics. They were ex-
tended to the setting of operators on Fréchet and (DF)-spaces by Domański together with Bonet,
Lindström and Ramanujan in [D13] and [D17].

In the early 1990’s Domański and Drewnowski studied in [D50], [D51] and [D52] spaces
C(K,X, τ) of vector valued continuous functions f : K → X from a compact space K into
a Banach space X which are continuous from K into the space X endowed with the vector
topology τ . If τ is the original topology we write C(K,X). The space C(K,X, τ) is endowed
with the topology of uniform convergence with respect to the original topology of X. The still
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open conjecture is that the space C(K,X) is complemented in C(K,X, τ) if and only if both
spaces coincide. This research was also related to injective locally convex spaces; see Section 3.
Among many others they proved the following results.

Theorem 5.1 (1) If the Banach space X contains a τ -convergent sequence which is not norm
convergent, then C(K,X) is not complemented in C(K,X, τ) for every infinite compact
space K. In particular C(K,X ′) is not complemented in C(K,X ′, w∗) for all infinite
dimensional Banach spaces X.

(2) C(K,X) is complemented in C(K,X,w) if and only if every weakly null sequence in X is
a norm null sequence.

(3) Let E be a completely regular Hausdorff space that contains an infinite compact set and
let X be a non-Montel Fréchet space. Then C(E,X) contains a complemented copy of c0.
In particular C(E,X) is not injective.

(4) Let E be a completely regular Hausdorff space that contains an infinite compact set and
let X be a locally convex space containing an isomorphic copy of ℓ1. Then C(E,X,w)
contains a complemented copy of ℓ1, hence it is not injective.

In his note [D42] Pawe l proved that the space of Riemann integrable functions is not com-
plemented L∞(0, 1) since it contains a complemented copy of c0.

As mentioned in [D86], the collaboration of Domański and Drewnowski in this topic produced
a long preprint called “Injective spaces of bounded vector sequences and spaces of operators”
which pushes the methods developed by them to its limits. This preprint was never published.

Pawe l worked shortly afterwards with Lindström [D73] and with Lindström and Schlüchtermann
[D75] on a somewhat related topic. A locally convex space X is called a Grothendieck space if ev-
ery weak* convergent sequence in X ′ is weakly convergent. Accordingly, an operator T : X → Y
between Banach spaces is called a Grothendieck operator if its transpose T ′ : Y ′ → X ′ maps
weak* convergent sequences into weakly convergent ones.

Theorem 5.2 (1) Let X and Y be Fréchet spaces such that Y is Montel and either X ′′
b or Y

has the approximation property. Then the injective tensor product X⊗̂εY is a Grothendieck
space if and only if X is a Grothendieck space. This had been proved for X = C(K) by
Freniche in 1986.

(2) If T : X → Y is a Grothendieck operator and S : X → Y is compact, then the completed
tensor product T ⊗̂εS : X⊗̂εY → X⊗̂εY is a Grothendieck operator.

J.C. Dı́az and Domański studied in [D24] when the complete injective tensor product of two
distinguished Fréchet spaces is also distinguished.

6 Composition operators on weighted spaces of holomorphic
functions

s.compoH

During his stay in Valencia in the academic year 1996/97 Pawe l started to collaborate with Bonet,
Linström and Taskinen on composition operators on weighted Banach spaces of holomorphic
functions on the unit disc D of the complex plane C. We explain the context and state some
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results. Let G be an open subset of C, and let v : G → R be a continuous and strictly positive
weight on G. We define the following weighted Banach spaces of holomorphic functions on G

Hv(G) := {f ∈ H(G); ||f ||v := sup
z∈G

v(z)|f(z)| < ∞},

Hv0(G) := {f ∈ H(G); v|f | vanishes at ∞ on G}.

Recall that a function g vanishes at infinity on G if for every ε > 0 there is a compact subset
K of G such that |g(z)| < ε if z /∈ K.

We assume Hv(G) ̸= {0}, which always happens in the cases considered below. Banach
spaces of the type mentioned above appear naturally in the study of growth conditions of analytic
functions and have been considered, since the work of Shields and Williams, by many authors
like Bierstedt, Meise, Summers Kaballo and Lusky, among others. If v is a (continuous and
strictly positive) weight on G, its associated weight is defined by ṽ(z) := 1/||δz||Hv(G)′ . By our
assumption above, ṽ(z) is finite for every z ∈ G. Moreover v ≤ ṽ on G, 1/ṽ is continuous and
subharmonic, and the Banach spaces Hv(G) and Hṽ(G) coincide isometrically. A weight v is
called essential if there is C ≥ 1 such that v ≤ ṽ ≤ Cv on G.

Composition operators on various spaces of analytic functions on the unit disc have been
studied very thoroughly by a number of authors; cf. the books of Cowen, MacCluer [14] and
of Shapiro [55]. Composition operators constitute still now a very active area of research as a
search in the databases of Mathematical Reviews or Zentralblatt shows. We now some results
from the papers [D18] and [D14]. To do this, we suppose that all the weights v are radial,
non-increasing on D and satisfy that limr→1− v(r) = 0. We denote by φ : D → D an analytic
map. The composition operator Cφ : H(D) → H(D) is defined by Cφ(f) := f ◦ φ.

Theorem 6.1 The following conditions are equivalent for the composition operator Cφ : Hv(D) →
Hw(D):

(1) The operator Cφ is continuous.

(2) supz∈D
w(z)

ṽ(φ(z)) < ∞.

(3) supn
||φ(z)n||w
||zn||v < ∞.

Theorem 6.2 The following conditions are equivalent for the composition operator Cφ : Hv(D) →
Hw(D):

(1) The operator Cφ is (weakly) compact.

(2) lim|z|→1
w(z)

ṽ(φ(z)) = 0.

(3) limn→∞
||φ(z)n||w
||zn||v = 0.

Estimates of the essential norm of a composition operator Cφ : Hv(D) → Hw(D) were
obtained in [D14]. Extensions of these results and consequences for (weighted) composition
operators on Bloch spaces were obtained by Montes and by Contreras and Hernández-Dı́az.
The case of composition operators on weighted spaces of vector valued holomorphic functions
was discussed in [D16] where previous work by Liu, Saksman and Tylli was continued.

