DISTANCE FORMULAS ON WEIGHTED BANACH SPACES OF ANALYTIC FUNCTIONS

JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

ABSTRACT. Let v be a radial weight function on the unit disc or on the complex plane. It is shown that for each analytic function f_0 in the Banach space H_v^{∞} of all analytic functions f such that v|f| is bounded, the distance of f_0 to the subspace H_v^0 of H_v^{∞} of all the functions g such that v|g| vanishes at infinity is attained at a function $g_0 \in H_v^0$. Moreover a simple, direct proof of the formula of the distance of f to H_v^0 due to Perfekt is presented. As a consequence the corresponding results for weighted Bloch spaces are obtained.

1. INTRODUCTION AND NOTATION.

Let us introduce some notation and terminology. We set R = 1 (for the case of holomorphic functions on the unit disc) and $R = +\infty$ (for the case of entire functions). A weight v is a continuous function $v : [0, R[\rightarrow]0, \infty[$, which is nonincreasing on [0, R[and satisfies $\lim_{r\to R} r^n v(r) = 0$ for each $n \in \mathbb{N}$. We extend v to \mathbb{D} if R = 1 and to \mathbb{C} if $R = +\infty$ by v(z) := v(|z|). For such a weight v, we define the Banach space H_v^{∞} of analytic functions f on the disc \mathbb{D} (if R = 1) or on the whole complex plane \mathbb{C} (if $R = +\infty$) such that $||f||_v := \sup_{|z| < R} v(z)|f(z)| < \infty$. For an analytic function $f \in H(\{z \in \mathbb{C}; |z| < R\})$ and r < R, we denote M(f, r) := $\max\{|f(z)|; |z| = r\}$. Using the notation O and o of Landau, $f \in H_v^{\infty}$ if and only if $M(f, r) = O(1/v(r)), r \to R$.

It is known that the closure of the polynomials in H_v^{∞} coincides with the Banach space H_v^0 of all those analytic functions on $\{z \in \mathbb{C}; |z| < R\}$ such that $M(f, r) = o(1/v(r)), r \to R$. see e.g. [2].

Spaces of type H_v^{∞} appear in the study of growth conditions of analytic functions and have been investigated in various articles since the work of Shields and Williams, see *e.g.* [2],[3], [5], [6], [9] and the references therein.

We recall some examples of weights:

For
$$R = 1$$
,

 $(i) v(r) = (1 - r)^{\alpha}$ with $\alpha > 0$, which are the standard weights on the disc,

$$(ii) v(r) = \exp(-(1-r)^{-1}), \text{ and}$$

(*iii*)
$$v(z) = (\log \frac{e}{1-r})^{-\alpha}, \ \alpha > 0$$

For $R = +\infty$,

(*i*) $v(r) = \exp(-r^p)$ with p > 0,

(*ii*) $v(r) = \exp(-\exp r)$, and

(*iii*) $v(r) = \exp(-(\log^+ r)^p)$, where $p \ge 2$ and $\log^+ r = \max(\log r, 0)$.

Given an analytic function f on \mathbb{D} or \mathbb{C} , we denote by $\sigma_n f$ the *n*'th Cesaro mean of f; i.e. the arithmetic mean of the first n Taylor polynomials of f. In this case, one has $M(\sigma_n f, r) \leq M(f, r)$ for each 0 < r < R.

Key words and phrases. Banach spaces of analytic functions, weight, distance, Bloch functions. Mathematics Subject Classification 2010: Primary 46E15; Secondary 30D45.

In this note we investigate the distance $d(f, H_v^0) = \inf_{g \in H_v^0} ||f - g||_v$ of a function $f \in H_v^\infty$ to the closed subspace H_v^0 . Perfekt in Example 4.4 of [7] proved that $d(f, H_v^0) = \limsup_{r \to R} M(f, r)v(r)$ for each $f \in H_v^\infty$. This result follows from an abstract result [7, Theorem 2.3] with an argument using duality and measures. It implies Theorem 3.9 and Corollary 6.4 in Tjani [10] about the distance of a Bloch function to the little Bloch space. The result of Tjani only gives an estimate, not equality. There are some other recent papers dealing with distance formulas. See [11] and the references therein.

