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Abstract

We describe the proper closed invariant subspaces of the integration operator when
it acts continuously on countable intersections and countable unions of weighted Ba-
nach spaces of holomorphic functions on the unit disc or the complex plane. Appli-
cations are given to the case of Korenblum type spaces and Hörmander algebras of
entire functions.

1 Introduction.

Let G be the open unit disc D or the whole complex plane C. We denote by H(G)
the Fréchet space of holomorphic functions on G, endowed with the topology of uniform
convergence on compact subsets of G. A space E of holomorphic functions on the domain
G is a Hausdorff locally convex space that is a subset of H(G), such that the inclusion
map E ⊂ H(G) is continuous and E contains the polynomials. If E is a Fréchet space or
a countable inductive limit of Banach spaces, by the closed graph theorem, the inclusion
map E ⊂ H(G) is continuous if and only if the point evaluations E → C, f → f(z) at
all the points z ∈ G are continuous on E. We are mainly interested in the case when the
polynomials are dense in E. In this case then E is separable.

Banach spaces of holomorphic functions on the unit disc D and on the complex plane
C have been thoroughly investigated. We refer the reader for example to the books
[23], [34] and [35]. Hörmander algebras of entire functions [1], [10], [11], [17], [28], as
well as Koremblum space and other intersections and unions of growth Banach spaces
of holomorphic functions on the unit disc [6], [18], [23], are natural examples of (locally
convex) spaces of holomorphic functions. Vogt [32] proved that there are Fréchet spaces
E which are contained in H(G) such that the inclusion E ⊂ H(G) is not continuous.

In this note we study the set of proper closed invariant subspaces of the integration
operator

Jf(z) :=

∫ z

0
f(ζ)dζ, z ∈ G, f ∈ H(G),

when it acts continuously on Fréchet spaces or countable inductive limits of Banach spaces
(called (LB)-spaces) E, which appear as countable intersections or unions of weighted
Banach spaces of holomorphic functions on the unit disc or the complex plane. Recall
that a subspace M of a locally convex space E is called invariant of a continuous linear
operator T : E → E if T (M) ⊂M . Our main results are Theorem 4.1 and its Corollary 4.2,
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which describe the invariant subspaces when the integration operator acts on Korenblum
type spaces, and Theorem 5.1, which explains the situation in case of some Hörmander
algebras of entire functions. The proofs of these results depend on some abstract Theorems
3.2 and 3.3 and they rely heavily on Theorems 3.8 and 3.16 due to Abanin and Tien [4]. A
different method permits us to handle the (LB)-algebra of entire functions of exponential
type in Theorem 5.3. An open question about the invariant subspaces of the integration
operator on certain Hörmander algebras is mentioned in Remark 5.4.

Abanin and Tien describe in [4] the closed invariant subspaces of the integration oper-
ator on various scales of weighted Banach spaces of holomorphic functions. As mentioned
above, some of their results are very important for our theorems below. We refer the reader
to the introduction of [4] for classical results about invariant subspaces of the integration
operators and more recent ones in [7], [19] and [20]. The continuity of the integration
operator on weighted Banach spaces of holomorphic functions was investigated by Haru-
tyunyan and Lusky [22]; see also [2] and [5]. Other aspects, like spectrum and ergodic or
dynamical properties, were considered by Beltrán, Fernández and the first author in [8].
Similar questions for operators defined on Hörmander algebras were investigated in [9].

Our notation for functional analysis, in particular for locally convex spaces, Fréchet
spaces and (LB)-spaces, is standard. We refer the reader to [12], [24], [29] and [31]. If E is
a locally convex space, its topological dual is denoted by E′. The linear span of a subset

A of E is denoted by span(A). The closure of a subset A in E is denoted by A, and A
E

in case the space in which the closure is taken must be emphasized. A subspace M of E
is called proper if {0} 6= M 6= E. In what follows, we set N0 := N ∪ {0}.

2 Results about subspaces of Fréchet or (LB)-spaces.

Lemma 2.1 Let X := projnXn be a Fréchet space such that X =
⋂
n∈NXn with each

(Xn, ‖ · ‖n) a Banach space. Moreover, it is assumed that X is dense in Xn and that
Xn+1 ⊆ Xn with a continuous inclusion for each n ∈ N. Let M be a subspace of X. Then

(i) M
X

=
⋂
n≥1M

Xn
.

