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Abstract. The discrete Cesàro operator C acts continuously in various classical Ba-
nach sequence spaces within CN. For the coordinatewise order, many such sequence
spaces X are also complex Banach lattices (eg. c0, ℓ

p for 1 < p ≤ ∞, and ces(p) for
p ∈ {0} ∪ (1,∞)). In such Banach lattice sequence spaces, C is always a positive oper-
ator. Hence, its order spectrum is well de�ned within the Banach algebra of all regular
operators on X. The purpose of this note is to show, for every X belonging to the above
list of Banach lattice sequence spaces, that the order spectrum σo(C) of C coincides
with its usual spectrum σ(C) when C is considered as a continuous linear operator on
the Banach space X.

1. Introduction

Let E be a complex Banach lattice and L(E) denote the unital Banach algebra of all
continuous linear operators from E into itself, equipped with the operator norm ∥ · ∥op.
The unit is the identity operator I : E −→ E. Associated with each T ∈ L(E) is its
spectrum

σ(T ) := {λ ∈ C : (λI − T ) is not invertible in L(E)}
and its resolvent set ρ(T ) := Crσ(T ). An operator T ∈ L(E) is called regular if it is
a �nite linear combination of positive operators. The complex vector space of all regular
operators is denoted by Lr(E); it is also a unital Banach algebra for the norm

(1.1) ∥T∥r := inf{∥S∥op : S ∈ L(E), S ≥ 0, |T (z)| ≤ S(|z|) ∀ z ∈ E}, T ∈ Lr(E).

Again I : E −→ E is the unit. Moreover, ∥T∥op ≤ ∥T∥r for T ∈ Lr(E), with equality
whenever T ≥ 0 (i.e., if T is a positive operator). The spectrum of T ∈ Lr(E), considered
as an element of the Banach algebra Lr(E), is denoted by σo(T ) and is called its order
spectrum. Then ρo(T ) := Crσo(T ) is the order resolvent of T. Clearly

(1.2) σ(T ) ⊆ σo(T ), T ∈ Lr(E).

From the usual formula for the spectral radius, [?, Ch.I, �2, Proposition 8], it follows
that the spectral radii for T ∈ Lr(E) satisfy r(T ) = ro(T ) whenever T ≥ 0. Standard
references for the above concepts and facts are [?], [?], [?], for example.

It is clear from (??) that r(T ) ≤ ro(T ) for T ∈ Lr(E). So, if r(T ) < ro(T ), then (??)
cannot be an equality. This is the strategy applied in [?, pp.79-80] to exhibit a regular
operator for which σ(T ) $ σo(T ). For an example of a positive operator T satisfying
σ(T ) $ σo(T ), see [?, pp.283-284]. In the contrary direction, a rich supply of classical
operators T for which the equality

(1.3) σ(T ) = σo(T )
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is satis�ed arise in harmonic analysis, [?, Theorem 3.4].

The aim of this note is to contribute two further classes of operators T which satisfy
(??). In Section ?? it is shown that in any Banach function space E, all multiplication
operators T by L∞-functions are regular operators and satisfy (??). This is a consequence
of the fact that the algebra of such multiplication operators is maximal commutative. Let
N := {1, 2, . . .}. The remaining three sections deal with the classical Cesàro operator
C : CN −→ CN de�ned by

(1.4) C(x) :=
(
1
n

∑n
k=1 xk

)∞
n=1

x = (xn)
∞
n=1 ∈ CN,

which is clearly a positive operator for the coordinatewise order in the positive cone of
CN = RN⊕ iRN. Section ?? establishes some general results for determining the regularity
of linear operators in Banach lattice sequence spaces. These results are designed to apply to
the particular operators (C−λI)−1, where C is given in (??). In Section ?? we will consider
the restriction of C to the Banach lattice sequence spaces c0 and ℓp, 1 < p ≤ ∞, and show
that (??) is satis�ed in all cases (with C in place of T ). Section ?? is devoted to proving
the same fact, but now when C acts in the discrete Cesàro spaces ces(p), 1 < p < ∞, and
in ces(0).

