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Abstract

Multiplication operators on weighted Banach spaces and locally convex spaces of
continuous functions have been thoroughly studied. In this note we characterize when
continuous multiplication operators on a weighted Banach space and on a weighted
inductive limit of Banach spaces of continuous functions are power bounded, mean
ergodic or uniformly mean ergodic. The behaviour of the operator on weighted
inductive limits depends on the properties of the defining sequence of weights and it
differs from the Banach space case.

1 Introduction, Notation, and Motivation

Multiplication operators on weighted spaces of (vector valued) continuous functions have
been investigated by Manhas [13], [14], Singh and Manhas [15], [19], [21], Oubbi [17],
[18] and Klilou and Oubbi [9] among others. See also the book by Singh and Manhas
[20]. However, it seems that power boundedness and mean ergodicity of multiplication
operators on weighted Banach spaces and weighted inductive limits of spaces of continuous
functions had not been investigated. The case of multiplication operators on weighted
spaces of analytic functions on the complex unit disc was studied by Bonet and Ricker in [8].
Many tools used in that paper, like the maximum modulus principle and certain properties
of the Banach spaces of analytic functions, are not available in the case of continuous
functions. Thus a different approach is needed. Our aim is to characterize when continuous
multiplication operators on a weighted Banach space or on a weighted inductive limit of
Banach spaces of continuous functions are power bounded, mean ergodic or uniformly
mean ergodic. Our main results are Theorems 2.6 and 2.7 for operators on Banach spaces
and Theorem 3.7 and Corollary 3.9 for operators on weighted inductive limits. Several
examples show that the characterization of uniformly mean ergodic operators for weighted
inductive limits does not coincide with the Banach space case.
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We refer the reader to [22] for undefined terminology about set topology. We fix the
notation for weighted spaces of continuous functions. In the sequel X denotes a Hausdorff,
normal, locally compact topological space. For example X might be an open subset of Rn

or a discrete space, i.e. and index set. The space of continuous functions from X to C is
denoted by C(X) and the locally convex topology on C(X) of pointwise convergence is
denoted by τp. We say v ∈ C(X) is a weight if it is strictly positive. A function f ∈ C(X)
vanishes at infinity if for every ε > 0 there exists a compact setK ⊂ X such that |f(x)| < ε
if x ∈ X \K. The weighted Banach spaces of continuous functions are defined by

Cv := Cv(X) = {f ∈ C(X) : ∥f∥v := sup
x∈X

v(x) |f(x)| < ∞}

C0
v := C0

v (X) = {f ∈ C(X) : vf vanishes at infinity}
equipped with the norm ∥·∥v. In case X is a discrete space, then we use the notation
ℓ∞(v) = Cv and c0(v) = C0

v [7]. Clearly C0
v ⊂ Cv and every continuous function with

compact support on X is contained in C0
v . Note that for v ≡ 1, Cv coincides with the

Banach space CB(X) of bounded continuous functions endowed with the supremum norm
∥·∥∞, and C0

v is the space C0(X) of continuous functions vanishing at infinity, also endowed
with the supremum norm. Given φ ∈ C(X), the multiplication operator Mφ ∈ L(C(X)) is
defined by Mφ : f 7→ φf .

Our notation for functional analysis, locally convex spaces and inductive limits is stan-
dard. We refer the reader to [1], [16] and [23]. All the locally convex spaces are assumed
to be Hausdorff. The weak topology of a locally convex Hausdorff space E is denoted
by σ(E,E ′), where E ′ is the topological dual space of E. The space of continuous linear
operators from E into itself is denoted by L(E). We write Ls(E) and Lb(E) to denote
L(E) when it is equipped with its strong operator topology and with the topology of uni-
form convergence on bounded sets of E, respectively. The Cesàro means of an operator
T ∈ L(E) are defined by

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N. (1.1)

The operator T is mean ergodic (resp. uniformly mean ergodic) if the sequence {T[n]}∞n=1

converges in Ls(X) (resp. in Lb(X)). We say T is power bounded if {T n}∞n=1 is an equicon-
tinuous set of L(X). The standard text for mean ergodic operators in Banach spaces is
[10]; see also [23].

2 Multiplication operators on weighted Banach spaces

of continuous functions

In this section the multiplication operator Mφ on Cv and C0
v is denoted by Tφ := Mφ|Cv

:
Cv(X) −→ C(X) and Sφ := Mφ|C0

v
: C0

v (X) −→ C(X) respectively. The following result

is well-known. More general results can be seen in [17, Theorem 4], [19, Theorem 2.1] and
[21, Theorem 3.1] for example.
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Proposition 2.1 (i) Let v, w be weights. Then Mφ : Cv −→ Cw is continuous if and
only if w

v
φ is bounded if and only if Mφ : C0

v −→ C0
w is continuous. Moreover, ∥Mφ∥ =

supx∈X
w(x)
v(x)

|φ(x)| in both cases.

(ii) Tφ ∈ L(Cv) if and only if Sφ ∈ L(C0
v ) if and only if φ is bounded. Moreover,

∥Tφ∥v = ∥Sφ∥v = ∥φ∥∞.

Lemma 2.2 Let E be a locally convex space containing the functions with compact support
on X such that E is continuously included in (C(X), τp). Assume that Mφ ∈ L(E). If
limn(M

n
φf)(x)/n = 0 for every f ∈ E, then |φ(x)| ≤ 1. In particular if Mφ is either power

bounded or mean ergodic, then ∥φ∥∞ ≤ 1.

Proof. If Mφ is power bounded or mean ergodic, then limn(M
n
φf)(x)/n = 0 for every f ∈ E

and every x ∈ X. Given x ∈ X, select a continuous function g with compact support such
that g(x) = 1. We have 0 = limn

∣∣(Mn
φg)(x)

∣∣ /n = limn |φ(x)|n /n. This yields |φ(x)| ≤ 1.
2

Corollary 2.3 Let φ ∈ CB(X). Then, Tφ ∈ L(Cv) is power bounded if and only if
Sφ ∈ L(C0

v ) is power bounded if and only if ∥φ∥∞ ≤ 1.

Remark 2.4 Let E be a locally convex space containing the functions with compact
support on X such that E is continuously included in (C(X), τp) and assume that Mφ ∈
L(E). For each f ∈ E and n ∈ N we have

((Mφ)[n]f)(x) =
f(x)

n

n∑
m=1

(φ(x))m, x ∈ X, (2.1)

and

((Mφ)[n]f)(x) =
f(x)φ(x)

n
· 1− (φ(x))n

1− φ(x)
, x ∈ X \ φ−1(1). (2.2)

In the case ∥φ∥∞ ≤ 1, these formulas imply the convergence of (Mφ)[n]f uniformly on the
compact subsets of X to the (not necessarily continuous) function hf defined by

hf (x) =

{
f(x) if φ(x) = 1

0 if φ(x) ̸= 1.
(2.3)

Proposition 2.5 If E is a locally convex space containing the functions with compact
support on X such that E is continuously included in (C(X), τp). If Mφ ∈ L(E) and it is
mean ergodic, then φ−1(1) is open.

Proof. By Lemma 2.2, ∥φ∥∞ ≤ 1. Now suppose φ−1(1) is not open, then there exists x ∈ X
such that φ(x) = 1 but it is not in the interior of φ−1(1). Therefore, for each U ⊂ X open
with x ∈ U , there exists xU ∈ U with φ(xU) ̸= 1. These xU form a net converging to x.
Select a continuous function g with compact support such that g(x) = 1. By assumption
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g ∈ E. Since Mφ is mean ergodic, the function hg defined in Remark 2.4 is continuous.
However, hg(x) = 1 and hg(xU) = 0, for every U , which is a contradiction, and φ−1(1) is
open. 2

Theorem 2.6 Let φ ∈ CB(X). Then, Sφ ∈ L(C0
v ) is mean ergodic if and only if ∥φ∥∞ ≤

1 and φ−1(1) is open.

Proof. If Sφ is mean ergodic, the conclusion follows from Lemma 2.2 and Proposition 2.5.
To prove the converse, assume that ∥φ∥∞ ≤ 1 and Z := φ−1(1) is open. Hence, Z and
X \Z are both open and closed and thus C0

v (X) = C0
v (Z)⊕C0

v (X \Z). Since the restriction
of Sφ to the first space is the identity operator, we may assume φ ̸= 1 in X. From the
formula (2.2) it follows that (v (Sφ)[n]f)n is pointwise convergent to 0 for each f ∈ C0

v (even

for the compact topology). If X̂ is the Alexandroff compactification of X, the isometry

C0
v (X) ↪→ C(X̂), f 7→ vf , together with Riesz’s representation theorem yield that actually

((Sφ)[n]f)n is weakly convergent to 0 for every f ∈ C0
v . Now, since Sφ is power bounded,

it follows from the classical mean ergodic theorem (see the equivalence of (ii) and (iii) of
Theorem 1.1 in [10, page 72]) that Sφ is mean ergodic. 2

Theorem 2.7 Let φ ∈ CB(X). The following assertions are equivalent:

(1) Tφ ∈ L(Cv) is uniformly mean ergodic.