(ii) If M is proper and closed, then there is n(0) ∈ N such that M
Xn

is proper in Xn for
each n ≥ n(0).

Proof. (i) Since the inclusions X ⊂ Xn+1 ⊂ Xn are continuous for each n ∈ N, we clearly

have M
X ⊂

⋂
n≥mM

Xn
=
⋂
n≥1M

Xn
for each m ∈ N. Now, given x ∈

⋂
n≥1M

Xn
,

we have x ∈
⋂
n≥1Xn = X. Moreover, for each n ∈ N there is y(n) ∈ M such that

‖x− y(n)‖n < 1/n. Then x = limn→∞ y(n) in X and x ∈MX
.

(ii) First of all, since {0} 6= M , we get {0} 6= M
Xn

for each n ∈ N. Proceeding by
contradiction, suppose that there is an increasing sequence (n(k))k of natural numbers

such that M
Xn(k) = Xn(k) for each k ∈ N. Since X := projkXn(k), we could apply part (i)

to conclude M
X

= X. Since M is closed by assumption, we have M = X, and M would
not be a proper subspace. 2

Lemma 2.2 Let X = indnXn be an (LB)-space with increasing union of Banach spaces
X =

⋃
n∈NXn. If M is a proper closed subspace of X, then there is n(0) ∈ N such that

M ∩Xn is a proper closed subspace of Xn for each n ≥ n(0).
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Proof. Since the inclusion Xn ⊂ X is continuous for each n ∈ N, the set M ∩Xn is closed
in Xn for each n ∈ N. As M is proper, there is x ∈M, x 6= 0. There is n(1) ∈ N such that
x ∈M ∩Xn(1). On the other hand, since M 6= X, there is y ∈ X \M . Select n(0) ≥ n(1)
such that y ∈ Xn(0). Then, if n ≥ n(0), we have x ∈ M ∩ Xn and y ∈ Xn \M . Thus,
M ∩Xn is a proper subspace of Xn 2

3 Abstract results about invariant subspaces of the integra-
tion operator on spaces of holomorphic functions.

Our first Lemma is stated in page 412 of [4]. We include a proof for the sake of complete-
ness, because it is very relevant in our considerations below. As in [4], given a space of
holomorphic functions E on the open unit disc D or the complex plane C, and N ∈ N, we
set

AEN := {f ∈ E | f (j)(0) = 0, 0 ≤ j < N}.

Lemma 3.1 Let E be a space of holomorphic functions on the open domain G = D or
G = C, such that the polynomials are dense in E. For each N ∈ N we have

AEN = span({zj | j ≥ N}).

Proof. Fix n ∈ N. Since the inclusion E ⊂ H(G) is continuous, the evaluations E →
C, f → f (j)(0) are continuous for each j ∈ N and the set AEN is closed. Moreover, it clearly

contains zj for each j ≥ N . Hence, span({zj | j ≥ N}) ⊂ AEN .
The Taylor expansion at the origin of a holomorphic function f ∈ H(G) is denoted

by f(z) =
∑∞

j=0 aj(f)zj , for each z ∈ G. Fix f ∈ AEN . Since the polynomials are dense
in E by assumption, there is a sequence of polynomials (gk)k such that limk→∞ gk = f in
E. This implies that limk→∞ gk = f in H(G). Therefore, limk→∞

∑N−1
j=0 aj(gk)z

j = 0 in

H(G). The span of {1, z, ..., zN−1} is finite dimensional, hence limk→∞
∑N−1

j=0 aj(gk)z
j = 0

in E. Consequently, (gk−
∑N−1

j=0 aj(gk)z
j)k is a sequence of elements of span({zj | j ≥ N})

which converges in the topology of E to f . Thus, f ∈ span({zj | j ≥ N}). 2

Theorem 3.2 Let F := projnFn be a Fréchet space such that F =
⋂
n∈N Fn with each Fn

a Banach space of holomorphic functions on the open domain G = D or G = C, such that
the polynomials are contained in F and dense in Fn for each n ∈ N.