2. Multiplication operators

Let (Ω,Σ, µ) be a localizable measure space (in the sense of [?, 64A]), that is, the
associated measure algebra is a complete Boolean algebra and, for every measurable set
A ∈ Σ with µ(A) > 0 there exists B ∈ Σ such that B ⊆ A and 0 < µ(B) < ∞
(i.e., µ has the �nite subset property). All σ-�nite measures are localizable, [?, 64H
Proposition]. Every Banach function space E (of C-valued functions) over (Ω,Σ, µ) is
a complex Banach lattice for the pointwise µ-a.e. order. Given any φ ∈ L∞(µ), the
multiplication operator Mφ : E −→ E de�ned by f 7−→ φf, for f ∈ E, belongs to L(E)
and satis�es ∥Mφ∥op = ∥φ∥∞. De�ne a unital, commutative subalgebra of L(E) by

ME(L
∞(µ)) := {Mφ : φ ∈ L∞(µ)};

the unit is the identity operator I = M1 where 1 is the constant function 1 on Ω. Recall
that the commutant of ME(L

∞(µ)) is de�ned by

ME(L
∞(µ))c := {A ∈ L(E) : AMφ = MφA ∀φ ∈ L∞(µ)} ⊆ L(E).

It is known that ME(L
∞(µ)) is a maximal commutatitive, unital subalgebra of L(E), that

is, ME(L
∞(µ)) = ME(L

∞(µ))c, [?, Proposition 2.2]. Moreover, also the bicommutant
ME(L

∞(µ))cc = ME(L
∞(µ)).

Proposition 2.1. Let (Ω,Σ, µ) be a localizable measure space and E be a Banach function
space over (Ω,Σ, µ).

(i) ME(L
∞(µ)) ⊆ Lr(E).

(ii) ME(L
∞(µ)) is inverse closed in L(E). That is, if T ∈ ME(L

∞(µ)) is invertible
in L(E) (i.e., there exists S ∈ L(E) satisfying ST = I = TS), then necessarily
S ∈ ME(L

∞(µ)).
(iii) For every T ∈ ME(L

∞(µ)) we have σo(T ) = σ(T ).

Proof. (i) Let φ ∈ L∞(µ). Then φ = [(Reφ)+− (Reφ)−]+ i[(Imφ)+− (Imφ)−] with all
four functions (Reφ)+, (Reφ)−, (Imφ)+, (Imφ)− belonging to the positive cone L∞(µ)+

of L∞(µ). SinceMφ = [M(Reφ)+−M(Reφ)− ]+i[M(Imφ)+−M(Imφ)− ] is a linear combination
of positive operators, it is clear that Mφ ∈ Lr(E).
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(ii) Since ME(L
∞(µ)) is maximal commutative in L(E), it follows that ME(L

∞(µ))
is inverse closed in L(E), [?, Ch.II, �15, Theorem 4].

(iii) In view of (??) it su�ces to show that ρ(T ) ⊆ ρo(T ). Suppose that T = Mφ

with φ ∈ L∞(µ). Fix λ ∈ ρ(T ). Then λI − T = M(λ1−φ) belongs to ME(L
∞(µ)) because

(λ1 − φ) ∈ L∞(µ). Since M(λ1−φ) is invertible in L(E), it follows from part (ii) that

actually (λI − T )−1 ∈ ME(L
∞(µ)) and hence, by part (i), that also (λI − T )−1 ∈

Lr(E). �
Remark 2.2. We point out that ∥T∥op = ∥T∥r for each T ∈ ME(L

∞(µ)). Indeed, let
φ ∈ L∞(µ) satisfy T = Mφ, in which case ∥Mφ∥op = ∥φ∥∞. De�ne S := ∥φ∥∞I and note
that S ≥ 0 with ∥S∥op = ∥φ∥∞. Moreover,

|Mφ(f)| = |φf | ≤ ∥φ∥∞|f | = S(|f |), f ∈ E,

and so ∥T∥r ≤ ∥S∥op = ∥φ∥∞ = ∥T∥op; see (??). The reverse inequality ∥T∥op ≤ ∥T∥r
always holds.

3. The Cesàro operator in Banach sequence spaces

We begin with some preliminaries. Equipped with the topology of pointwise conver-
gence CN is a locally convex Fréchet space. Let A = (anm)∞n,m=1 be any lower triangular

(in�nite) matrix, i.e., anm = 0 whenever m > n. Then A induces the continuous linear
operator TA : CN −→ CN de�ned by

(3.1) TA(x) := (
∑∞

m=1 anmxm)∞n=1 , x ∈ CN.

For x ∈ CN de�ne |x| := (|xn|)∞n=1. Then also |x| ∈ CN. A vector subspace X ⊆ CN is
called solid (or an ideal) if y ∈ X whenever x ∈ X and y ∈ CN satisfy |y| ≤ |x|. It is
always assumed that X contains the vector space consisting of all elements of CN which
have only �nitely many non-zero coordinates. In addition, it is assumed that X has a
norm ∥ · ∥X with respect to which it is a complex Banach lattice for the coordinatewise
order and such that the natural inclusion X ⊆ CN is continuous. Under the previous
requirements X is called a Banach lattice sequence space.

Lemma 3.1. Let A = (anm)∞n,m=1 be a lower triangular matrix with all entries non-

negative real numbers and X ⊆ CN be a Banach lattice sequence space such that TA(X) ⊆
X. Let B = (bnm)∞n,m=1 be any matrix such that

(3.2) |bnm| ≤ anm, n,m ∈ N.
Then the restricted operator TA : X −→ X belongs to L(X). Moreover, TB : CN −→ CN

satis�es TB(X) ⊆ X and the restricted operator TB : X −→ X also belongs to L(X). In
addition, ∥TB∥op ≤ ∥TA∥op.
Proof. Condition (??) implies that B is also a lower triangular matrix. Moreover, the
continuity of both TA : CN −→ CN and of the inclusion map X ⊆ CN imply, via the
Closed Graph Theorem in the Banach space X, that the restricted operator TA ∈ L(X).

Given x ∈ X we have for each n ∈ N, via (??), that

(TB(x))n = |
∑∞

m=1 bnmxm| ≤
∑∞

m=1 |bnm| · |xm| ≤
∑∞

m=1 anm|xm| = (TA(|x|))n.
Since X is solid and TA(|x|) ∈ X, these inequalities and (??) imply that TB(x) ∈ X.
Moreover, as ∥ · ∥X is a lattice norm it follows that

∥TB(x)∥X = ∥(
∑∞

m=1 bnmxm)∞n=1∥X ≤ ∥(
∑∞

m=1 anm|xm|)∞n=1∥X
= ∥TA(|x|)∥X ≤ ∥TA∥op∥x∥X ,
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for each x ∈ X, where the stated series are actually �nite sums. Hence, ∥TB∥op ≤ ∥TA∥op
and the proof is complete. �

Since the operator TA as given in Lemma ?? satis�es TA ≥ 0, it is clearly regular.

Corollary 3.2. Let A = (anm)∞n,m=1 be a lower triangular matrix with non-negative

real entries and X ⊆ CN be a Banach lattice sequence space such that TA(X) ⊆ X.
Let B = (bnm)∞n,m=1 be any matrix satisfying (??). Then the operator TB ∈ L(X) is

necessarily regular, that is, TB ∈ Lr(X).

Proof. De�ne the non-negative real numbers snm := (Re bnm)+, unm := (Re bnm)−, vnm :=
(Im bnm)+ and wnm := (Im bnm)− for each n,m ∈ N. Then bnm = (snm − unm) + i(vnm −
wnm) and {snm, unm, vnm, wnm} ⊆ [0, anm] for n,m ∈ N. Setting S := (snm)∞n,m=1, U :=

(unm)∞n,m=1, V := (vnm)∞n,m=1 and W := (wnm)∞n,m=1 it is clear from the de�nition (??)
that each operator TS ≥ 0, TU ≥ 0, TV ≥ 0 and TW ≥ 0 (in X) belongs to L(X); see
Lemma ??. Since TB = (TS − TU ) + i(TV − TW ), it follows that TB ∈ Lr(X). �

Together with appropriate estimates, Corollary ?? will be the main ingredient required
to establish (??) for C (in place of T ) when it acts in various classical Banach lattice
sequence spaces X.

Let Σ0 := {0}∪{ 1
n : n ∈ N}. We recall the formula for the inverses (C−λI)−1 : CN −→

CN whenever λ ∈ CrΣ0, [?, p.266]. Namely, for n ∈ N the n-th row of the lower triangular
matrix determining (C − λI)−1 has the entries

(3.3) −1
nλ2

∏n
k=m(1− 1

kλ
)
, 1 ≤ m < n, and n

1−nλ = 1
( 1
n
−λ)

, m = n,

with all other entries in row n being 0. We write

(3.4) (C − λI)−1 = TDλ
− 1

λ2TEλ
,

where the diagonal matrix Dλ = (dnm(λ))∞n,m=1 is given by

(3.5) dnn(λ) :=
1

( 1
n
−λ)

and dnm(λ) := 0 if n ̸= m.

Setting γ[λ] := dist(λ,Σ0) > 0 it is routine to check that

(3.6) |dnn(λ)| ≤ 1
γ[λ] , n ∈ N, λ ∈ CrΣ0.

Moreover, Eλ = (enm(λ))∞n,m=1 is the lower triangular matrix given by e1m(λ) = 0, for
m ∈ N, and for all n ≥ 2 by

(3.7) enm(λ) :=

{
1

nΠn
k=m(1− 1

kλ
)

if 1 ≤ m < n

0 if m ≥ n.

Lemma 3.3. Let X ⊆ CN be any Banach lattice sequence space. For each λ ∈ CrΣ0 the
diagonal operator TDλ

, with Dλ = (dnm(λ))∞n,m=1 given by (??), is regular in X, that is,

TDλ
∈ Lr(X).

Proof. Fix λ ̸∈ Σ0 and let A := 1
γ[λ]I, where I is the identity matrix in CN, in which case

TA(X) ⊆ X is clear. It follows from (??) that the matrix B := Dλ satis�es (??). Hence,
the regularity of TDλ

in X follows from Corollary ??. �
Remark 3.4. (i) Since any Banach lattice sequence space X ⊆ CN is a Banach function
space over the σ-�nite measure space (N, 2N, µ), relative to counting measure µ, and the
function n 7−→ dnn(λ) on N belongs to L∞(µ) by (??), the regularity of TDλ

∈ L(X) also
follows from Proposition ??(i).
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(ii) For appropriate X and λ ̸∈ Σ0, it is clear from (??) and Lemma ?? that the
regularity of (C − λI)−1 ∈ L(X) is completely determined by the matrix Eλ.

The following inequalities will be needed in the sequel. For α < 1 we refer to [?, Lemma
7] and for general α ∈ R to [?, Lemma 3.2(i)].

Lemma 3.5. Let λ ∈ CrΣ0 and set α := Re( 1λ). Then there exist positive constants P (α)
and Q(α) such that

(3.8) P (α)
nα ≤

∏n
k=1 |1−

1
kλ | ≤

Q(α)
nα , n ∈ N.

4. The classical spaces ℓp, 1 < p ≤ ∞, and c0

For each 1 < p ≤ ∞ let Cp ∈ L(ℓp) denote the Cesàro operator as given by (??) when
it is restricted to ℓp. As a consequence of Hardy's inequality, [?, Theorem 326], it is known
that ∥Cp∥op = p′, where 1

p +
1
p′ = 1 (with p′ := 1 when p = ∞). Concerning the spectrum

of Cp we have

(4.1) σ(Cp) = {λ ∈ C : |λ− p′

2 | ≤
p′

2 }, 1 < p ≤ ∞.

Various proofs of (??) are known for 1 < p < ∞, [?], [?], [?], [?], [?]; see the discussion
on p.268 of [?]. For the case p = ∞ we refer to [?, Theorem 4], for example.