(2) Sφ ∈ L(C0
v ) is uniformly mean ergodic.

(3) ∥φ∥∞ ≤ 1, inf{|φ(x)− 1| : x ∈ X \ φ−1(1)} > 0 and φ−1(1) is open.

(4) Tφ ∈ L(Cv) is mean ergodic.

Proof. Clearly (1) implies (2) and (4).
To see that (2) implies (3) suppose that Sφ is uniformly mean ergodic. Then, Sφ is

mean ergodic and by Theorem 2.6, ∥φ∥∞ ≤ 1 and φ−1(1) is open. Thus, as in the proof
of Theorem 2.6, we may assume φ ̸= 1 in X. In that case it is easy to see that I − Sφ is
injective. Since Sφ is uniformly mean ergodic, we can apply a theorem by Lin [11] (see also
[10, Theorem 2.1]) to conclude that that I−Sφ is also surjective. The continuous operator
I−Sφ is bijective if and only if 1

1−φ
is bounded. This implies inf{|φ(x)− 1| : x ∈ X} > 0.

We show that (3) implies (1). Since φ−1(1) is open, it is enough to consider the case
φ ̸= 1 in X. The assumption (3) and the formula (2.2) imply that there is C > 0 such that
for each f ∈ Cv and each n ∈ N we have

∥∥(Tφ)[n]f
∥∥
v
≤ C∥f∥v/n. Thus,

∥∥(Tφ)[n]
∥∥ → 0 as

n → ∞, and Tφ is uniformly mean ergodic.
Finally we prove that (4) implies (3). Since Tφ is mean ergodic, also Sφ is mean ergodic

and then ∥φ∥∞ ≤ 1 and φ−1(1) is open. Again we can restrict ourselves to the case
φ ̸= 1 in X. Let βX be the Stone-Čech compactification of X and denote by ĝ the unique
extension of a function g ∈ CB(X) to βX. Consider the isomorphisms Cv(X) −→ CB(X),

f 7→ vf and CB(X) −→ C(βX), h 7→ ĥ. Also note that, since βX is compact, C(βX)
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coincides with the space of functions vanishing at infinity C0(βX). Thus we have an
isomorphism between Cv(X) and C0(βX). Apply Theorem 2.6 to Sφ̂ ∈ L(C0(βX)) to find
that (φ̂)−1(1) is open in βX. Since we have assumed that φ ̸= 1 in X, we must have
(φ̂)−1(1) ⊂ βX \ X. But βX \ X has empty interior and thus (φ̂)−1(1) = ∅. From this
follows that infx∈X |1− φ(x)| > 0. 2

Remark 2.8 If the space X is discrete, then Cv = l∞(v) is a Grothendieck Banach space
with the Dunford-Pettis property (briefly a GDP space). In this case a theorem of Lotz [12]
implies that Tφ is mean ergodic if and only if it is uniformly mean ergodic. This argument
cannot be used to prove Theorem 2.7 in full generality, since not all Cv(X) spaces have the
GDP property. It is well known that if K is a compact space then C(K) is a Grothendieck
space if and only if K is extremely disconnected if and only if c0 is not complemented in
C(K).

It is now easy to exhibit examples of multiplication operators that are mean ergodic
but not uniformly mean ergodic: Define φ : N → N as φ(2n) = 1, φ(2n + 1) = (1− 1/n).
For every weight v on N we have that Sφ : c0(v) → c0(v), (an) 7→ (φ(n)an) is mean ergodic
by Theorem 2.6 but not uniformly mean ergodic by Theorem 2.7 and Tφ : l∞(v) → l∞(v),
(an) 7→ (φ(n)an) is not mean ergodic by Theorem 2.7.

3 Multiplication operators on weighted inductive lim-

its of spaces of continuous functions

Weighted inductive limits of spaces of continuous and holomorphic functions have been
thoroughly investigated since the seminal work of Bierstedt, Meise and Summers [6] and [7];
see [1], [2], [3], [5] and the references therein. In this section we characterize power bounded
and (uniformly) mean ergodic multiplication operators defined on weighted inductive limits
of spaces of continuous functions defined on a normal locally compact Hausdorff topological
space X.

Throughout this section V = (vk)k denotes a decreasing sequence of continuous strictly
positive weights. The weighted inductive limits associated to V are V C = V C(X) :=
indk Cvk and V0C = V0C(X) := indk C

0
vk
. They are Hausdorff (LB)-spaces and V0C ⊂ V C

is a topological subspace of V C by [6, Theorem 1.3]. In case X is discrete, these spaces
are precisely Köthe co-echelon spaces of order infinite and zero, [7].

The Nachbin family associated to V is

V := {v : X −→ (0,∞) : v is upper semicontinuous and for each k ∈ N,
v

vk
is bounded on X}.

The weighted spaces of continuous functions associated with V C and V0C are defined as
follows.

CV = {f ∈ C(X) : pv(f) := sup
x∈X

v(x) |f(x)| < ∞, ∀v ∈ V }.
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CV 0 = {f ∈ C(X) : vf vanishes at infinity, ∀v ∈ V }.

They are endowed with the locally convex topology generated by the seminorms pv, v ∈ V .
It is well known that V C = CV algebraically and the topology in CV is in general coarser,
but they share bounded sets; in fact every bounded subset of CV is contained and bounded
in a step Cvn . Moreover, CV 0 is a closed subspace of CV and V0C is a topological subspace
of CV 0, hence of V C. We refer the reader to [6] for these results.

The characterization of continuous multiplication operators follows at once from Gro-
thendieck’s factorization theorem [16, Theorem 24.33] and Proposition 2.1.

Proposition 3.1 The following assertions are equivalent:

1. Mφ : V C(X) −→ V C(X) is continuous.

2. For every k there exists l such that Mφ : Cvk(X) −→ Cvl(X) is continuous.

3. For every k there exists l such that vl
vk
φ is bounded on X,

4. Mφ : V0C(X) −→ V0C(X) is continuous,

5. for every k there exists l such that Mφ : C0
vk
(X) −→ C0

vl
(X) is continuous.

Proposition 3.2 Mφ ∈ L(V C) is power bounded if, and only if, Mφ ∈ L(V0C) is power
bounded, if and only if ∥φ∥∞ ≤ 1.

Proof. The necessity of ∥φ∥∞ ≤ 1 for both V C and V0C follows from Lemma 2.2. For the
sufficiency assume ∥φ∥∞ ≤ 1. Since both V0C and V C are barrelled spaces, by Banach
Steinhaus theorem it is enough to show that every orbit ((Mφ)

nf)n is bounded for each f
in the space. Fix f ∈ V0C. There exist k and λ > 0 such that f ∈ λBk, where Bk is the
closed unit ball of Cvk . This implies (Mφ)

nf ∈ λBk ∩ V0C for each n. Now it is enough
to keep in mind that (kBk ∩ V0C)k is a fundamental system of bounded sets of V0C by [6,
Theorem 1.3]. The case of V C is similar. 2

Proposition 3.3 Mφ ∈ L(V0C) is mean ergodic if and only if ∥φ∥∞ ≤ 1 and φ−1(1) is
open.

Proof. If Mφ ∈ L(V0C) is mean ergodic, then by Lemma 2.2 and Proposition 2.5, we get
the necessary conditions.

Conversely, if ∥φ∥∞ ≤ 1 and φ−1(1) is open, then Sφ ∈ L(C0
vk
) is mean ergodic for every

k ∈ N by Theorem 2.6. By the properties of inductive limits, it follows that Mφ ∈ L(V0C)
is mean ergodic. 2

The next technical lemma was proved in [4, Prop.3] and it is very useful in our setting.

Lemma 3.4 There is a fundamental system U of neighbourhoods of 0 for V C such that if
U ∈ U and f ∈ U , then, for every g ∈ V C with |g| ≤ |f |, one gets g ∈ U .
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Proposition 3.5 The following assertions are equivalent:

(1) Mφ ∈ L(V C) is mean ergodic.

(2) Mφ ∈ L(V C) is uniformly mean ergodic.

Furthermore, if these equivalent conditions hold, then ∥φ∥∞ ≤ 1, φ−1(1) is open, hf as in
(2.3) belongs to V C for each f ∈ V C, and (Mφ)[n] → P in Lb(V C), where P ∈ L(V C)
with P (f) = hf .