Assume that the integration operator J : Fn → Fn is continuous for each n ∈ N, and
that, for each n ∈ N, every proper closed invariant subspace of J on Fn is of the form AFnK
for some K ∈ N. Then

(i) J : F → F is continuous, and

(ii) Every proper closed invariant subspace for J on F is of the form

AFK = {f ∈ F | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N.

Proof. (i) The continuity of J : Fn → Fn for each n ∈ N clearly implies J(F ) ⊂ F and
that J : F → F is continuous, because F is the projective limit of the sequence of Banach
spaces (Fn)n.
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(ii) It is easy to see that AFK is a closed invariant subspace of the integration operator
J on F ; see for example Lemma 3.1. Since 1 /∈ AFK and zK ∈ AFK , it follows AFK is a
proper subspace of E.

Now, let M be a proper closed subspace of F which is invariant for the integration

operator J . By Lemma 2.1 (ii) there is n(0) ∈ N such that M
Fn

is proper (and closed) in
Fn for each n ≥ n(0). Moreover, it is invariant for J , since

J(M
Fn

) ⊂ J(M)
Fn ⊂MFn

.

By assumption, for each n ≥ n(0), there is k(n) ∈ N such that

M
Fn

= AFnk(n) = span({zj | j ≥ k(n)})Fn .

Take, for each n ∈ N, k(n) as the minimum of those j′s such that zj ∈ M
Fn

. Clearly

1 ≤ k(n) for each n ≥ n(0). This selection implies, in particular, that zk(n)−1 /∈ M
Fn

.

Since M
Fn+1 ⊂ M

Fn
for each n ∈ N, we have 1 ≤ k(n(0)) ≤ k(n) ≤ k(n + 1) for each

n ≥ n(0).
We claim that the sequence (k(n))n of natural numbers must be bounded. If this is

not the case, limn→∞ k(n) =∞. For each n ≥ n(0) we have

M ⊂MFn
= span({zj | j ≥ k(n)})Fn ⊂ {f ∈ H(G) | f (j)(0) = 0, 0 ≤ j < k(n)}.

Therefore, the Taylor coefficients (aj(f))∞j=0 of each f ∈M must vanish; that is, M = {0},
which is a contradiction, as M is proper.

As a consequence of the claim that we have just proved, there are K ∈ N and n(1) ≥
n(0) such that k(n) = K for each n ≥ n(1). This implies

M
Fn

= {f ∈ Fn | f (j)(0) = 0, 0 ≤ j < K}

for each n ≥ n(1). Thus, we may apply Lemma 2.1 (i) to get

M =
⋂

n≥n(1)

M
Fn

= {f ∈ F | f (j)(0) = 0, 0 ≤ j < K}.

This completes the proof. 2

Theorem 3.3 Let E = indnEn be an (LB)-space which is the increasing union of Banach
spaces En of holomorphic functions on the open domain G = D or G = C, such that the
polynomials are contained and dense in En for each n ∈ N.

Assume that the integration operator J : En → En is continuous for each n ∈ N, and
that, for each n ∈ N, every proper closed invariant subspace of J on En is of the form
AEnK for some K ∈ N. Then

(i) J : E → E is continuous, and

(ii) Every proper closed invariant subspace of J on E is of the form

AEK = {f ∈ E | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N.
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Proof. (i) Clearly J(E) ⊂ E and J : E → E is continuous since E = indnEn and J is
stepwise continuous by assumption.

(ii) The assumptions imply that the polynomials are dense in E. The subspaces AEK
are proper closed subspaces of E which are invariant for the integration operator J .

We fix a proper closed subspace M of E which is invariant for J . By Lemma 2.2 there
is n(0) ∈ N such that M ∩ En is a proper closed subspace of En for each n ≥ n(0). It
is also invariant for J , since J(M) ⊂ M and J(En) ⊂ En. By our assumptions, for each
n ≥ n(0) there is k(n) ∈ N such that

M ∩ En = AEnk(n) = span({zj | j ≥ k(n)})Fn .