Remark 4.1. For each λ ̸= 0 set α := Re( 1λ). Then, for any b > 0 we have

α < 1
b and only if |λ− b

2 | >
b
2 .

The corresponding results for α > 1
b and α = 1

b also hold.

Proposition 4.2. For each 1 < p < ∞ the order spectrum of the positive operator
Cp ∈ L(ℓp) satis�es

(4.2) σo(Cp) = σ(Cp).

Proof. Via (??) it su�ces to verify that ρ(Cp) ⊆ ρo(Cp).

With the notation of (??) and (??) it is shown on p.269 of [?], as a consequence of
(??) in Lemma ?? above, that for every λ ̸= 0 satisfying α := Re( 1λ) < 1 there exists a
constant β(λ) > 0 such that

(4.3) |enm(λ)| ≤ β(λ)
n1−αmα , 1 ≤ m ≤ n, n ∈ N.

Set B := Eλ and let A be the lower triangular matrix whose entries anm(λ) ≥ 0 are given
by the right-side of (??) for each n ∈ N and 1 ≤ m ≤ n (and 0 otherwise). According to
(??) the matrices A and B satisfy (??). Let X := ℓp for p ∈ (1,∞) �xed. Then Corollary
?? implies that Eλ will be regular (i.e., TEλ

∈ Lr(ℓp)) whenever TA(ℓ
p) ⊆ ℓp. Note that

TA ∈ L(CN) is given by

(4.4) x 7−→ β(λ)
(

1
n1−α

∑n
m=1

xm
mα

)∞
n=1

:= β(λ)Gλ(x), x ∈ CN.

So, if Re( 1λ) < 1, then (??) implies that TA ∈ L(ℓp) whenever Gλ : ℓp −→ ℓp is continuous.

Let now λ ∈ ρ(Cp), that is, |λ − p′

2 | >
p′

2 . Then α := Re( 1λ) <
1
p′ , because of Remark

??, and hence, (1 − α)p > 1. Then the Proposition on p.269 of [?] yields that indeed
Gλ ∈ L(ℓp). As noted above, this implies that TEλ

∈ Lr(ℓp). Combined with (??) and
Lemma ?? it follows that (Cp − λI)−1 ∈ Lr(ℓp), that is, λ ∈ ρo(Cp). This completes the
proof of (??). �
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Recall that ∥C∞∥op = 1 and, from (??) for p = ∞, that

(4.5) σ(C∞) = {λ ∈ C : |λ− 1
2 | ≤

1
2}

Proposition 4.3. The order spectrum of the positive operator C∞ ∈ L(ℓ∞) satis�es

σo(C∞) = σ(C∞).

Proof. Again by (??) it su�ces to prove that ρ(C∞) ⊆ ρo(C∞).

Fix λ ∈ ρ(C∞). According to (??), for b = 1 the condition in Remark ?? is satis�ed
with α := Re( 1λ). Hence, the inequalities (??) are valid and so A := (anm(λ))∞n,m=1 ≥ 0

and B := Eλ can again be de�ned exactly as in the proof of Proposition ??. Then (??)
is satis�ed with X := ℓ∞. Arguing as in the proof of Proposition ?? (via Corollary ??) it
remains to verify that TA : ℓ∞ −→ ℓ∞ is continuous, where TA is given by (??). To this
e�ect, since (1− α) > 0 by Remark ??, it follows that

(4.6) supn∈N
∑∞

m=1 |anm(λ)| = β(λ) supn∈N
1

n1−α

∑∞
m=1

1
mα < ∞;

this has been veri�ed on p.778 of [?] (put w(n) = 1 there for all n ∈ N) by considering each
of the cases α < 0, α = 0 and 0 < α < 1 separately. But, condition (??) is known to imply
that TA ∈ L(ℓ∞), [?, Ex.2, p.220]. The proof that λ ∈ ρo(C∞) is thereby complete. �

To conclude this section we consider the Cesàro operator C, as given by (??), when
it is restricted to c0; denote this operator by C0. It is shown in [?, Theorem 3], [?], that
∥C0∥op = 1 and

(4.7) σ(C0) = {λ ∈ C : |λ− 1
2 | ≤

1
2}.