Proof. It suffices to show that Mφ is uniformly mean ergodic whenever it is mean ergodic.
Let Bk denote the closed unit ball of Cvk . By [6] every bounded set of V C is contained in a
multiple of some Bk. Since Mφ is mean ergodic, hg belongs to V C for each g ∈ V C. Fix k.
We have to show that (Mφ)[n]g−hg converges to 0 uniformly on g ∈ Bk. Set fk := 1/vk. If
U ∈ U , where U is the basis of neighbourhoods of V C in Lemma 3.4, there exists n0 such
that for n ≥ n0, (Mφ)[n]fk − hfk ∈ U , since Mφ is mean ergodic. Every g ∈ Bk satisfies
|g| ≤ fk, then a simple computation and Lemma 3.4 yields (Mφ)[n]g − hg ∈ U , for n ≥ n0.

The consequences of conditions (1) and (2) in the statement now follow from arguments
in Lemma 2.2, Remark 2.4 and Proposition 2.5. 2

Although Mφ is mean ergodic if and only if it is uniformly mean ergodic on V C, these
conditions do not necessarily imply inf{|φ(x)− 1| : x ∈ X \ φ−1(1)} > 0. Compare with
Theorem 2.7. The first examples can be obtained assuming a condition on the sequence
V .

The sequence V satisfies condition (S) if for each n there exists m > n such that vm/vn
vanishes at infinity. It is easy to see that condition (S) holds if and only if V C = V0C.
For example, the sequence V = (vn)n of weights vn(z) := (1 − |z|)n, z ∈ D, n ∈ N, on the
complex unit disc D satisfies condition (S). We refer the reader to [6] for the relevance and
more examples of condition (S). In the context of Köthe echelon and co-echelon spaces
condition (S) characterizes the property of being Schwartz [7]. The next corollary is a
consequence of Propositions 3.3 and 3.5.

Corollary 3.6 Assume that the sequence V satisfies condition (S). The following condi-
tions are equivalent for Mφ ∈ L(V C):

(1) Mφ ∈ L(V C) is uniformly mean ergodic.

(2) Mφ ∈ L(V C) is mean ergodic.

(3) ∥φ∥∞ ≤ 1 and φ−1(1) is open.

Now we characterize when Mφ is uniformly mean ergodic on V0C.

Theorem 3.7 The following assertions are equivalent:

(1) Mφ ∈ L(V0C) is uniformly mean ergodic.
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(2) ∥φ∥∞ ≤ 1, φ−1(1) is open in X and for every k ∈ N and every v ∈ V ,

lim
n→∞

sup
x∈Y

1

n

v(x)

vk(x)
|φ(x)| |1− φ(x)n|

|1− φ(x)|
= 0,

where Y = X \ φ−1(1).

Proof. It is enough to prove the result when φ(x) ̸= 1 for each x ∈ X. Thus we assume
X = Y . We set, for each k, n ∈ N, v ∈ V and x ∈ X,

Rk,v
n (x) :=

1

n

v(x)

vk(x)
|φ(x)| |1− φ(x)n|

|1− φ(x)|
.

Assume first that condition (2) holds. Fix k ∈ N. For each f ∈ V0C such that |f | ≤ 1/vk
and each v ∈ V we have

v(x)
∣∣(Mφ)[n]f(x)

∣∣ ≤ Rk,v
n (x)

for each n ∈ N and each x ∈ X. Given ε > 0 we apply (2) to find n(0) ∈ N such that
Rk,v

n (x) < ε for each x ∈ X and each n ≥ n(0). Hence v(x)
∣∣(Mφ)[n]f(x)

∣∣ < ε for each
x ∈ X,n ≥ n(0) and each f ∈ V0C such that |f | ≤ 1/vk. By [6, Theorem 1.3] V0C is a
topological subspace of CV 0 and every bounded set of V0C is contained in a multiple of
{f ∈ V0C : |f | ≤ 1/vk} for some k. Therefore ((Mφ)[n])n converges to 0 in Lb(V0C), and
Mφ is uniformly mean ergodic.

To prove the converse, suppose that Mφ ∈ L(V0C) is uniformly mean ergodic. Fix
k ∈ N and v ∈ V . Given ε > 0 there is n(0) ∈ N such that v(x)

∣∣(Mφ)[n]f(x)
∣∣ < ε for each

x ∈ X,n ≥ n(0) and each f ∈ V0C such that |f | ≤ 1/vk. Now, for an arbitrary z ∈ X,
there is a continuous function with compact support h ∈ C(X) such that 0 ≤ h ≤ 1 and
h(z) = 1. Then g := h/vk ∈ V0C and |g| ≤ 1/vk on X. This implies, for n ≥ n(0),

Rk,v
n (z) =

v(z)

k

∣∣(Mφ)[n]g(z)
∣∣ < ε.

Since z ∈ X is arbitrary, we have shown that limn→∞ supz∈X Rk,v
n (z) = 0. The other

statements in condition (2) follow from Proposition 3.3. 2

Corollary 3.8 If ∥φ∥∞ ≤ 1, φ−1(1) is open in X and for every k ∈ N there exists l ≥ k
such that

lim
n→∞

sup
x∈Y

1

n

vl(x)

vk(x)
|φ(x)| |1− φ(x)n|

|1− φ(x)|
= 0,

then Mφ ∈ L(V0C) is uniformly mean ergodic.

Proof. This is a consequence of Theorem 3.7 since, for every v ∈ V and each l ∈ N, there
exists αl > 0 such that v ≤ αlvl. 2

Corollary 3.9 Assume that V C = CV holds topologically. Then Mφ ∈ L(V C) is uni-
formly mean ergodic if and only if condition (2) of Theorem 3.7 holds.
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Proof. If Mφ ∈ L(V C) is uniformly mean ergodic, then Mφ ∈ L(V0C) is uniformly mean
ergodic, since V0C is a topological subspace of V C. We can apply Theorem 3.7 to conclude
that condition (2) in this theorem holds. Conversely, as V C = CV algebraically and
topologically, it is not hard to prove that condition (2) in Theorem 3.7 implies that the
sequence ((Mφ)[n])n converges in Lb(V C) and Mφ ∈ L(V C) is uniformly mean ergodic. 2

The topological identity V C = CV was characterized by a condition (D) formulated in
terms of the weights V = (vn)n by Bastin, Bierstedt, Bonet and Vogt. See [2], [3] and [5].

Corollary 3.10 Assume that ∥φ∥∞ ≤ 1 and φ(x) ̸= 1 for each x ∈ X.
(i) If for all k there is l > k such that

sup
x∈X

vl(x)

vk(x)

1

|1− φ(x)|
< ∞,

then Mφ ∈ L(V0C) is uniformly mean ergodic.
(ii) If inf{|1− φ(x)| : x ∈ X} > 0, then Mφ ∈ L(V0C) is uniformly mean ergodic.

Proof. The hypothesis of part (i) implies the assumption in Corollary 3.8. Part (ii) follows
from (i). 2

Examples 3.11 We mention two examples of sequences V = (vn)n which do not satisfy
condition (S) and uniformly mean ergodic multiplication operators Mφ ∈ L(V0C) such
that inf{|1− φ(x)| : x ∈ X \ φ−1(1)} > 0 is not satisfied. These examples show that the
converse of Corollary 3.10 does not hold and they should be compared with Theorem 2.7
and Corollary 3.6.

(1) LetX = D be the complex unit disc. Consider V = (vk)k with vk(z) = min(1, |1− z|k).
The sequence V does not satisfy condition (S), since vk(−1 + a) = 1 for each a ∈]0, 1[.
Take φ(z) = z. Clearly φ(z) ̸= 1 for each z ∈ D, but inf{|1− φ(x)| : x ∈ X} = 0.

On the other hand, for any n ∈ N we have, for |1− z| ≤ 1,

vk+1(z)

vk(z)
· 1

|1− φ(z)|
=

|1− φ(z)|k+1

|1− φ(z)|k+1
= 1

and for |1− z| ≥ 1,
vk+1(z)

vk(z)
· 1

|1− φ(z)|
=

1

|1− z|
≤ 1.

We can apply Corollary 3.10 (i) to conclude that Mφ is uniformly mean ergodic in V0C.

(2) Let X = {z ∈ C : Imz > 0} be the upper half plane in C. Define vk(z) :=
exp(−kImz), z ∈ X, k ∈ N, and V = (vk)k. It is easy to check that the sequence V does
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not satisfy condition (S). The function φ(z) = 1 − eiz, z ∈ X, satisfies φ(z) ̸= 1 for each
z ∈ X and inf{|1− φ(x)| : x ∈ X} = 0.

We have
vk+1(z)

vk(z)
· 1

|1− φ(z)|
= 1.

Therefore Mφ is uniformly mean ergodic in V C by Corollary 3.10 (i).

(3) It is not hard to show that both sequences V in the examples above are regularly de-
creasing in the sense of [6, Definition 2.1]. This implies that V C = CV holds topologically
and the multiplication operators Mφ are also uniformly mean ergodic on V C.
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