Our main result is Theorem 2.2. It shows that H_v^0 is a proximinal subspace of H_v^∞ ; that is, it proves that for each $f \in H_v^\infty$ the distance $d(f, H_v^0)$ is attained at a point $g \in H_v^0$. Moreover, it gives an elementary, direct, but not trivial, proof of the formula of the distance due to Perfekt [7]. The corresponding result for the case of Bloch type functions is obtained as a consequence in Corollary 2.5.

2. Results.

Given $f \in H_v^\infty$ we clearly have

$$\limsup_{|z| \to R} v(z)|f(z)| = \limsup_{r \to R} M(f,r)v(r) = \limsup_{r \to R} \sup_{s \ge r} v(s)M(f,s)$$

Remark 2.1. It is easy to see that, for each $f \in H_v^{\infty}$,

$$\limsup_{r \to R} M(f,r)v(r) = \inf_{g \in H_v^0} \limsup_{r \to R} M(f-g,r)v(r)$$

Indeed, this follows from the fact that

$$\limsup_{r \to R} M(g, r)v(r) = 0 \quad \text{for every} \quad g \in H_v^0.$$

Theorem 2.2. For every $f \in H_v^{\infty}$ there is $g \in H_v^0$ with

$$d(f, H_v^0) = ||f - g||_v = \limsup_{r \to R} M(f, r)v(r).$$

To prove the theorem we begin with the following

Lemma 2.3. Let $f \in H_v^{\infty}$ and assume that there is $\tau < 1$ with

$$\tau ||f||_v \le \limsup_{r \to R} M(f, r)v(r).$$

Then, for each $\varepsilon > 0$ and $m \in \mathbb{N}$ there is $n \in \mathbb{N}, n > m$, such that with $\rho = (1-\tau)/(1+\tau)$ we have

$$\left(\frac{1+\tau}{2(1+\varepsilon)}\right)||f-\rho\sigma_n f||_v \le \limsup_{r\to R} M(f,r)v(r) = \limsup_{r\to R} M(f-\rho\sigma_n f,r)v(r).$$

Proof. The last equality follows from the facts that $\sigma_n f \in H_v^0$ and that for each element $g \in H_v^0$ we have $\limsup_{r \to R} M(g, r)v(r) = 0$.

Fix $\varepsilon > 0$ and $m \in \mathbb{N}$. By the definition of lim sup there is $r_0 < R$ such that

(1)
$$\sup_{r_0 \le r < R} M(f, r)v(r) \le (1+\varepsilon) \inf_{0 < s < R} \sup_{s \le r < R} M(f, r)v(r)$$
$$= (1+\varepsilon) \limsup_{r \to R} M(f, r)v(r).$$

Since f is continuous on $r_0\overline{\mathbb{D}}$, the n'th Cesaro means of f satisfy $\sigma_n f \to f$ as $n \to \infty$ uniformly on $r_0 \overline{\mathbb{D}}$. Put

$$\rho := \frac{1-\tau}{1+\tau}$$

and fix $0 < \delta$ such that

(2)
$$\left(\delta + \frac{2\tau}{1+\tau}\right) \le (1+\varepsilon)\frac{2\tau}{1+\tau}.$$

For $0 \le r \le r_0$ we obtain $M(f - \sigma_n f, r)v(r) < \delta ||f||_v$ if n > m is large enough. Hence

(3)
$$M(f - \rho\sigma_n f, r)v(r) \le (1 - \rho)M(f, r)v(r) + \rho M(f - \sigma_n f, r)v(r)$$
$$\le ((1 - \rho) + \delta)||f||_v.$$

If $r_0 \leq s < R$ then we have, in view of (1),

(4)
$$M(f - \rho \sigma_n f, s)v(s) \le (1 + \rho)M(f, s)v(s) \le (1 + \varepsilon)(1 + \rho)\limsup_{r \to R} M(f, r)v(r)$$

From the definition of ρ we get

$$(1+\varepsilon)(1+\rho) = \frac{2(1+\varepsilon)}{1+\tau}$$

and

$$1 - \rho = \frac{2\tau}{1 + \tau}$$

Hence (1), (2), (3), (4) and the assumption of the lemma yield

$$\begin{split} ||f - \rho \sigma_n f||_v &= \sup_{0 \le r < R} M(f - \rho \sigma_n f, r) v(r) \\ &\leq \max\left(\left(\delta + (1 - \rho) \right) ||f||_v, (1 + \varepsilon)(1 + \rho) \limsup_{r \to R} M(f, r) v(r) \right) \\ &\leq \max\left(\left(\delta + \frac{2\tau}{1 + \tau} \right) ||f||_v, \left(\frac{2(1 + \varepsilon)}{1 + \tau} \right) \limsup_{r \to R} M(f, r) v(r) \right) \\ &\leq \left(\frac{2(1 + \varepsilon)}{1 + \tau} \right) \limsup_{r \to R} M(f, r) v(r). \end{split}$$
The proof is complete.

The proof is complete.

Proof. (of Theorem 2.2) Let $f \in H_v^{\infty}$. If $\limsup_{r \to R} M(f, r)v(r) = 0$ then $f \in H_v^0$ and $d(f, H_v^0) = 0$.

Now assume that $\limsup_{r\to R} M(f,r)v(r) > 0$ and find $\tau_0 < 1$ with

$$||f||_{v} \leq \frac{1}{\tau_{0}} \limsup_{r \to R} M(f, r)v(r).$$

Put $\rho_1 = (1 - \tau_0)/(1 + \tau_0)$ and $f_0 = f$.

We proceed by induction and suppose that we have already selected $\tau_0 < \tau_{m-1} < \tau_m < 1$, $\rho_m > 0$ and $f_m := f - \sum_{k=1}^m \rho_k \sigma_{n_k} f_{k-1}$ for some $n_m > n_{m-1}$ with $||f_m||_v < \tau_m < 1$. $(1/\tau_m) \limsup_{r \to R} M(f_m, r) v(r).$

A simple calculation shows

$$\frac{1-\tau_m}{3+\tau_m} < \left(\frac{2}{3}\right) \frac{1-\tau_m}{1+\tau_m}.$$

Find $\varepsilon_m > 0$ such that

(5)
$$\varepsilon_m < \frac{1}{m}, \qquad \frac{1+\tau_m}{2(1+\varepsilon_m)} > \tau_m$$

and

(6)
$$\frac{1 - \frac{1 + \tau_m}{2(1 + \varepsilon_m)}}{1 + \frac{1 + \tau_m}{2(1 + \varepsilon_m)}} = \frac{1 + 2\varepsilon_m - \tau_m}{3 + 2\varepsilon_m + \tau_m} < \left(\frac{2}{3}\right) \frac{1 - \tau_m}{1 + \tau_m}$$

Put

Observe that $\tau_m < \tau_{m+1} < 1$. Then Lemma 2.3 yields $n_{m+1} > n_m$ such that, with

(8)
$$f_{m+1} := f_m - \rho_{m+1} \sigma_{n_{m+1}} f_m = f - \sum_{k=1}^{m+1} \rho_k \sigma_{n_k} f_{k-1},$$

we have

(9)
$$||f_{m+1}||_{v} \leq \frac{1}{\tau_{m+1}} \limsup_{r \to R} M(f_{m+1}, r)v(r)$$
$$= \frac{1}{\tau_{m+1}} \limsup_{r \to R} M(f, r)v(r).$$

(5) and (7) yield $\lim_{m\to\infty} \tau_m = 1$ since (τ_m) is an increasing bounded sequence. On account of (6) we obtain

$$\rho_{m+1} \le \left(\frac{2}{3}\right)\rho_m \quad \text{for all } m,$$

hence,

$$\rho_m \le \left(\frac{2}{3}\right)^m \rho_0.$$

This implies that $\sum_{k=1}^{\infty} \rho_k \sigma_{n_k} f_{k-1}$ converges to an element $g \in H_v^0$, since $||\sigma_{n_k} f_{k-1}||_v \leq ||f_{k-1}||_v \leq \tau_{k-1}^{-1} ||f||_v \leq \tau_0^{-1} ||f||_v$ for all k, as it follows from (9). Therefore, we can apply (8) and (9) to get

$$||f - g||_{v} \le ||f_{m+1}||_{v} + ||\sum_{k=m+2}^{\infty} \rho_{k} \sigma_{n_{k}} f_{k-1}||_{v} \le$$
$$\le \frac{1}{\tau_{m+1}} \limsup_{r \to R} M(f, r) v(r) + \rho_{0} \tau_{0}^{-1} \sum_{k=m+2}^{\infty} \left(\frac{2}{3}\right)^{k} \cdot$$

Thus

$$||f - g||_v \le \limsup_{r \to R} M(f, r)v(r) = \inf_{h \in H_v^0} \limsup_{r \to R} M(f - h, r)v(r) \le d(f, H_v^0).$$

conclude $d(f, H_v^0) = ||f - g||_v = \limsup_{r \to R} M(f, r)v(r).$

We conclude $d(f, H_v^0) = ||f - g||_v = \limsup_{r \to R} M(f, r)v(r).$

One of the referees pointed out that our construction reminded her/him of a construction in [1], where the authors prove a proximinality result for bounded operators.

Remark 2.4. The following simple examples show that the distance $d(f, H_v^0)$ can be attained at many points of H_v^0 for a given function $f \in H_v^\infty$.

(1) Consider the weight $v(r) = e^{-r}, r \in [0, \infty[$, on the complex plane and the analytic function $f(z) = e^z, z \in \mathbb{C}$. Clearly $f \in H_v^{\infty}$ and $||f||_v = 1$. Set $P_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$ for each $n \in \mathbb{N}$. We have, for each $n, P_n \in H_v^0$ and

$$||f - P_n||_v = \sup_{r>0} e^{-r} \sum_{k=n+1}^{\infty} \frac{r^k}{k!} = 1 = d(f, H_v^0).$$

(2) Now define the weight $v(r) = 1 - r, r \in [0, 1[$, on the unit disc. The function $f(z) = \frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$ belongs to H_v^{∞} and $||f||_v = 1$. Set $P_n(z) = \sum_{k=0}^n z^k$ for each $n \in \mathbb{N}$. We have, for each $n, P_n \in H_v^0$ and

$$M(f - P_n, r) = \sum_{k=n+1}^{\infty} r^k = \frac{r^{n+1}}{1 - r}.$$

Therefore

$$||f - P_n||_v = \sup_{r \in [0,1[} (1 - r)M(f - P_n, r)) = 1 = d(f, H_v^0)$$

(3) The proximinality in Theorem 2.2, i.e. the existence of the minimizer g, also appears in Perfekt [8] as an abstract consequence of the fact that H_v^0 is an M-ideal of H_v^{∞} . Moreover, by further abstract M-ideal theory, the minimizer for a given $f \in H_v^{\infty} \setminus H_v^0$ is never unique; see [4]. This was pointed out to us by one of the referees, who also emphasized that we give a very explicit construction, which these references do not.

Let v be a weight on the unit disc \mathbb{D} ; i.e. R = 1. The weighted Bloch space is defined by

$$\mathcal{B}_{v} = \{ f \in H(\mathbb{D}) : f(0) = 0, \ \|f\|_{\mathcal{B}_{v}} = \sup_{z \in \mathbb{D}} v(z)|f'(z)| < \infty \},\$$

and the *little Bloch space*

$$\mathcal{B}_{v,0} = \{ f \in \mathcal{B} : \lim_{|z| \to 1} v(z) |f'(z)| = 0 \}.$$

They are Banach spaces endowed with the norm $|| \cdot ||_{\mathcal{B}_{v}}$.

The classical Bloch space \mathcal{B} and little Bloch space \mathcal{B}_0 correspond to the weight $v(z) := 1 - |z|^2$. Among the many references on these spaces, we mention Zhu [12], for example.

Define the bounded operators $S : \mathcal{B}_v \to H_v^\infty$, S(h) = h' and $S^{-1} : H_v^\infty \to \mathcal{B}_v$, $(S^{-1}h)(z) = \int_0^z h(\xi) d\xi$. Then $SS^{-1} = id_{H_v^\infty}$, $S^{-1}S = id_{\mathcal{B}_v}$ and S, S^{-1} are isometric onto maps. These operators induce isometries between H_v^0 and $\mathcal{B}_{v,0}$.

The following result is a direct consequence of Theorem 2.2. It should be compared with Example 4.1 in [7]. It improves [10, Corollary 6.4].

Corollary 2.5. For each $f \in \mathcal{B}_v$ there is $g \in \mathcal{B}_{v,0}$ such that

$$d(f, \mathcal{B}_{v,0}) = ||f - g||_{\mathcal{B}_v} = \limsup_{r \to 1} M(f', r)v(r).$$

Finally we mention the weighted spaces of harmonic functions for a given weight v on $\{z \in \mathbb{C}; |z| < R\}$. Let h_v^{∞} consist of all harmonic functions on $\{z \in \mathbb{C}; |z| < R\}$ with $||f||_v = \sup_{|z| < R} |f(z)|v(z) < \infty$ and let h_v^0 be the closure of all trigonometric

polynomials in h_v^{∞} . Using the arguments of the proof of Theorem 2.2. word by word yields

Theorem 2.6. For every $f \in h_v^\infty$ there is $g \in h_v^0$ with $d(f, H_v^0) = ||f - g||_v = \limsup_{r \to R} M(f, r)v(r).$

Acknowledgements. (1) The authors are very thankful to the referees for their careful reading of the manuscript and their suggestions.

(2) The research of Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo 2017/102. The research of Taskinen was partially supported by the research grant from the Faculty of Science of the University of Helsinki.

References

- S. Axler, I.D. Berg, N. Jewell, A. Shields, Approximation by compact operators and the space H[∞] + C, Ann. of Math. 109 (1979), 601–612.
- [2] K.D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic functions on bounded domains, Michigan Math. J. 40 (1993), 271–297.
- K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137–168.
- [4] R. Holmes, B. Scranton, J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259–269.
- [5] W.Lusky, On the Fourier series of unbounded harmonic functions, J. of the Lond. Math. Soc.
 (2) 61, 568-580, (2000)
- [6] W.Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175, 19-45, (2006)
- [7] K.-M. Perfekt, Duality and distance formulas in spaces defined by means of oscillation, Ark. Mat. 51 (2013), 345-361.
- [8] K.-M. Perfekt, On M-ideals and o O type spaces, Math. Scand. 121 (2017), no. 1, 151–160.
- [9] A.L. Shields, D.L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- [10] M. Tjani, Distance of a Bloch function to the little Bloch space, Bull. Austral. Math. Soc. 74 (2006), 101-119.
- [11] C. Yuan, C. Tong, Distance from Bloch-type functions to the analytic space F(p, q, s), Abstract Appl. Anal. 2014, article ID 610237, 7 pages.
- [12] K. Zhu, Operator Theory in Function Spaces. Second Edition, Amer. Math. Soc., 2007.

Authors' addresses:

José Bonet (corresponding author): Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 Valencia, Spain email: jbonet@mat.upv.es

Wolfgang Lusky: FB 17 Mathematik und Informatik, Universität Paderborn, D-33098 Paderborn, Germany.

email: lusky@uni-paderborn.de

Jari Taskinen: Department of Mathematics and Statistics, P.O. Box 68, University of Helsinki, 00014 Helsinki, Finland.

email: jari.taskinen@helsinki.fi