Proposition 4.4. The order spectrum of the positive operator C0 ∈ L(c0) satis�es
σo(C0) = σ(C0).

Proof. Since (??) shows that σ(C0) = σ(C∞), the entire proof of Proposition ?? can be
easily adapted (now for X := c0 and �xed λ ∈ ρ(C0)), using the same notation, up to the
stage where (??) is shown to be valid. In addition to the validity of (??) it is also true
that

(4.8) limn→∞ anm(λ) = β(λ)
mα limn→∞

1
n1−α = 0, m ∈ N,

because α := Re( 1λ) satis�es (1− α) > 0. The two conditions (??) and (??) together are
known to imply that TA ∈ L(c0), [?, Theorem 4.51-C]. Again via Corollary ?? and Lemma
?? we can conclude that TEλ

∈ Lr(c0) and hence, also (C0 − λI)−1 is regular on c0. �

5. The discrete Cesàro spaces ces(p), 1 < p < ∞, and ces(0)

For 1 < p < ∞ the discrete Cesàro spaces are de�ned by

ces(p) := {x ∈ CN : ∥x∥ces(p) :=
(∑∞

n=1(
1
n

∑n
k=1 |xk|)p

)1/p
< ∞}.

In view of (??) we see that ∥x∥ces(p) = ∥C(|x|)∥ℓp for x ∈ ces(p). It is known that
each space ces(p), 1 < p < ∞, is a re�exive Banach lattice sequence space for the norm
∥ · ∥ces(p) and the coordinatewise order. The spaces ces(p) have been thoroughly treated
in [?]. According to Theorem ?? of [?] the restriction of C (see (??)) to ces(p), denoted
here by C(p), is continuous with ∥C(p)∥op = p′ and

(5.1) σ(C(p)) =
{
λ ∈ C : |λ− p′

2 | ≤
p′

2

}
, 1 < p < ∞.
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Proposition 5.1. For each 1 < p < ∞ the order spectrum of the positive operator
C(p) ∈ L(ces(p)) satis�es

(5.2) σo(C(p)) = σ(C(p)).

Proof. In view of (??) it su�ces to verify that ρ(C(p)) ⊆ ρo(C(p)).

We decompose the set ρ(C(p)) into two disjoint parts, namely the set

(5.3) ρ1 := {λ ∈ Cr{0} : Re
(
1
λ

)
≤ 0} = {u ∈ Cr{0} : Re(u) ≤ 0}

and its complement ρ2 := ρ(C(p))rρ1.

First �x λ ∈ ρ1. Then λ ̸∈ Σ0 and so we may consider Eλ = (enm(λ))∞n,m=1 and
Dλ = (dnm(λ))∞n,m=1 as speci�ed by (??) and (??), respectively. It is shown on p.72 of [?]
that

(5.4) |enm(λ)| ≤ 1
n , 1 ≤ m < n, n ∈ N.

Warning : In [?] the set N = {0, 1, 2, . . .} is used rather than N = {1, 2, 3, . . .} which is
used here and so the inequalities from [?] are slightly di�erent when they are stated here.
Back to our proof, it is clear from (??) that the matrix A = (cnm)∞n,m=1 for the Cesàro

operator C is lower triangular with its n-th row, for each n ∈ N, given by cnm := 1
n for

1 ≤ m ≤ n and cnm := 0 for m > n. Setting B := Eλ it is clear from (??) that (??) is
satis�ed for the pair A,B in the space X := ces(p). Since C(p) = TA : ces(p) −→ ces(p) is
continuous, it follows from Corollary ?? that TEλ

∈ Lr(ces(p)) and hence, via Lemma ??
and (??), that also (C(p) − λI)−1 ∈ Lr(ces(p)).