We select, for each n ∈ N, k(n) as the minimum of those j′s such that zj ∈M ∩En. Since
M ∩ En ⊂ M ∩ En+1 for each n ∈ N, we have 1 ≤ k(n + 1) ≤ k(n) ≤ k(n(0)) for each
n ≥ n(0). Then there are L ∈ N and n(1) ≥ n(0) such that k(n) = L for each n ≥ n(1).
This yields, for each n ≥ n(1),

M ∩ En = {f ∈ En | f (j)(0) = 0, 0 ≤ j < L}.

Therefore
M =

⋃
n≥n(1)

(M ∩ En) = {f ∈ E | f (j)(0) = 0, 0 ≤ j < L},

and the proof is complete. 2

4 Invariant subspaces of the integration operator on Fréchet
or (LB)-spaces of holomorphic functions on the disc.

Let us introduce some notation. We set R = 1 (for the case of holomorphic functions on
D) and R = +∞ (for the case of entire functions). A weight v is a continuous function
v : [0, R[→]0,∞[, which is decreasing on [0, R[ and satisfies limr→R r

nv(r) = 0 for each
n ∈ N. We extend v radially to D if R = 1 and to C if R = +∞ by v(z) := v(|z|).
For such a weight v, we define the Banach space H∞v of holomorphic functions f on the
disc D (if R = 1) or on the whole complex plane C (if R = +∞) such that ‖f‖v :=
sup|z|<R v(z)|f(z)| <∞. For a holomorphic function f ∈ H({z ∈ C; |z| < R}) and r < R,
we denote M(f, r) := max{|f(z)| ; |z| = r}. Using the notation O and o of Landau,
f ∈ H∞v if and only if M(f, r) = O(1/v(r)), r → R. It is known that the closure of
the polynomials in H∞v coincides with the Banach space H0

v of all those holomorphic
functions on {z ∈ C; |z| < R} such that M(f, r) = o(1/v(r)), r → R, see e.g. [14]. Spaces
of type H∞v appear in the study of growth conditions of holomorphic functions and have
been investigated in various articles since the work of Shields and Williams, see e.g. [14],
[26] and the references therein. When we must specify the domain of definition of the
holomorphic functions, we write H0

v (D) or H0
v (C).

We recall some examples of weights: For R = 1, (i) vα(r) = (1 − r)α with α >
0, which are the standard weights on the disc, (ii) v(r) = exp(−(1 − r)−1), and (iii)
v(z) = (log e

1−r )−α, α > 0. For R = +∞, (i) v(r) = exp(−rp) with p > 0, (ii) v(r) =

exp(− exp r), and (iii) v(r) = exp
(
− (log+ r)p

)
, where p ≥ 2 and log+ r = max(log r, 0).

A systematic study of inductive and projective limits of weighted Banach spaces of
type H∞v and H0

v was initiated by Bierstedt, Meise and Summers in [15]. If V = (vn)n is a
decreasing sequence of weights on G = D or G = C, we define the weighted inductive limit
by V0H(G) := indnH

0
vn(G). These (LB)-spaces have been investigated by many authors;
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see e.g. [5], [13] and [14] and the references therein. On the other hand, if A = (an)n
is an increasing sequence of weights on G = D or G = C, the weighted Fréchet space of
holomorphic functions on G is defined by A0H(G) := projnH

0
an(G). Fréchet spaces of

this type were studied by E. Wolf [33]. Concrete examples of spaces of this type in the
case of entire functions appear in Section 5. The most relevant examples in the case of
holomorphic functions on the disc are Koremblum type spaces, which we define now.

For each µ > 0, the growth Banach spaces of holomorphic functions are defined as
A−µ := H∞vµ and A−µ0 := H0

vµ for the standard weight vµ(r) = (1 − r)µ. These Banach
spaces play a relevant role in connection with interpolation and sampling of holomorphic
functions; see [23, Section 4.3]. The spaces of holomorphic functions of Korenblum type
are defined as follows.

A−γ+ := ∩µ>γA−µ = {f ∈ H(D) : sup
z∈D

(1− |z|)µ|f(z)| <∞ ∀µ > γ},

in which case also

A−γ+ = ∩µ>γA−µ0 .

for each γ ≥ 0. And

A−γ− := ∪µ<γA−µ = {f ∈ H(D) : sup
z∈D

(1− |z|)µ|f(z)| <∞ for some µ < γ}

in which case also

A−γ− = ