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Abstract. We determine the solid hull for 2 < p < ∞ and the solid core for
1 < p < 2 of weighted Bergman spaces Ap

µ, 1 < p < ∞, of analytic functions
functions on the disc and on the whole complex plane, for a very general class of
non-atomic positive bounded Borel measures µ. New examples are presented.
Moreover we show that the space Ap

µ, 1 < p < ∞, is solid if and only if the
monomials are an unconditional basis of this space.

1. Introduction and preliminaries

Consider R = 1 or R = ∞ and D = {z ∈ C : |z| < 1}. We study holomorphic
functions f : R · D → C where R · D = D if R = 1 and R · D = C if R = ∞.
Let f̂(k) be the Taylor coeffients of f , i.e. f(z) =

∑∞
k=0 f̂(k)z

k. We take a non-
atomic positive bounded Borel measure µ on [0, R[ such that µ([r, R[) > 0 for

every r > 0 and
∫ R

0
rndµ(r) < ∞ for all n > 0. Put, for 1 ≤ p < ∞,

||f ||p =
(

1

2π

∫ R

0

∫ 2π

0

|f(reiφ)|pdφdµ(r)
)1/p

and let

Ap
µ = {f : R · D → C : f holomorphic with ||f ||p < ∞}.

Ap
µ is called a weighted Bergman space.
Let H(R · D) be the space of all holomorphic functions on R · D and let A ⊂

H(R · D) be a subspace containing the polynomials. We want to study the solid
core

s(A) = {f ∈ A : g ∈ A for all holomorphic g with |ĝ(k)| ≤ |f̂(k)| for all k}

and the solid hull

S(A) = {g : R·D → C : g holomorphic, there is f ∈ A with |ĝ(k)| ≤ |f̂(k)| for all k}.

A is called solid if A = S(A).
In the first four sections we consider A = Ap

µ while in section 5 we include the
case where A consists of weighted sup-norm spaces of holomorphic functions.

The solid hull and core of spaces of analytic functions has been investigated by
many authors. We refer the reader to the recent books [6] and [13] and the many

Copyright 2018 by the Tusi Mathematical Research Group.
Date: Received: xxxxxx; Revised: yyyyyy; Accepted: zzzzzz.
∗Corresponding author.
2010 Mathematics Subject Classification. Primary 46E15; Secondary 46B15.
Key words and phrases. Weighted Bergman spaces, solid hulls, solid cores.

1



2 J.BONET, W.LUSKY, and J.TASKINEN

references therein. For example in [6] the characterisation of the solid hulls and
cores of Ap

µ can be found where dµ(r) = (1− r)αdr for some α > 0 and R = 1.
Originally, our main interest was to replace the “standard weights” (1− r)α by

weights of the form va,b(r) = exp(−a/(1 − r)b) for some a > 0 and b > 0, which
are of a completely different nature and require different methods, and hence to
consider dµ(r) = va,b(r)dr. We wanted to extend to weighted Bergman spaces
the results of [3], a paper which was entirely devoted to this class of weights va,b
in connection with weighted sup-norms. In the present article we give a charac-
terization of solid hulls of Ap

µ if 2 < p < ∞ and solid cores if 1 < p < 2 in our
main Theorem 2.1 for much more general µ which, under some mild additional
assumptions (Corollary 3.2), resulted in the explicit computation of many exam-
ples including v(r) = exp(−a/(1−r)b) for R = 1 and v(r) = exp(−r) for R = ∞;
see Corollaries 3.4 and 3.5. The final sections 4 and 5 are dedicated to Bergman
spaces Ap

µ and weighted sup-norm spaces H∞
v which themselves are solid. We

give examples for this situation in connection with holomorphic functions over
the complex plane and show that this can never happen for holomorphic func-
tions over the unit disc. The main results are Theorem 4.1 which states that Ap

µ

is solid if and only if the monomials (zn)∞n=0 are an unconditional basis of Ap
µ, and

Theorem 5.2 which ensures that H∞
v is solid if and only if (zn)∞n=0 is a Schauder

basis of the closure H0
v of the polynomials in H∞

v .
For a holomorphic g and 0 < r we define

Mp(g, r) =

(
1

2π

∫ 2π

0

|g(reiφ)|pdφ
)1/p

and Png(z) =
∑n

k=0 ĝ(k)z
k. It is well-known that, for 1 < p < ∞, there are

universal constants cp > 0 withMp(Png, r) ≤ cpMp(g, r) where cp does not depend
on g, n or r. Moreover we have limn→∞ Mp(g − Png, r) = 0. Hence we obtain

||Pnf ||p ≤ cp||f ||p for all f ∈ Ap
µ and all n and lim

n→∞
||f − Pnf ||p = 0.

In particular we see that the monomials z 7→ zn, n = 0, 1, 2, . . . form a Schauder
basis of Ap

µ if 1 < p < ∞. Details can be seen in [4] and [14].
In the rest of the article [r] denotes the largest integer smaller or equal than

r > 0.

2. Main general result.

The main result of this section is the following Theorem 2.1 below. There
are relevant earlier related works. For example Theorem 4.1 in Pavlović [12]
established a useful norm in blocks for certain weighted Bergman spaces. See
also earlier work by Mateljević and Pavlović [11].

Theorem 2.1. Assume that there are constants d1, d2 > 0, and ωn > 0, n =
1, 2, . . ., numbers 0 ≤ l1 < l2 < . . . and radii s1 < s2 < . . . such that, for every
f ∈ Ap

µ,

d1||f ||p ≤

(
∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2||f ||p. (2.1)
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(a) If 2 < p < ∞, then

S(Ap
µ) =g : R · D → C : g holomorphic with

∞∑
n=1

ωp
n

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2kn

p/2

< ∞

 .

(b) If 1 < p < 2, then

s(Ap
µ) =g : R · D → C : g holomorphic with

∞∑
n=1

ωp
n

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2kn

p/2

< ∞

 .

Theorem 2.1 is proved below. Before presenting the proof we point out that
condition (2.1) can be realized for any given µ. Indeed, fix β > 16·3p−1(1+2p)cpp+2
and use induction to obtain 0 = l1 < l2 < l3 . . . and 0 ≤ s1 < s2 . . . < R with∫ sn

0

rlnpdµ = β

∫ R

sn

rlnpdµ and

∫ sn

0

rln+1pdµ =
1

β

∫ R

sn

rln+1pdµ. (2.2)

Instead of starting with n = 1 we can as well start the induction e.g. with n = n0

for some n0 ≥ 0 (with l1 = 0 and arbitrary s1) and restrict the preceding relations
to all n ≥ n0. Moreover put

ωn =

(∫ sn

0

(
r

sn

)lnp

dµ+

∫ R

sn

(
r

sn

)ln+1p

dµ

)1/p

.

Then there are constants d1, d2 > 0 such that, for every f ∈ Ap
µ,

d1||f ||p ≤

(
∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2||f ||p.

This was shown in [5] for p = 1 and in [10] for 1 < p < ∞ and R = 1, but with
some slight modifications the proofs carry over to the case R = ∞.

Example 2.2. (i) Let dµ(r) = dr where R = 1. Then we obtain

ln =
1

p
(an−1 − 1) and sn =

(
β

β + 1

)a1−n

where a =
log(β + 1)

log(1 + β)− log(β)
.

This can be easily verified using the definition (starting with n = 0) and induction.
(ii) Let dµ(r) = rαdr for some α > 0 and R = 1. With example (i) and

lnp+ α = (an−1 − 1), where a is the number in (i), we obtain

ln =
1

p
(an−1 − 1)− α

p
and sn =

(
β

β + 1

)a1−n

for n ≥ 2 with l1 = 0 and s1 = β/(β + 1).
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Now we turn to the proof of Theorem 2.1. Let f : R · D → C be holomorphic.
Recall that f̂(n)rn = 1

2π

∫ 2π

0
f(reiφ)e−inφdφ for each 0 < r < R and each n =

0, 1, 2, . . . . For g(reiφ) = rn(p−1)e−inφ/(
∫ R

0
rnpdµ)1−1/p we have

|f̂(n)|
(∫ R

0

rnpdµ

)1/p

=
1

2π
|
∫ R

0

∫ 2π

0

f(reiφ)g(reiφ)dφdµ| ≤ ||f ||p.

In the following we make use of the Khintchine inequality ([7], 2.b.3.), i.e. for
arbitrary bk and n we have

Ap

(
n∑

k=1

|bk|2
)1/2

≤

(
1

2n

∑
θk=±1

∣∣∣∣∣
n∑

k=1

bkθk

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑

k=1

|bk|2
)1/2

where Ap, Bp are universal constants not depending on n. (The summation in the
central expression runs over the 2n different possibilities of the change of signs.)

Conclusion of the proof of Theorem 2.1. For a holomorphic function g put

α(g) =

(
∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

.

As assumed, α(·) is equivalent to || · ||p. Moreover let

γ(g) =

 ∞∑
n=1

ωp
n

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2kn

p/2


1/p

and V = {g : R ·D → C : g holomorphic with γ(g) < ∞}. Recall that Parseval’s
identity implies

M2
2

(
(P[ln+1] − P[ln])f, sn

)
=

[ln+1]∑
k=[ln]+1

|ĝ(k)|2s2kn .

Proof of (a). Let g ∈ S(Ap
µ). Then there is f ∈ Ap

µ with |ĝ(k)| ≤ |f̂(k)| for all
k. If 2 < p < ∞ then

γ(g) ≤ γ(f) ≤ α(f) ≤ d2||f ||p < ∞.

Hence g ∈ V .
Now let g ∈ V . Put ∆n = {+1,−1}[ln+1]−[ln]. For Θn = (θ[ln]+1, . . . , θ[ln+1]) ∈

∆n put

gΘn(φ) =

[ln+1]∑
k=[ln]+1

θkĝ(k)s
k
ne

ikφ and gn(φ) =

[ln+1]∑
k=[ln]+1

ĝ(k)skne
ikφ.

Let Θ̃n be such that

Mp(gΘ̃n
, sn) ≤

(
1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

.
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The Khintchine inequality yields

Mp(gΘ̃n
, sn) ≤ BpM2(gn, sn).

Put h =
∑

n gΘ̃n
. Then, by the preceding estimates,

d1||h||p ≤ α(h) ≤ Bpγ(g) < ∞.

Hence h ∈ Ap
µ. Since by definition |ĥ(k)| = |ĝ(k)| for all k we obtain g ∈ S(Ap

µ).

Proof of (b). We retain the preceding notation. Let g ∈ V and let f : R ·D → C
be holomorphic with |f̂(k)| ≤ |ĝ(k)| for all k. Then

d1||f ||p ≤ α(f) ≤ γ(f) ≤ γ(g) < ∞.

This implies f ∈ Ap
µ and hence g ∈ s(Ap

µ).

Now let g ∈ s(Ap
µ). Let

˜̃Θn ∈ ∆n be such that(
1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

≤ Mp(g ˜̃Θn
, sn).

Put h =
∑

n g ˜̃Θn
. Then we obtain |ĥ(k)| = |ĝ(k)| for all k. Hence h ∈ Ap

µ. The

Khintchine inequality together with the choice of ˜̃Θn yields

γ(g) = γ(h) ≤ A−1
p α(h) ≤ d2A

−1
p ||h||p < ∞.

We conclude g ∈ V . �

3. Main examples.

Quite often it is very difficult to compute the parameters ln and sn in (2.2).
Therefore it is worthwhile to consider special cases which yield an equivalent
representation of the norm || · ||p satisfying (2.1) and which are easier to compute
and cover many examples. To this end let v : [0, R[→]0,∞[ be a weight function,
i.e. let v be continuous, decreasing and satisfy

lim
r→R

v(r) = 0 and sup
r

rnv(r) < ∞ for all n > 0.

Moreover, let ν be a non-atomic positive Borel measure on [0, R[ such that

ν([r, R[) > 0 for every r > 0, and
∫ R

0
rnv(r)dν(r) < ∞ for every n ≥ 0. Put, for

1 ≤ p < ∞,

||f ||p =
(∫ R

0

Mp
p (f, r)v(r)dν(r)

)1/p

Here we consider Ap
µ with dµ(r) = v(r)dν(r). Actually one can relax a bit the

conditions on v. It suffices to require that v be decreasing on [r0, R[ for some
r0 ∈]0, R[. This follows from the fact that, for dµ̃ = 1[r0,R[dµ, the Lp−norms
with respect to µ and µ̃ are equivalent. Indeed, using the fact that Mp(f, r) is
increasing with respect to r for holomorphic functions f we see that∫ R

r0

Mp
p (f, r)dµ(r) ≤

∫ R

0

Mp
p (f, r)dµ(r) ≤

(
1 +

µ([r0, R[)

µ([0, R[)

)∫ R

r0

Mp
p (f, r)dµ(r).
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For any n > 0 let rn ∈ [0, R[ be a point where the function r 7→ rnv(r) attains
its global maximum. It is easily seen that rm < rn if m < n. In the following we
assume that

rn is the unique global maximum of rnv(r) for all n

and there are no further local maxima. (3.1)

For example this is the case if v is differentiable and v′/v is injective. The as-
sumption (3.1) implies that rnv(r) is decreasing for r ≥ rn. Moreover we assume
that v satisfies

Condition (b0): There are numbers 1 < b < K and m1 < m2 < . . . with
limn→∞mn = ∞ such that

b ≤
(

rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

Condition (b0) is exactly the same as condition (b) in [3], except that the treat-
ment of weighted Banach spaces of analytic functions with sup-norms requires
2 < b < K. We refer the reader to [3] and [9] for more information and examples
related to these conditions.

We take the parameters of condition (b0) and we put

In = ν([rmn , rmn+1 ])

and assume

In < ∞ for all n and lim sup
n→∞

In
min(In−1, In+1)

< b. (3.2)

Theorem 3.1. Let 1 < p < ∞. Assume that v satisfies (b0) with (3.1), (3.2).
Then there are constants d1, d2 > 0 with

d1||f ||p ≤

(
∞∑
n=1

Mp
p ((P[mn+1/p] − P[mn/p])f, rmn)v(rmn)In

)1/p

≤ d2||f ||p. (3.3)

for all f ∈ Ap
µ.

In view of (2.1) we can apply Theorem 2.1 with the preceding ln = mn/p,
ωp
n = v(rmn)In and sn = rmn .

Corollary 3.2. Let dµ = vdν.
(a) If 2 < p < ∞, then

S(Ap
µ) =

{
g : R · D → C : g holomorphic with

∞∑
n=1

v(rmn)In

 [mn+1/p]∑
k=[mn/p]+1

|ĝ(k)|2r2kmn

p/2

< ∞

}
.
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(b) If 1 < p < 2, then

s(Ap
µ) =

{
g : R · D → C : g holomorphic with

∞∑
n=1

v(rmn)In

 [mn+1/p]∑
k=[mn/p]+1

|ĝ(k)|2r2kmn

p/2

< ∞

}
.

Before we prove Theorem 3.1 we present the following examples. They are
concrete cases to which Corollary 3.2 applies, thus permitting us to calculate
explicitly all the parameters which appear in the solid hull and solid core.

Example 3.3. (i) R = 1 and dµ(r) = exp(−α/(1 − r)β)dr for some α, β > 0.
We take v(r) = exp(−α/(1− r)β) and dν(r) = dr. v satisfies condition (b0) with

mn = β

(
β

α

)1/β

n2+2/β − βn2 and rmn = 1−
(
α

β

)1/β
1

n2/β

and b = e1 (see [3], Theorem 3.1.) Here In = (α/β)1/β(n−2/β − (n + 1)−2/β).
Hence

lim
n→∞

In
min(In−1, In+1)

= 1.

This shows that (3.2) is satisfied. (3.1) holds, too, according to [3]. So we can
apply Corollary 3.2.

(ii) R = 1 and dµ(r) = (1− log(1− r))−1dr. Here we take

v(r) = 1− r and dν(r) =
dr

(1− r)(1− log(1− r))
.

rm = 1 − 1/(m + 1) is the only zero of the derivative of rmv(r). Hence (3.1) is
satisfied. If we take mn = 9n and hence rmn = 1 − 1/(9n + 1) then a simple
calculation reveals that v satisfies (b0) with b = 3. We obtain

In =

∫ rmn+1

rmn

dν = log

(
1 + log(9n+1 + 1)

1 + log(9n + 1)

)
from which we infer limn→∞ In/min(In−1, In+1) = 1. This implies (3.2).

(iii) R = ∞ and dµ(r) = e−rdr. Here we take v(r) = e−r, dν(r) = dr. rm = m
is the unique zero of the derivative of rmv(r). Hence (3.1) is satisfied. Put

m1 = 1 and mn+1 = mn + 2
√
mn, n = 1, 2 . . . , and rmn = mn.

A simple calculation yields, with

−x− 1

2

(
x

1− x

)2

≤ log(1− x) ≤ −x if 0 < x < 1,

exp

(
4
√
m√

m+ 2
− 2

)
≤
(

rmn

rmn+1

)mn v(rmn)

v(rmn+1)
=

exp

(
m log

(
1− 2√

m+ 2

)
+ 2

√
m

)
≤ exp

(
4
√
m√

m+ 2

)
.
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Similarly, with

x− x2

2
≤ log(1 + x) ≤ x for 0 < x < 1,

exp

(
4− 2(1 +

2√
m
)

)
≤ exp

(
(m+ 2

√
m) log

(
1 +

2√
m

)
− 2

√
m

)
=

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ e4.

This shows that condition (b0) holds. Moreover we easily obtain

In = 2
√
mn and lim

n→∞

In
min(In−1, In+1)

= 1

which yields (3.2). Observe that in this case we can take mn = n2; see Theorem
3.1 in [1]. This fact is not surprising, since one can easily prove by induction that
our selection of mn above satisfies (n− 1)2 ≤ mn ≤ n2 for each n.

Corollary 3.4. Let R = 1 and dµ(r) = exp(−1/(1− r))dr.
(a) If 2 < p < ∞, then

S(Ap
µ) =

g ∈ H(D) :
∞∑
n=1

e−n2

(
1

n3

) [(n+1)4/p]∑
k=[n4/p]+1

|ĝ(k)|2
(
1− 1

n2

)2k
p/2

< ∞

 .

(b) If 1 < p < 2, then

s(Ap
µ) =

g ∈ H(D) :
∞∑
n=1

e−n2

(
1

n3

) [(n+1)4/p]∑
k=[n4/p]+1

|ĝ(k)|2
(
1− 1

n2

)2k
p/2

< ∞

 .

Proof. Example 3.3 (i) and Corollary 3.2 yield, with α = β = 1 and mn = n4−n2,

S(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2

(
1

n2
− 1

(n+ 1)2

)[((n+1)4−(n+1)2)/p]∑
k=[(n4−n2)/p]+1

|ĝ(k)|2
(
1− 1

n2

)2k
p/2

< ∞

}
if 2 < p < ∞ and

s(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2

(
1

n2
− 1

(n+ 1)2

)[((n+1)4−(n+1)2)/p]∑
k=[(n4−n2)/p]+1

|ĝ(k)|2
(
1− 1

n2

)2k
p/2

< ∞

}
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if 1 < p < 2. If we let k run, in the preceding summations, from [n4/p] + 1
to [(n + 1)4/p] instead then we obtain conditions which are equivalent to the
preceding ones and hence characterize again S(Ap

µ) and s(Ap
µ). This follows from

n4 − n2 ≤ n4 ≤ (n+ 1)4 − (n+ 1)2 for all n.

(Compare this with Lemma 3.2. and Example 3.3 (i) in [3].) Then, finally,
Corollary 3.4 follows from(

1

2

)
1

n3
≤ 1

n2
− 1

(n+ 1)2
≤ 2

n3
for all n.

�

Corollary 3.5. Let R = ∞ and dµ(r) = e−rdr.
(a) If 2 < p < ∞, then

S(Ap
µ) =

g ∈ H(C) :
∞∑
n=1

e−n2

2n

 [(n+1)2/p]∑
k=[n2/p]+1

|ĝ(k)|2n2k

p/2

< ∞

 .

(b) If 1 < p < 2, then

s(Ap
µ) =

g ∈ H(C) :
∞∑
n=1

e−n2

2n

 [(n+1)2/p]∑
k=[n2/p]+1

|ĝ(k)|2n2k

p/2

< ∞

 .

Proof. It is a consequence of Example 3.3 (iii) and Corollary 3.2. �

Lemma 3.6. Let 1 ≤ p < ∞, 0 < r < s and f(z) =
∑

m≤j≤n αjz
j for some αj

and 0 ≤ m < n. Then we have

(i) Mp(f, r) ≤
(r
s

)m
Mp(f, s)

and

(ii) Mp(f, s) ≤
(s
r

)n
Mp(f, r).

Proof. Part (i) follows from the fact that, for holomorphic f , the function Mp(f, ·)
is increasing in r while (ii) is Lemma 3.1. (i) of [8]. �

Now consider 1 < p < ∞ and let mn, In satisfy (b0) and (3.1), (3.2).

Lemma 3.7. Fix k, n and rmk
≤ r ≤ rmk+1

. Then we have

(i)

(
r

rmn

)mn v(r)

v(rmn)
≤
(
1

b

)n−k−1

if k < n

and

(ii)

(
r

rmn

)mn+1 v(r)

v(rmn)
≤ K

(
1

b

)k−n−1

if k ≥ n.
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Proof. If k < n we have(
r

rmn

)mn v(r)

v(rmn)
=(

r

rmk+1

)mn v(r)

v(rmk+1
)

(
rmk+1

rmk+2

)mn v(rmk+1
)

v(rmk+2
)
. . .

(
rmn−1

rmn

)mn v(rmn−1)

v(rmn)
≤(

r

rmk+1

)mk+1 v(r)

v(rmk+1
)

(
rmk+1

rmk+2

)mk+2 v(rmk+1
)

v(rmk+2
)
. . .

(
rmn−1

rmn

)mn v(rmn−1)

v(rmn)

≤
(
1

b

)n−k−1

If k ≥ n+ 1 we have(
r

rmn

)mn+1 v(r)

v(rmn)
=(

r

rmk

)mn+1 v(r)

v(rmk
)

(
rmk

rmk−1

)mn+1 v(rmk
)

v(rmk−1
)
. . .

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤(

r

rmk

)mk v(r)

v(rmk
)

(
rmk

rmk−1

)mk−1 v(rmk
)

v(rmk−1
)
. . .

(
rmn+2

rmn+1

)mn+1 v(rmn−1)

v(rmn)
K

≤ K

(
1

b

)k−n−1

Similarly, for k = n,(
r

rmn

)mn+1 v(r)

v(rmn)
≤
(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

�

Now fix k0 > 0 and 0 < ρ < b such that

In
min(In−1, In+1)

≤ ρ if k ≥ k0. (3.4)

Corollary 3.8. Let fn(z) =
∑

mn/p≤j<mn+1/p
αjz

j where n ≥ k0. Then, for any
k ≥ k0 we have∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r) ≤ c

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In. (3.5)

Here c > 0 is a universal constant independent of k, n, fn.
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Proof. First let k < n. Then Lemma 3.6 (i) and Lemma 3.7 (i) imply∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

≤ Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

(
r

rmn

)mn v(r)

v(rmn)
dν(r)

≤ c0M
p
p (fn, rmn)v(rmn)In

(
n−1∏
j=k

Ij
Ij+1

)(
1

b

)|n−k|

≤ c1

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c0, c1 are universal constants. If k ≥ n then we use Lemma 3.6 (ii) and
Lemma 3.7 (ii) to get∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

≤ Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

(
r

rmn

)mn+1 v(r)

v(rmn)
dν(r)

≤ KbMp
p (fn, rmn)v(rmn)In

(
k−1∏
j=n

Ij+1

Ij

)(
1

b

)|n−k|

≤ c2

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c2 is a universal constant. �

Conclusion of the proof of Theorem 3.1. Let f ∈ Ap
µ, say f =

∑
n fn where

fn is as in Corollary 3.8. We can assume that fn = 0 for n ≤ k0 with k0 as in
(3.4).

To prove the right-hand inequality in Theorem 3.1 we use that Mp(fn, r) ≤
cMp(f, r) for a universal constant independent of r, as well as that, in view of
(3.1), rmnv(r) is decreasing for r ≥ rmn . We have∑

n

Mp
p (fn, rmn)v(rmn)In

≤
∑
n

∫ rmn+1

rmn

(rmn

r

)mn v(rmn)

v(r)
Mp

p (fn, r)v(r)dν(r)

≤
∑
n

∫ rmn+1

rmn

(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
Mp

p (fn, r)v(r)dν(r)

≤ K
∑
n

∫ rmn+1

rmn

Mp
p (fn, r)v(r)dν(r)

≤ cpK
∑
n

∫ rmn+1

rmn

Mp
p (f, r)v(r)dν(r)

≤ cpK||f ||pp.
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This in particular implies that
∑

n M
p
p (fn, rmn)v(rmn)In < ∞.

Now we show the left-hand inequality of Theorem 3.1. Using the Minkowski
inequality in the first estimate and Corollary 3.8 in the second one, we obtain

||f ||pp =
∑
k

∫ rmk+1

rmk

Mp
p (f, r)v(r)dν(r)

≤
∑
k

∑
n

(∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

)1/p
p

≤ c1
∑
k

(∑
n

(ρ
b

)|n−k|/p (
Mp

p (fn, rmn)v(rmn)In
)1/p)p

≤ c2
∑
k

∑
n

(ρ
b

)|n−k|/p
Mp

p (fn, rmn)v(rmn)In

≤ c3
∑
n

Mp
p (fn, rmn)v(rmn)In.

Here c1, c2, c3 are universal constants. In the second last inequality we used the

Hölder inequality in the following way: Put an =
(
Mp

p (fn, rmn)v(rmn)In
)1/p

. Then

∑
n

(ρ
b

)|n−k|/p
an ≤

(∑
n

(ρ
b

)|n−k|/p
apn

)1/p

·

(∑
n

(ρ
b

)|n−k|/p
)1/q

,

with 1/p + 1/q = 1. In the last inequality we interchanged the summation over
k and n and utilized supk

∑
n(ρ/b)

|n−k|/p = supn

∑
k(ρ/b)

|n−k|/p < ∞. �

4. Solid Bergman spaces.

Recall, a Bergman space Ap
µ is solid if S(Ap

µ) = Ap
µ.

Theorem 4.1. Let 1 < p < ∞, p ̸= 2. Then the following are equivalent
(i) Ap

µ is solid
(ii) s(Ap

µ) = Ap
µ

(iii) The monomials (zn)∞n=0 are an unconditional basis of Ap
µ

(iv) The normalized monomials (zn/||zn||p)∞n=0 are equivalent to the unit
vector basis of lp

(v) supn(ln+1 − ln) < ∞ for the numbers ln in (2.1)

Remark 4.2. If p = 2 then the normalized monomials are an orthonormal basis
for A2

µ and all conditions (i)-(iv) are satisfied.

The following example is relevant in connection with Theorem 4.1.

Example 4.3. Consider R = ∞ and v(r) = exp(−(log r)2), dν(r) = dr. (This is
included in Example 2.2 of [9].) v is decreasing on [1,∞[ which suffices in view
of the remarks in the beginning of section 3. We easily see that rm = exp(m/2)
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is the only zero of the derivative of rmv(r). Hence (3.1) is satisfied. We get for
any n > 0 and m > 0(

rm
rn

)m
v(rm)

v(rn)
=

(
rn
rm

)n
v(rn)

v(rm)
= exp

(
(n−m)2

4

)
.

So, if we take mn = 4n then condition (b0) is satisfied with b = e4. Moreover we
have In = exp(2n + 2) − exp(2n). An easy calculation shows that (3.2) holds.
Hence we can consider (2.1) with ln = mn/p. Therefore supn(ln+1 − ln) = 4/p <
∞. This means, for dµ(r) = v(r)dr, the Bergman space Ap

µ is solid.

For the preceding example it is essential that R = ∞. Indeed, we have

Corollary 4.4. Let 1 < p < ∞, p ̸= 2, and R = 1. Then no Bergman space Ap
µ

is solid.

We prove Corollary 4.4 at the end of this section. For the proof of Theorem
4.1 we need the following

Lemma 4.5. Let (en) be a Schauder basis of a Banach space X with basis projec-
tions Pn. For M ⊂ N, let TM be the linear (not necessarily continuous) operator
defined in the linear span of (en) by TMek = ek if k ∈ M and TMek = 0 otherwise.

If the basis (en) is not unconditional, then there is N ⊂ N such that, for any
n, there exists mn and 0 ̸= y ∈ PmnX with n||y|| ≤ ||TNy||.

Proof. If (en) is a conditional basis then there exists an operator of the form TN

which is unbounded on X. Hence there is a sequence xk ∈ X with ||xk|| = 1
and limk→∞ ||TNxk|| = ∞ and we find kn with n = n||xkn|| < ||TNxkn || for all n.
Using TNPl = PlTN for all l we find mn such that

0 < n||Pmnxkn || ≤ ||PmnTNxkn|| = ||TNPmnxkn|| for all n.

�
In the following we retain the definition of TN with respect to the monomials

(zn).

Lemma 4.6. Let 1 < p < ∞, p ̸= 2 and assume that there are constants cn > 0,
dn > 0 with supn dn/cn < ∞, integers 0 < an < bn < an+1 and radii sn such that,
for any fn ∈ Ap

µ with fn(z) =
∑

an≤j≤bn
αjz

j we have

cnMp(fn, sn) ≤ ||fn||p ≤ dnMp(fn, sn).

If supn(bn − an) = ∞ then the monomials are not unconditional in Ap
µ.

Proof. It is well known that the monomials are a conditional basis sequence with
respect to the norm Mp(·, 1). So we find N ⊂ N and yn ∈ Yn := span {zj : 0 ≤
j ≤ mn} with Mp(yn, 1) = 1 and n ≤ Mp(TNyn, 1). Find kn with bkn − akn > mn,
put Yn = {zj : akn ≤ j ≤ bkn} ⊂ Ap

µ and define Sn : Xn → Yn by

(Snf)(z) = zaknf(z/sn).

Then, according to our assumptions we have ||Sn|| · ||S−1
n || ≤ dn/cn < c for

some universal constant c. Put Mn = {akn + j : j ∈ N, j ≤ mn}. Then
SnTNS

−1
n = TMn |Xn . If we consider M = ∪nMn then the preceding shows that
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TM is unbounded on Ap
µ. This proves that the system of monomials is conditional

in Ap
µ. �

Conclusion of the proof of Theorem 4.1. (i) ⇔ (ii) follows from the def-
inition of solid hull while (ii) ⇔ (iii) follows from the definition of solid core.
(Recall, in any case the monomials are a basis of Ap

µ.) Now (iii) and Lemma 4.6
imply (v). Finally, (v) and (2.1) imply (iv) while (iv) trivially implies (iii). �
Proof of Corollary 4.4. Proposition 3.5 of [8] shows that, for R = 1, the
assumptions of Lemma 4.6 are always satisfied. Hence the system of monomials
can never be unconditional. In view of Theorem 4.1 the Bergman space Ap

µ can
never be solid. �

5. Solid weighted spaces of entire functions with sup-norms.

In this section we consider weighted Banach spaces of analytic functions with
sup-norms. The main result Theorem 5.2 of this section complements Theorem
4.1. This result was announced in Remark 5.6 of [3]. Here, as in section 3, a
continuous weight v : C →]0,∞[ is a function satisfying

v(z) = v(|z|), z ∈ C, v(r) ≥ v(s) if 0 ≤ r < s

and lim
r→∞

rnv(r) = 0 for all n ≥ 0.

We deal with the weighted space H∞
v over C, i.e.

H∞
v = {f : C → C : f holomorphic , ||f ||v := sup

z∈C
|f(z)|v(z) < ∞}.

Let H0
v be the closure of the polynomials in H∞

v .
Similarly to the weighted Lp−norms in section 3 and 4 one sees that it suffices

to require only v(r) ≥ v(s) for r0 ≤ r < s and some r0 > 0 since ||f ||v and
supr0≤|z|<∞ |f(z)|v(z) are equivalent for holomorphic f .

Again, for n > 0 let rn ∈ [0,∞[ be a point where the function r 7→ rnv(r)
attains its global maximum. The next lemma can be easily proved with induction
(which was done in [9], Lemma 5.1.). The indices mn are needed in the following.

Lemma 5.1. For any b > 2 there are numbers 0 < m1 < m2 < . . . with
limn→∞mn = ∞ and

b = min

( (
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
.

Actually, one can show that Lemma 5.1 works for all b > 1 but we need b > 2
in the following proof.

There are examples of weights on C such that the monomials (zn)∞n=0 are a
Schauder basis in the Banach space H0

v . This is the same as saying that the
Taylor series of each element in H0

v converges with respect to the weighted sup-
norm || · ||v. In the known examples, in this case, (zn/||zn||v)∞n=0 is equivalent to
the unit vector basis of c0. Moreover, here H∞

v is solid. We show that this is
always true provided that (zn)∞n=0 is a Schauder basis of H0

v . We also characterize
this situation by a property for the indices mn of Lemma 5.1. Our arguments are
similar to those of [8].
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Let h(z) =
∑∞

k=0 bkz
k. As before let Pn be the partial sum operators, i.e.

(Pnh)(z) =
n∑

k=0

bkz
k.

If the monomials are a basis of H0
v then supn ||Pn|H0

v
|| = supn ||Pn|H∞

v
|| < ∞. For

any k we have

|bk| · ||zk||v = |bk|rkkv(rk) =
∣∣∣∣ 12π

∫ 2π

0

h(rke
iφ)e−ikφdφ

∣∣∣∣ v(rk) ≤ ||h||v. (5.1)

Moreover take the numbers mn of Lemma 5.1 and put

(Rnh)(z) =

mn−1∑
k=0

bkz
k +

∑
mn−1<k≤mn

[mn]− k

[mn]− [mn−1]
bkz

k.

Finally put M∞(h, r) = sup|z|=r |h(z)|.

Theorem 5.2. The following are equivalent
(i) supn(mn+1 −mn) < ∞ where mn are the indices of Lemma 5.1
(ii) (zn)∞n=0 is a Schauder basis of H0

v .
(iii) (zn/||zn||v)∞n=0 is equivalent to the unit vector basis of c0.
(iv) H∞

v is solid.
(v) H0

v is solid.

Proof. Put Vn = Rn−Rn−1. According to Proposition 5.2 in [9], since we assumed
b > 2 in Lemma 5.1, the norms ||h||v and supn suprmn−1≤r≤rmn+1

M∞(Vnh, r)v(r)

are equivalent. Since Lemma 3.3 in [9] implies that the operators Vn are uniformly
bounded on H∞

v , we obtain constants c1 > 0 and c2 > 0 with

c1 sup
n

||Vnh||v ≤ ||h||v ≤ c2||Vnh||v for all h ∈ H∞
v . (5.2)

(i) ⇒ (ii): Observe that, by definition of Vn, dim Vn(H
0
v ) = [mn+1] − [mn−1].

By (i) we obtain supndim Vn(H
0
v ) < ∞. With the definition of Pj and (5.1)

we see that supj,n ||Pj|Vn(H0
v )
|| ≤ supn([mn+1] − [mn−1]) < ∞. With (5.2) and

PjVn = VnPj for all j and n we conclude that the projections Pj are uniformly
bounded. Hence (zn)∞n=0 is a Schauder basis of H0

v .
(ii) ⇒ (i): Assume that (ii) holds. By definition, Vn(Pmn+1 − Pmn−1) = Vn. In

view of the uniform boundedness of the Vn and (5.2) we obtain constants c′1 > 0
and c′2 > 0 with

c′1 sup
n

||(Pmn+1 − Pmn)h||v ≤ ||h||v ≤ c′2 sup
n

||(Pmn+1 − Pmn)h||v (5.3)

for all h ∈ H∞
v . Here the first inequality follows from the uniform boundedness of

the Pn in view of (ii) while the second inequality follows from (5.2). Let tn ∈ [0, R[
be such that

tn = rmn if b =

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

and

tn = rmn+1 if b =

(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
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in Lemma 5.1 Then Corollary 3.2.(b) of [9] implies

||(Pmn+1 − Pmn)h||v ≤ 2bM∞((Pmn+1 − Pmn)h, tn)v(tn).

With (5.3) we obtain

d1 sup
n

M∞((Pmn+1 − Pmn)h, tn)v(tn) ≤ ||h||v ≤

d2 sup
n

M∞((Pmn+1 − Pmn)h, tn)v(tn) (5.4)

for some contants d1 > 0, d2 > 0 and all h ∈ H0
v .

It is well-known that there are bounded holomorphic functions whose Taylor
series do not converge with respect to M∞(·, 1). By going over to suitable Cesaro
means if necessary, we see that, for each n ∈ N, there is a polynomial f of degree
N and an index M ≤ N such that

M∞(f, 1) = 1 but n ≤ M∞(PMf, 1).

Proceeding by contradiction, assume that (i) does not hold, that is supn(mn+1 −
mn) = ∞. Then we find k with dim (Pmk+1

− Pmk
)H0

v > N . Put h(z) =
zmkf(z)/v(tk). Then, in view of (5.4), we obtain

d1 ≤ ||h||v ≤ d2 and
n

d2
≤ ||PM+mk

h||v.

This implies that the projections Pj are not uniformly bounded contradicting the
assumption (ii). This contradiction implies supn(mn+1 −mn) < ∞, and we have
checked that (ii) ⇒ (i).

Moreover, if supn(mn+1−mn) < ∞ then (5.4) easily implies that the normalized
monomials are equivalent to the unit vector basis of c0. Hence we have (ii) ⇒
(iii). (iii) ⇒ (ii) is trivial.

(iii) ⇒ (iv): By the preceding we know already that (iii) implies (ii) and hence
(5.4). If σn is the n’th Cesaro mean and h ∈ H∞

v then σnh ∈ H0
v . We have

σnPj = Pjσn for all n and j. Moreover ||σnh||v ≤ ||h||v and supn ||σnh||v = ||h||v.
This implies that (5.4) remains valid for all h ∈ H∞

v . This together with the fact
that supn(mn+1 −mn) < ∞ shows that H∞

v is solid.
(iv) ⇒ (iii) follows from Theorem 5.2 in [3]. (iv) ⇒ (v): If g ∈ S(H0

v ) then, by
definition and (iii),

lim
n→∞

ĝ(n)||zn||v = 0

which implies by (iii) that g ∈ H0
v .

(v) ⇒ (iv): If g ∈ S(H∞
v ) then by definition σng ∈ S(H0

v ) = H0
v for all n. This

implies g ∈ H∞
v . �

In [9] it was shown that v(r) = exp(−(log r)2), R = ∞, satisfies (iv) (and hence
all assertions) of Theorem 5.2.

Observe that nowhere in the preceding proof the fact that our functions are
defined on C is used. The arguments work as well for weighted spaces of holo-
morphic functions over the unit disc D. However in this case limn→∞ rn = 1 and
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this fact together with

4 < b2 ≤
(
rmn+1

rmn

)mn+1−mn

implies supn(mn+1 − mn) = ∞ (in view of Lemma 5.1 which remains true over
D). This means that in the case of holomorphic functions over D the preceding
theorem is empty. Compare with Corollary 5.3 in [3].
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