Consider now the set ρ2. From (??) it is routine to establish that a non-zero point z ∈ C
belongs to σ(C(p)) if and only if Re(1z ) ≥

1
p′ . From the case of equality in Remark ??, it

follows that ρ2 =
∪

0<α<1/p′ Γα, where

(5.5) Γα :=
{
z ∈ Cr{0} : Re

(
1
z

)
= α

}
=

{
z ∈ Cr{0} :

∣∣z − 1
2α

∣∣ = 1
2α

}
.

Fix a point λ ∈ ρ2. Then there exists a unique number α ∈ (0, 1
p′ ) such that λ ∈ Γα,

namely α := Re( 1λ). In the notation of (??) it is shown on p.72 of [?] that

(5.6) |enm(λ)| ≤ enm
(
1
α

)
, n,m ∈ N.

Note that enm( 1α) ≥ 0 for all n,m ∈ N follows from (??) as 0 < α < 1
p′ implies that

1− 1
k(1/α) = (1− α

k ) > 0 for m ≤ k ≤ n. Setting Ã := E1/α and B̃ := Eλ it is clear from

(??) that (??) is satis�ed for the pair Ã, B̃ in place of A,B. Moreover, 1
α > p′ implies that

1
α ∈ ρ(C(p)), that is, (C(p) − 1

αI)
−1 ∈ L(ces(p)). Since TD1/α

∈ L(ces(p)) by Lemma ??

(with 1
α in place of λ), the identity TE1/α

= α2(TD1/α
− (C(p) − 1

αI)
−1) shows that T

Ã
∈

L(ces(p)). Hence, Corollary ?? can be applied to conclude that T
B̃

= TEλ
∈ Lr(ces(p)).

It then follows from (??) and Lemma 3.3 that (C(p) − λI)−1 ∈ Lr(ces(p)). �

The remaining space to consider is ces(0) := {x ∈ CN : C(|x|) ∈ c0} equipped with the
norm

∥x∥ces(0) := ∥C(|x|)∥c0 = supn∈N
1
n

∑n
k=1 |xk|, x ∈ ces(0).
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It is a Banach lattice sequence space for the norm ∥ · ∥ces(0) and the coordinatewise order.
According to [?, Theorem 6.4], the restriction of C (see ((??)) to ces(0), denoted here by
C(0), is continuous with ∥C(0)∥op = 1 and

(5.7) σ(C(0)) = {λ ∈ C : |λ− 1
2 | ≤

1
2}.

Proposition 5.2. The order spectrum of the positive operator C(0) ∈ L(ces(0)) satis�es

σo(C(0)) = σ(C(0)).

Proof. As usual it su�ces to show that ρ(C(0)) ⊆ ρo(C(0)).

Let the set ρ1 be as in (??). For each α ∈ (0, 1) let Γα be given by (??). Then (??)
ensures that we have the disjoint partition ρ(C(0)) = ρ1 ∪ ρ2 with ρ2 :=

∪
0<α<1 Γα.

For any given point λ ∈ ρ1 the estimates (??) are again valid (see [?, p.72]) and so the
argument in the proof of Proposition ?? can be easily adapted ( now for X := ces(0)) to
again show that (C(0) − λI)−1 ∈ Lr(ces(0)).

Fix now λ ∈ ρ2. Then there exists a unique α ∈ (0, 1) such that λ ∈ Γα, namely
α := Re( 1λ). Then Re(1− 1

kλ) = (1− α
k ) ≥ 0 for k ∈ N. Arguing as at the bottom of p.396

in [?], now with x ∈ ces(0) in place of a ∈ ces(2) there, it follows that the 1-st coordinate
of Eλ(x) is 0 and, for n ≥ 2, that the n-th coordinate of Eλ(x) satis�es

|(Eλ(x))n| ≤ (E1/α(|x|))n, x ∈ ces(0).

Substituting x := (δrj)
∞
j=1 into the previous estimates, for each r ∈ N, yields (??). Since

0 < α < 1 implies that 1
α ∈ ρ(C(0)), the argument can be completed along the lines given

in the proof of Proposition ?? to conclude that (C(0)−λI)−1 ∈ Lr(ces(0)). We again warn
the reader that N = {0, 1, 2, . . .} is used in [?]. �
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