In the paper [D15] pointwise multiplication operators Mg : Hv(D) → Hv(D), Mg(f) := gf,
for g ∈ H(D), g ̸= 0, were investigated. Pointwise multiplication operators between different
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spaces of analytic functions have been studied by many authors, like Axler, Luecking, McDonald
and Sundberg and Vukotic. In [D15] properties like continuity, isomorphism, being a Fredholm
operator or having closed range were studied and in some cases characterized. Cichoń and Seip
improved later some of these results.

Domański and Lindström [D74] investigated interpolation and sampling in Hv(D). They used
ideas and results of Seip. Let v be a continuous and strictly positive weight on D. For a given
sequence Γ = (zn)n ⊂ D, we define T : Hv(D) → ℓ∞ by T (f) := (f(zn)v(zn))n. The sequence Γ
is called a set of interpolation for v if T is surjective, a set of linear interpolation for v if T has
a continuous and linear right inverse and a sampling set for v if T is a monomorphism. Every
sampling set is a set of uniqueness for Hv(D). The classical interpolation problem in H∞ (Hv(D)
for v ≡ 1) was solved by Carleson in 1952. Seip [53] characterized the sets of interpolation and
sampling for A−p := Hvp(D) if vp(z) = (1−|z|2)p, p > 0, in terms of certain densities. Domański
and Lindström extended some of the results of Seip and characterized (linearly) interpolating and
sampling sequences in D in terms of certain densities related to the weight v. As a consequence
of their results they obtained that, if v(z) = (1−|z|2)p log(e/(1−|z|))ε, then Hv(D) and Hvp(D)
have the same sets of interpolation and sampling, although they do not coincide as Banach
spaces.

A related direction of research was pursued by Domański and Bonet in [D3]. For f ∈ H(D),
p > 0, and S ⊂ D, define ∥f∥p,S = supz∈S(1 − |z|2)p|f(z)|. The Banach space A−p = {f ∈
H(D) : ∥f∥p,D < ∞} coincides with Hv(D) for v(z) = (1 − |z|2)p. The Korenblum space is
A−∞ = indp>0A

−p = ∪p>0A
−p. A subset S ⊂ D is called (p, q)-sampling (p ≤ q) if there exists

C > 0 such that ∥f∥q ≤ ∥f∥p,S for all f ∈ A−q. The set S is (p, p)-sampling if and only if S is
sampling for A−p in the sense defined above, i.e. if T : f −→ ((vpf)|S) ∈ l∞(S) is an isomorphism
into. The article [D3] presents several results and examples concerning (p, q)-sampling sets, as
well as a study of the relation of this concept with A−∞-sampling sets in the sense of Horowitz,
Korenblum, Pinchuk and with weakly sufficient sets for A−∞ in the sense of Ehrenpreis.

7 Fréchet and (LB)-algebras

Domański was also interested in topological algebras. In fact, together with Bonet they in-
vestigated in [D7] the Köthe coechelon spaces kp(V ), 1 ≤ p ≤ ∞ or p = 0, that are locally
convex algebras for pointwise multiplication. They characterized when kp(V ) is an algebra for
the pointwise multiplication in terms of the matrix V , as well as when this algebra is unital,
locally m-convex, a Q-algebra or an inductive limit of a sequence of Banach algebras. These last
three conditions are equivalent in this context. Entire functions acting on the algebras kp(V ) are
investigated. Maximal regular ideals and multiplicative functional on an algebra are analyzed,
too. Finally, it is proved that all ideals in kp(V ) are solid if and only if this algebra is unital.

Around 2010 Pawe l started the investigation of the algebra of smooth operators L(s′, s), that
is the non-commutative Fréchet algebra of all continuous linear operators from the dual s′ of the
space s of rapidly decreasing sequences into s. His results can be found in “Algebra of smooth
operators” (unpublished note available at www.staff.amu.edu.pl/domanski/salgebra1.pdf).

As a Fréchet space L(s′, s) is nuclear and isomorphic to the space s. This algebra appears and
plays a significant role in K-theory of Fréchet algebras in the work of Bhatt and Inoue, Cuntz,
Glöckner and Langkamp, and Phillips, in noncommutative geometry (Blackadar and Cuntz,
Connes) and in C∗-dynamical systems (Elliot, Natsume and Nest). Moreover, it was considered
by Schmüdgen in the context of algebras of unbounded operators. This algebra serves also as
an example of a Fréchet operator space in the sense of Effros and Webster. Finally, it is also
present in quantum mechanics, where it is called the space of physical states and its dual is
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the so-called space of observables. It can be identified canonically with the algebra of rapidly
decreasing matrices with the matrix product and matrix complex conjugation.

In his paper Domanski presented some basic spectral properties of L(s′, s) collected various
representations of it. In particular, he showed that the algebra of smooth operators consists of
compact operators of s-type on ℓ2, i.e., operators with sequence of singular numbers belonging
necessarily to s. Moreover, he proved that the spectrum of any element of L(s′, s) is equal to
its spectrum in the algebra L(ℓ2) and thus the sequence of eigenvalues belongs to s as well.
Moreover, the algebra is a Q-algebra, i.e., the set of invertible elements is open. This direc-
tion of research was successfully continued by Ciaś and Piszczek, former students of Pawe l.
They investigated functional calculus on L(s′, s) and closed commutative ∗-subalgebras, auto-
matic continuity of positive functionals and derivations, amenability, closed maximal ideals,
Grothendieck’s inequality and the multiplier algebra of L(s′, s), among other topics. We refer
to their work for precise references.

8 Splitting of smooth and distributional complexes
ss.splitting

A large part of Pawe l’s work was concerned with splitting of exact sequences in several abstract
or concrete analytic settings (see also Sections 2 and 10). In this section we will review his joint
results with Vogt [D78, D79, D81] and related work on splitting of complexes of smooth functions
or distributions. Previously, Palamodov [49] proved that the ∂ - complex splits for positive
dimensions (but in general not at the 0th place which is a result due to Grothendieck) and that the
same holds for complexes of matrices of partial differential operators with constant coefficients
over convex open sets ([50]). The splitting problem for a single partial differential operator
(known as the problem of Laurent Schwartz) has been solved by Meise, Taylor and Vogt in several
spaces of (ultra)differentiable functions in a series of papers starting with [43]. In [D78, D79, D81]
Domański and Vogt obtained far reaching extensions of these results based on abstract analysis
omitting as far as possible any analytical properties of specific concrete operators. Behind this is
the (DN)− (Ω) type splitting theory of Vogt (see [44]) which is extended to cartesian products
of spaces of this type. Linear topological invariants like (DN), (Ω), (PA), (PΩ) . . . will also be
important in the following sections. We will always dispense with presenting the definitions
explicitly and refer to the corresponding literature. A common generalization of the (DN)− (Ω)
splitting theorem and Maurey’s extension theorem was proved by Defant, Domański and Masty lo
[D21]. A complete solution for the splitting problem in Fréchet-Hilbert spaces by a condition of
type (S) was obtained by Domański and Masty lo [D76].

We can only sketch two of the main results of [D78, D79, D81] here. The key notion is
the category of graded Fréchet spaces, that is, Fréchet spaces E with a fixed (equivalence class
of) projective spectra E := (En, i

k
n) of Fréchet spaces En and linking maps ikn such that E =

proj nEn. Correspondingly, graded subspaces and quotients, graded homomorphisms and graded
exact sequences are introduced in [D78]. Also, the existence of exact projective resolutions
relative to sequences of Fréchet spaces is needed (see [D57]). A natural grading on C∞(Ω) is
defined by C∞(Kn) with a compact increasing exhaustion Kn ⊂ Ω and restrictions as linking
maps. Notice that (systems of) partial differential operators respect this grading. A grading E
is called strict if

∀k ∈ N ∃ℓ ∈ N ∀m ≥ ℓ : imk (Em) = iℓk(Eℓ).

The following theorem considerably improves any of the results known previously.
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split1 Theorem 8.1 ([D78, Corollary 5.6]) Let Ωn ⊂ Rd be open and let T0 : C∞(Ω0)
s → C∞(Ω1)

s1

be a matrix of convolution operators. If the complex

0 → ker(T0) → C∞(Ω0)
s0 T0−→ C∞(Ω1)

s1 T1−→ C∞(Ω2)
s2 → . . . (∗)

is algebraically exact then the complex splits at C∞(Ωk)sk for any k ≥ 1. The complex splits at
C∞(Ω0)

s0 iff ker(T0) is strict graded.

The analogous question is studied in [D79, D81] for distributions instead of smooth functions.
Here the language of PLS-spaces is used and the results are even more general than in Theorem
8.1.

Theorem 8.2 Let Ωn ⊂ Rd be open and let Tk be continuous linear operators.
(a) If the complex

0 → ker(T0) →
(
D′(Ω0)

)s0 T0−→
(
D′(Ω1)

)s1 T1−→
(
D′(Ω2)

)s2 → . . . (∗)

is algebraically exact then the complex splits at (D′(Ω0))
sk for any k ≥ 1.

(b) Let T0 : (D′(Ω0))
s0 → (D′(Ω1))

s1 be a matrix of convolution operators. Then the complex
splits at (D′(Ω0))

s0 iff ker(T0) is a strict projective limit of LB-spaces.

The corresponding splitting result for short exact sequences has been improved by Wengenroth
[68].

9 Spaces of real analytic functions
s.structure

One of the main interests of Domański was in the space A (Ω) of real analytic functions, its
topological structure and operators acting there. The following sections are devoted to this part
of his scientific work. An impressive overview on that subject is contained in the survey article
[D49]. Also, one of his outstanding results is concerned with real analytic functions, namely,
the basis problem for real analytic functions. The existence of (Schauder) bases is an important
subject in analysis. In fact, the question whether every separable Banach space has a basis
dates back to the book of Banach [3] and has been solved in the negative in various classes of
locally convex spaces including subspaces of ℓp, p ̸= 2, (Enflo), nuclear Fréchet spaces (Mitjagin-
Henkin) and in L(ℓ2) (Szankowski) the latter being the only ”natural” space without basis (for
a concrete Fréchet space of smooth functions without basis see Vogt [64]). The basis problem
in A (Ω) remained open until Domański and Vogt [D80] published their celebrated result which
got the Scientific Award of the Ministry of National Education 2001.

basis Theorem 9.1 A (Ω) has no basis for every open set Ω ⊂ Rd.

The proof is based on a careful study of linear topological invariants for complemented Fréchet

subspaces of A (Ω). Specifically, such spaces would have properties (Ω) and (DN) which implies
that they are nuclear Banach spaces, hence finite dimensional. By the following result, A (Ω) is
an LB-space, which is false since A (Ω) has ω := CN as a quotient by interpolation.

altern Theorem 9.2 ([D80, Theorem 2.2]) If an ultrabornological Köthe PLS-space E does not admit
an infinite dimensional complemented Fréchet subspace then E is an LS-space.
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In [D82] more explicit analytical tools are presented for the proof of Theorem 9.1 for A (R). Also,
the above structural results are applied to obtain the existence of right inverses for convolution
operators on A (R) (cf. Langenbruch [40]).

Using composition operators the subspace structure of A (Ω) was clarified in [D58]. Namely,

for Ω ⊂ Rd the (LB)-subspaces of A (Ω) are isomorphic to a subspace of H(Dd) (where D is the
unit disc) while the Fréchet subspaces of A (Ω) are isomorphic to subspaces of H(Dd)r (where r
is the number of components of Ω). In continuation of [D83], Domański, Frerick and Vogt [D53]

determined the Fréchet quotients E of A (Ω) by the fact that E has (Ω) and is a quotient of
H (D).

Complemented ideals in A (Rd) were studied in [D85] extending and using previous results
of Vogt [62, 63]. Specifically, if the vanishing ideal JV (Rd), V a complex analytic variety in a
neighborhood of Rd, is complemented in A (Rd) then V satisfies the local Phragmen-Lindelöf
condition of Hörmander at every real point of V (see [D85, Theorem 2.4]).

10 Parameter dependence of solutions of partial differential equa-
tions and splitting of short exact sequences of PLS− spaces

s.parameter
The classical problem of parameter dependence of solutions of linear equations can be formulated
as follows: we are given a locally convex space F (Ω) of scalar (generalized) functions on an open
set Ω ⊂ Rd (like real analytic functions, (ultra)differentiable functions or (ultra)distributions),
a continuous linear operator operator T : F (Ω) → F (Ω) and an E−valued function f ∈ F (Ω, E)
where E is a locally convex space of smooth (holomorphic, real analytic or generalized, respec-
tively) functions. Can we find an E−valued function g ∈ F (Ω, E) solving Tg = f? Classical
results for partial differential operators are due to Trèves [57, 58] and Browder [8], holomorphic
parameter dependance was solved by Mantlik [41, 42]. The question is closely related to a tensor
product representation of F (Ω, E), and, correspondingly, to the surjectivity of the tensorized
map T ⊗ idE ( and to the splitting of certain short exact sequences, see below) and has been
extensively been studied by Bonet and Domański (see [D2, D4, D6, D47, D48]). To define
E−valued real analytic functions f on an open set Ω ⊂ Rd we in principle have two choices here,
namely, that f locally is an E−valued power series (i.e. f ∈ At(Ω, E)) or that f is a (weakly)
real analytic function (i.e. f ∈ A (Ω, E), that is, u ◦ f is real analytic for any u ∈ E′), the
latter one being the proper choice as it turns out, since A (Ω, E) = A (Ω)εE := L(A (Ω)′b, E) if
E is sequentially complete. If E is a sequential complete DF−space then A (V,E) = At(V,E)
[D1]. For Fréchet spaces however both classes in general do not coincide, in fact the following
characterization was proved in [D1].

Theorem 10.1 Let E be a Fréchet space. Then A (Ω, E) = At(Ω, E) iff E has the property
(DN).

Notice that the space H (V ) of holomorphic functions on a Stein manifold V has property (DN)
iff V has the Liouville property.

The results of [D1, D2] on real analytic parameter dependance can be summarized as follows.

Theorem 10.2 Let Ωk ⊂ Rdk be open sets and let T : A (Ω1) → A (Ω2) be a surjective contin-
uous linear map. Then T ⊗ idE : A (Ω1, E) → A (Ω2, E) is surjective in the following cases.

(a) E is a Fréchet quojection.
(b) E is a Fréchet space with property (DN).

(c) E is a complete LB-space such that E′
b has property (Ω).
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In their fundamental papers [D4, D6] Bonet and Domański treated the question of parameter
dependance in the context of splitting of short exact sequences of PLS−spaces and solved the
splitting problem using the connection of functors Proj1 and Ext1 . Recall that PLS−spaces
are countable projective limits of LS−spaces. Many of the standard spaces used in analysis are
of that type (e.g. any Fréchet Schwartz space, the spaces of distributions, (ultra)differentiable
functions, (ultra)distributions). An informative overview on PLS−spaces is given in [D46]. An
exact sequence of PLS−spaces X,Y, Z with continuous linear mappings j and q

0 → X
j−→ Y

q−→ Z → 0 (∗)

is called topologically exact if j is a topological isomorphism onto ker(q) and q is open. We say
that Ext1PLS(Z,X) = 0 if any topologically exact sequence (*) splits (for any PLS− space Y ),
i.e. if q has a continuous linear right inverse. The following result is an important extension of
the (DN) − (Ω) splitting theory of Vogt (see [D4, Theorem 5.5] and [D6, Corollary 6.4]).

splittingp Theorem 10.3 Let X be a PLS−space. Then Ext1PLS(F,X) = 0 in the following cases.
(a) F is a nuclear Fréchet space and (i) or (ii) holds where
(i) F has (DN) and X has (PΩ).

(ii) F has (DN) and X has (PΩ).
(b) F is an LN−space and and (i) or (ii) holds where

(i) F ′ has (Ω) and X has (PA)
(ii) F ′ has (Ω) and X has (PA)

For the classical spaces of analysis and sequence spaces F it is well known which of the above
linear topological invariants hold or not (see e.g. [D4, Sections 5 and 6], in case of quasianalytic
Roumieu type classes this is studied in [D5]). To get results concerning E−valued equations we
have to apply Theorem 10.3 to X := ker(T ) (and F := E′

b). Also for ker(T ) corresponding results
are known for several classes of operators. We mention only one special case [D6, Theorem 5.5].

Corollary 10.4 Let Ω ⊂ Rd be open and convex and let E be a nuclear Fréchet space. Then
P (D) : D ′(Ω, E) → D ′(Ω, E) is surjective if E has property (Ω).

In [D47, D48] Domański pushed the study of the functor Ext1PLS(F,X) still a step further
allowing F and X to be nuclear PLS−spaces. Instead of formulating the general result here
we point out that in this way distributional solutions for linear equations depending on a real
analytic parameter could be treated obtaining (see [D47, Corollary 6.4])

Theorem 10.5 Let U be a real analytic non compact connected manifold and let Ω ⊂ Rd be
open. Let T : D ′(Ω) → D ′(Ω) be a surjective linear operator. Then

T ⊗ idA (U) : D ′(Ω)εA (U) → D ′(Ω)εA (U)

is surjective iff ker(T ) satisfies the dual interpolation estimate for small θ.

The condition above can be evaluated for constant coefficient partial differential operators P (D)
on convex sets Ω using Phragmen-Lindelöff type conditions valid on the characteristic variety
of P (see [D47, Section 7]). This implies that P (D) : D ′(Rd,A (U)) → D ′(Rd,A (U)) is never
surjective if P is hypoelliptic and if Ω is convex. Also, the following surprising inheritance result
is obtained in [D47].
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Theorem 10.6 Let Ω ⊂ Rd be open and convex and let P (D) : D ′(Ω,A (U)) → D ′(Ω,A (U))
be surjective. Then

(a) P (D) : D ′(Rd,A (U)) → D ′(Rd,A (U)) is surjective.
(b) P (D) : D ′(H,A (U)) → D ′(H,A (U)) is surjective for any halfspace H such that ∂H is

parallel to a tangent hyperplane of ∂Ω (in a point of smoothness).
(c) The principal part Pm(D) : D ′(Ω) → D ′(Ω) has a right inverse.

As mentioned already, the right inverse problem for partial differential operators has been studied
intensively by Meise, Taylor and Vogt. The methods of [D47] have been transferred to operators
on Roumieu type ultradifferentiable classes E (Ω) (see [D48]). Distributional equations depending
on a distributional parameter can be viewed as augmented operators on distributions. The
surjectivity of these operators has been studied by Kalmes in a series of papers [29, 30, 31].

The E−valued interpolation problem for real analytic functions on domains ω ⊂ Rd was
solved in [D20] for sequentially complete (DF )−spaces E. In fact, this problem always has a
solution iff E has property (A). The scalar case is related to Eidelheit sequences on A (ω) which
were studied in detail in [D84] including a characterization of Eidelheit sequences on A (ω) (see
[D84, Theorem 2.2]).

11 Composition operators on real analytic functions
s.compoB

11.1 The range of composition operators
ss.RangecompoB

Composition operators and topological properties of its range have been intensively studied on
various spaces of holomorphic functions (see Section 6 and the books [54, 13]) and on spaces
of smooth functions, respectively (see [56, 20, 7, 6]). Domański, Langenbruch and Goliński
[D58, D59, D60, D54] initiated the study of these operators on real analytic functions. Let
M,N be real analytic manifolds and let φ : M → N be real analytic. The corresponding
composition operator Cφ is defined by

Cφ : A (N) → A (M), f → f ◦ φ, for f ∈ A (N).

The main problem is to characterize when Cφ has closed range, is open onto its range, and is
a topological embedding, respectively. Notice that in contrast to the smooth case the first two
questions are not equivalent for real analytic functions.

To state some of the main results, some notation is needed: Let M,N and φ as above and
let S ⊂ N . φ is called semiproper if for any compact set K ⊂ N there is a compact set L ⊂ M
such that φ(L) = φ(M)∩K. S has the global extension property if every real analytic function
on S extends to a real analytic functions on N . S has the semiglobal extension property if for
every relatively compact set Ω b N there is an open set ∆ with Ω ⊂ ∆ b N such that

∀f ∈ A (S ∩ ∆)∃g ∈ A (Ω) : f
∣∣
Ω∩S= g

∣∣
Ω∩S .

S is called C−analytic if there is f ∈ A (N) such that S = {a ∈ N | f(a) = 0}.

Theorem 11.1 Let Cφ : A (N) → A (M) as above.
(a) Cφ is a topological embedding iff φ is a real analytic semiproper surjection ([D58, Theorem

3.1]).
(b) Cφ has closed range and is open onto its range iff φ is semiproper, φ(M) is C−analytic

with global and semiglobal extension property ([D60, Corollary 2.5])
(c) Cφ is open onto its range iff φ is semiproper and φ(M) has the semiglobal extension

property ([D54, Theorem 3.2]).
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From (c) we obtain for compact manifolds M that Cφ has closed range iff Cφ is open onto
its range iff φ is semiproper and φ(M) has the global extension property ([D54, Corollary 3.5]).

It is easily seen (see [D58]) that algebra homomorphisms between A (Ω1) and A (Ω2) are
exactly given by composition operators Cφ with φ : Ω2 → Ω1 real analytic. It follows that
A (Ω1) can be topologically embedded as an algebra in A (Ω2) iff the dimension of Ω2 is at most
equal to the dimension of Ω1, and if Ω2 has at least as many components as Ω1. Hence A (Ω1)
and A (Ω2) are isomorphic as topological algebras iff Ω1 and Ω2 are real analytic diffeomorphic
(see [D58, Corollary 2.3]).

11.2 Dynamics and spectrum of composition operators
ss.DyncompoB

A few years after Pawe l’s joint work with Langenbruch [D58] about composition operators on the
space of real analytic functions began, Domański and Bonet started to investigate the dynamical
behaviour of those operators. We will now include some results taken from the papers [D8],
[D9], [D10] and [D11]. To do this, we recall that a continuous linear operator T : E → E on a
Hausdorff locally convex space E is called power bounded if the sequence of iterates (Tn)n∈N is
equicontinuous in the space L(E) of linear operators from E to E. The operator T on E is called
mean ergodic if the limits Px := limN→∞

1
N

∑N
n=1 T

nx, x ∈ E, exist in E. If the convergence
is uniform on bounded sets we call T uniformly mean ergodic. There is a classical theory of
mean ergodic operators which goes back to fundamental work of Yosida and Hille especially in
the Banach case; cf. the book by Krengl [37].

compAerg Theorem 11.2 Let Ω be a real analytic manifold (compact or non-compact) and let φ : Ω → Ω
be a real analytic map. The following assertions are equivalent:

(a) Cφ : A (Ω) → A (Ω) is power bounded.
(b) Cφ : A (Ω) → A (Ω) is uniformly mean ergodic.
(c) Cφ : A (Ω) → A (Ω) is mean ergodic.
(d) For every complex neighbourhood U of Ω there is a complex open neighbourhood V ⊆ U

of Ω such that φ extends as a holomorphic function to V , φ(V ) ⊆ V , and φ satisfies that for
every compact subset K of U there is a compact subset L b U such that φn(K) ⊂ L for n ∈ N.

The equivalent conditions of the theorem were evaluated further in the case Ω = R. The
proof of Theorem 11.2 required a study of the behaviour of orbits of composition operators
Cφ(f) := f ◦φ, φ a holomorphic self map, on spaces H(U) of holomorphic functions defined on
an open connected subset U of Cd or, more generally, of a Stein manifold Ω. This was done in
[D8].

An operator T : X → X, X a locally convex space, is called topologically transitive whenever
for each pair of non-empty open sets U , V in X there is n ∈ N such that Tn(U) ∩ V ̸= ∅. A
vector x ∈ X is called hypercyclic (or sequentially hypercyclic) if the x-orbit {Tnx : n ∈ N} of
T is dense (or sequentially dense, respectively) in X. Every sequentially hypercyclic operator
on a locally convex space X is hypercylic, and hypercyclic operators are topologically transitive.
There is a huge literature about the dynamical behavior of various linear continuous operators on
Banach, Fréchet and more general locally convex spaces; see the books by Bayart and Matheron
[4] and by Grosse-Erdmann and Peris [22].

A map φ : Ω → Ω is said to run away on Ω if for every compact set K b Ω there is n ∈ N
such that φn(K) ∩K = ∅. The next two statements are take from [D10].

Theorem 11.3 Let φ : Ω → Ω be an analytic map on an open subset Ω of Rd. The composition
operator Cφ : A (Ω) → A (Ω) is topologically transitive if and only if φ is injective, φ′ is never
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singular on Ω and φ runs away on Ω.

hyper Theorem 11.4 Let φ : D → D be holomorphic, φ((−1, 1)) ⊂ (−1, 1). Then the following
assertions are equivalent:

(a) Cφ : A (−1, 1) → A (−1, 1) is (sequentially) hypercyclic;

(b) Cφ : A (−1, 1) → A (−1, 1) is topologically transitive;

(d) φ runs away on (−1, 1) and φ′ does not vanish on (−1, 1).

The article [D11] gives a full description of eigenvalues and eigenvectors of composition
operators Cφ : A (R) → A (R) for a real analytic self map φ : R → R as well as an isomorphic
description of corresponding eigenspaces. It also completely characterizes those φ for which
Abel’s equation f ◦ φ = f + 1 has a real analytic solution on the real line. This research was
continued in the paper [D12] that includes results about the spectrum of Cφ : A (R) → A (R).

Domański and Jasiczak have very recently described in [D56] Toeplitz continuous operators
on the space of real analytic functions on the real line (i.e., operators for which the associated
matrix is Toeplitz). They also proved a necessary and sufficient condition for such operators to
be Fredholm operators. Their results show strong similarity to the classical theory of Toeplitz
operators on Hardy spaces.

12 Vector valued hyperfunctions
s.hyperfunctions

12.1 The general theory
ss.hyperfunctionsgeneral

The sheaf of hyperfunctions was introduced by Sato [52] as a useful tool to study partial differ-
ential equations and their singularities. Hyperfunctions may be defined as (formal) boundary
values of holomorphic or harmonic functions, as certain relative cohomology groups or as the
sheaf generated by analytic functionals with compact support. Vector valued hyperfunctions
are used e.g. in theoretical physics or in the study of the abstract Cauchy problem (discussed
in Section 12.2), respectively. One technical problem in the vector valued case is the fact that
hyperfunctions do not have a useful topology. Nevertheless, Ion and Kawai [25] succeeded in
defining Fréchet space valued hyperfunctions. In [D61] Domański and Langenbruch studied
E−valued hyperfunctions for PLS−spaces E and also clarified the limitations of such a the-
ory. In fact, the existence of E−valued hyperfunctions is closely related to the solvability of
the E−valued Laplace equation, and therefore to the circle of problems considered by Bonet
and Domanski [D6] (see Section 10). A reasonable theory of E−valued hyperfunctions should
produce a flabby sheaf F on Rd such that the space F0(K) of sections supported in a compact
set K coincides with the space L(A (K), E) of E−valued analytic functionals. The following
characterization is proved in [D61, Theorem 8.9].

Theorem 12.1 Let E be an ultrabornological PLS-space. The following are equivalent:
(a) For any 1 ≤ d < ∞ (equivalently, for some 1 ≤ d < ∞) there is a flabby sheaf F on Rd

such that F0(K) = L(A (K), E) for any compact set K ⊂ Rd.
(b) E has (PA).
Moreover, any of the above mentioned methods then define the same sheaf of E−valued

hyperfunctions.
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A long list of well known ultrabornological (PLS)−spaces having (PA) or failing (PA) is given in
[D61, Corollaries 4.8 and 4.9]. Specifically, the spaces of distributions or tempered distributions
have (PA) while the spaces of real analytic functions or distributions with compact support do
not have (PA).

The ansatz of [D61] has been extended by Kruse [38] to the case of vector valued Fourier
hyperfunctions.

12.2 The abstract Cauchy problem
ss.ACP

Hyperfunctions can be used to discuss the abstract Cauchy problem (ACP) under minimal
regularity assumptions. Specifically, let C : F := D(C) ⊂ E → E be a closed operator with
domain D(C) in a locally convex space E. Then

(ACP ) x′(t) = Cx(t);x(0) = x0.

There is an abundance of literature on how to give a precise meaning to the exponential ansatz
to solve the ACP, i.e. to study semigroups with decreasing regularity (C0−, integrated, dis-
tributional and even hyperfunction semigroups, see e.g. [45, 17, 39, 28, 48, 34, 35, 67]). For
operators in Banach spaces, Komatsu [36] introduced operator valued Laplace hyperfunctions
and a corresponding Laplace transform to find a fundamental solution for (ACP), that is, an
L(E,F )−valued Laplace hyperfunction T such that(

d

dt
− C

)
◦ T = id E ⊗ δ0 and T ◦

(
d

dt
− C

)
= id F ⊗ δ0

where δ0 is Dirac’s distribution. Komatsu showed that the existence of a fundamental solution
for the ACP is equivalent to the fact that C has resolvents satisfying certain exponential growth
conditions on an open set Ω ⊂ C containing any cone {z ∈ C | Re (z) > | Im(z)|/C} near ∞.
Elementary examples show that an extension of these results is impossible even for operators
on Fréchet spaces if the standard notions of Laplace transform and resolvent are used. To
overcome this difficulty, spectral valued holomorphic functions and resolvents, and a spectral
valued Laplace transform were introduced in [D62, D64]. We shortly recall these key notions.
Let X be a locally convex space given by a projective spectrum X := (Xγ)γ∈Γ with connecting
mappings κγν . Let G := (Gγ)γ∈Γ be directed family of open sets Gγ ⊂ C. A family S = (Sγ)γ∈Γ
is called a spectral-valued (or X -valued) holomorphic function (denoted by S : G → X ) if

(i) Sγ : Gγ → Xγ is holomorphic; (ii) (compatibility) ∀ γ ≥ ν : κγν ◦ Sγ = Sν

∣∣
Gγ

.

Specifically, this is needed in the operator valued case, i.e. where X = Lb(E,F ) with the
projective spectrum defined as follows: Let BE be the system of bounded absolutely convex
subsets of E (and corresponding normed spaces EB, B ∈ BE) and let {∥ · ∥α, α ∈ A} be a
system of seminorms defining the topology of F (with local Banach spaces Fα, α ∈ A). Set
X := L (E,F ) := (L(EB, Fα))(B,α)∈(BE ,A).

Let G := (GB,α)(B,α)∈(BE ,A) be a directed family of domains. A holomorphic L (E,F )-
valued function R : G → L (E,F ) is called a spectral-valued resolvent for a closed operator
C : F := D(C) ⊂ E → E (F is endowed with the graph topology) if the following compatibility
conditions are satisfied

(i) ∀α ∈ A∃α̃ ∈ A∀B ∈ BE∀λ ∈ G(B,α̃) : (λ− C)α̃α ◦R(B,α̃)(λ) = iE(B,α)

(ii) ∀B ∈ BF∃B̃ ∈ BE∀α ∈ A∀λ ∈ G
(B̃,α)

: R
(B̃,α)

(λ) ◦ (λ− C)B
B̃

= iF(B,α).

This notion considerably extends the notion of resolvents for operators in Fréchet spaces
given by Arikan, Runov and Zahariuta [2], and it can be simplified if E,F both are (FS)-spaces
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(and (DFS)-spaces, respectively). Notice that our notion is also compatible with duality. Many
examples of generalized resolvents for concrete operators are calculated in [D64]. Moreover,
a new general operator valued Laplace hyperfunction and a corresponding Laplace transform
(producing a spectral valued holomorphic function) are introduced in [D62]. The main result in
[D64] now reads as follows:

Theorem 12.2 Let E be a complete bornological space and let C : F := D(C) ⊆ E → E
be a closed operator. Then the (ACP) has a fundamental solution in the sense of Laplace
hyperfunctions if and only if C admits a spectral valued resolvent R : G → L (E,F ) such that

∀ B ∈ BE , α ∈ A,K > 1 ∃ k = k(B,α,K) : G(B,α) ⊇ VK,k := {z ∈ C : Re z > k + | Im z|/K}

and sup
λ∈VK,k

∥R(B,α)(λ)∥L(EB ,Fα) exp (−Re λ/K) < ∞.

13 Hadamard and Euler type operators
s.HadEul

Let E(Ω) be a locally convex space of generalized functions on an open set Ω ⊂ Rd containing
the space of polynomials as a dense subspace. Then a linear and continuous operator H :
E(Ω) → E(Ω) is called a Hadamard type operator (or Hadamard multiplier) if all monomials
are eigenvectors, that is, if H(ξα)(x) = mαx

α for some sequence (mα)α∈Nd called the multiplier
sequence of H. Hadamard operators go back to the work of Hadamard [23], and have been
intensively studied on holomorphic functions (see [9, 10] and the survey paper [51]) and on
hyperfunctions [26, 27] and, recently, on smooth functions and distributions [66, 65, 59, 60].
Though Hadamard operators are uniquely determined by their multiplier sequence they are not
just diagonal operators since the monomials in general are not a basis in E(Ω). In a series of
papers [D63, D65, D66, D72, D68, D67, D71, D70] Domański, Langenbruch and Vogt developed
a theory of Hadamard operators on real analytic functions and smooth functions considering
three basic problems: Firstly, find a representation theorem giving a general formula generating
any Hadamard operator. Secondly, characterize multiplier sequences and, thirdly, characterize
surjective Hadamard operators.

To begin with, Hadamard operators are closely connected to multiplicative convolution (see
Theorem 13.1 below). Let xy := (x1y1, . . . , xdyd) denote the coordinatewise multiplication on
Rd and let V (Ω) := {x ∈ Rd | xΩ ⊂ Ω} denote the dilation set where Ω ⊂ Rd always is an
open set in this section. Let E(V (Ω))′ denote the functionals on E(Rd) with support in V (Ω).
The following Representation Theorem for the space ME(Ω) of Hadamard operators on E(Ω) is
proved in [D65] (for d = 1) and in [D72] in the analytic case (and in [66] in the smooth case).

repr Theorem 13.1 Let E(Ω) = A (Ω) or E(Ω) = C∞(Ω). The map

B : E(V (Ω))′b → ME(Ω) ⊂ Lb(E(Ω)), B(T )(g)(y) := ⟨g(y·) , T ⟩, T ∈ E(V (Ω))′, g ∈ E(Ω),

is a bijective continuous linear linear map and the multiplier sequence (mα)α∈Nd of B(T ) is
equal to the sequence of moments of the functional T on E(Ω), i.e.

mα = ⟨xα, T ⟩ for any α ∈ Nd. (∗)

The Represetation Theorem means that Hadamard operators are just multiplicative convolution
operators with a functional supported in V (Ω). Specifically, the following classes of continuous
linear operators are Hadamard operators:
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(a) Euler operators: P (θ) :=
∑

|β|≤m aβθ
β where θ = (θ1, . . . , θd) and θj = xj∂j ;

(b) integral operators: M(g)(x) :=
∫
[0,1]d g(xy)dy (for d = 1 this is Hadamard’s operator

[23]);
(c) dilation operators: Ma(g)(x) := g(ax) for a > 0;
Using the Cauchy transform (and hyperfunction theory) a representation of Hadamard mul-

tipliers by an algebra of holomorphic functions can be given with Hadamard multiplication of
the Laurent coefficients (see [D72, Section 3] and [66]). Besides the strong topology τb there
are two other natural topologies on A (V (Ω))′, and [D72] contains a detailed discussion of the
question if and when these topologies coincide with the one induced from Lb(A (Ω)) via B.
Specifically, B ⊂ A (V (Ω))′b is bounded iff B(B) ⊂ MA (Ω) is bounded.

13.1 Surjectivity of Hadamard operators on real analytic functions
ss.Hadanalytic

By (*) in Theorem 13.1 multiplier sequences for Hadamard operators on A (Ω) are moment
sequences of analytic functionals, and these can be characterized by holomorphic interpolation
(see Theorem 13.2 below). An open set ω ⊂ C is called an asymptotic halfspace if 0 ∈ ω
and if ω =

∪
n(κn + ωKn) where Kn → ∞ and ωK := {z ∈ C | |y| < Kx}. Asymptotic

halfspaces in Cd are the cartesian product ωd of an asymptotic halfspace ω ⊂ C. For a ∈ Rd let
Qa =

∏d
k=1[−eak , eak ] and

Ha(ωd) := {f ∈ H(ωd) | ∀1 ≤ j ∈ N : sup
z∈Γj

|f(z)|e−⟨a+1/j,Re (z)⟩ < ∞}

where Γj is an exhaustion of ωd by closures of asymptotic half spaces. We now have the following
characterization of moment sequences of analytic functionals by interpolation (see [D68, Th. 6.1,
Cor. 6.4]).

surjgen Theorem 13.2 There is a surjective continuous linear mapping I : Ha(ωd)2
d → A (Qa)′b such

that
⟨I((fσ)σ∈{0,1}d), xα⟩ = fσ(α) for α ∈ Nd

σ.

The mapping I is not injective. However, the kernel of I can be described rather precisely since
I is the tensor product of the corresponding mappings in one variable (see [D68]). This leads to
large sets where the functions (fσ)σ ∈ ker(I) are small. As a consequence we have the following
description of multiplier projections, i.e. Hadamard multipliers which are projections (see [D66]
(for d = 1) and [D69]).

Theorem 13.3 The following assertions are equivalent.
(a) There is a Hadamard multiplier projection M : A (Rd) → A (Rd) with multiplier sequence

(mα)α∈Nd and I := {α ∈ Nd | mα = 1}.
(b) For any real analytic function f ∈ A (Rd) with Taylor expansion f(z) =

∑
α∈Nd fαz

α at
0, also the function fI with Taylor expansion fI(z) =

∑
α∈I fαz

α at 0, extends to a real analytic
function on Rd.

(c) The set I belongs to the set algebra in Nd generated by the products of sets which are
either finite subsets of N or the set of even numbers 2N.

Using the above Interpolation Theorem and the description of the kernel of I, the surjectivity
of Euler operators P (θ) has been discussed in detail in [D68] (including a perturbation result for
surjectivity). It turns out that surjectivity is closely related to the so called half plane property.
We can only mention one typical result here.
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Theorem 13.4 The following are equivalent for a polynomial P .
(a) Pm(θ) is invertible on A0(Rd) := {f ∈ A (Rd) | f(0) = 0}.
(b) Pm satisfies the so-called closed halfplane property, i.e.,

Pm(z) ̸= 0 if 0 ̸= x and x ≥ 0.

There is an extensive literature on the halfplane property partly motivated by image pro-
cessing (see the survey paper [12]).

The above results can be applied to operators built from operators conjugate to θj . This
class of operators (far more general than Euler type partial differential operators) has been
characterized in [D67].

13.2 Surjectivity of Hadamard operators on smooth functions
ss.Hadasmooth

In [D70] and [D71] Domański and Langenbruch studied surjectivity of Hadamard operators on
smooth functions. It turns out that the methods as well as the results are completely different
from those for real analytic functions sketched in the previous section. First notice that range
of P (θ) is contained in

C∞
I(P )(Ω) := {f ∈ C∞(Ω) |∀∅ ̸= J ⊂ D ∀α ∈ NJ :

P (α, ξD\J) ≡ 0 ⇒ f (α)(0J , xD\J) = 0 if (0J , xD\J) ∈ Ω}.
The main results are the following:

Theorem 13.5 Any Euler operator 0 ̸= P (θ) : C∞(Rd) → C∞
I(P )(R

d) is surjective.

This holds for C∞(Ω) instead of C∞(Rd) if and only if Ω is a so called m-convex set.
The proof relies on a reduction and induction procedure using Euler operators on certain

Whitney jets and reducing the problem to the surjectivity of P (θ) on the space

E ([0,∞[d) := {f ∈ C∞(Rd) | supp(f) ⊂ [0,∞[d}.

Notice that this makes no sense in the case of real analytic functions. A suitably defined
Mellin transform identifies E ([0,∞[d)′b with a corresponding space of holomorphic germs HM

transforming the action of P (θ) to the multiplication by P (z).

surjective Theorem 13.6 The Euler operator P (θ) : C∞(Ω) → C∞
I(P )(Ω) is surjective iff

Ω is P (θ)-convex (for supports), i.e.

∀K ⊂⊂ Ω ∀k ∈ N ∃K̃ ⊂⊂ Ω ∀T ∈ Ck
I(P )(Ω)′ :

suppI(P )(T ) ⊂ K̃ if supp(tP (θ)T ) ⊂ K.

Here suppI(P )(T ) is the support of T in the sense of C∞
I(P )(Ω)′ which can be defined since

C∞
I(P )(Ω) is a module over an algebra containing sufficiently many resolutions of the identity.

Though Theorem 13.6 resembles very much the constant coefficient case (see [24]) the con-
sequences differ very much: if P (θ) : C∞(Ωi) → C∞

I(P )(Ωi), i ∈ I, is surjective for any i ∈ I then

P (θ) : C∞(Ω) → C∞
I(P )(Ω) need not be surjective for Ω := (∩i∈IΩi)

◦ or Ω := (lim infi∈I Ωi)
◦,

moreover, in general there is no minimal open set Ω̃ ⊃ Ω such that P (θ) : C∞(Ω̃) → C∞
I(P )(Ω̃)

is surjective. Also, surjectivity depends on lower order terms for operators in two variables.
Finally, the kernel of Euler type operators is studied in [D71, Section 11] showing that there

are many operators with trivial kernel.
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Theorem 13.7 The Euler operator P (θ) : C∞(Rd) → C∞(Rd) is bijective iff there is k ∈ N
such that

P (z) ̸= 0 if z ∈ (C≥k)d

where C≥k := {0, . . . , k − 1} ∪ {z ∈ C | Re (z) ≥ k} ⊃ N.

For general Hadamard operators on C∞(Rd) surjectivity is connected to some new slowly
decreasing conditions (see [D70]).
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MR1239423 [D25] S. Dierolf and P. Domański. Factorization of Montel operators. Studia Math., 107(1):15–
32, 1993.
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MR1721846 [D44] P. Domański. On spaces of continuous functions with values in coechelon spaces. Rev. R.
Acad. Cienc. Exactas F́ıs. Nat. (Esp.), 92(1):61–66, 1998.
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MR2533318 [4] F. Bayart and É. Matheron. Dynamics of linear operators, volume 179 of Cambridge Tracts
in Mathematics. Cambridge University Press, Cambridge, 2009.

MR2068172 [5] K. D. Bierstedt and J. Bonet. Some aspects of the modern theory of Fréchet spaces.
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MR1328368 [47] M. I. Ostrovskĭı. On complemented subspaces of sums and products of Banach spaces.
Proc. Amer. Math. Soc., 124(7):2005–2012, 1996.
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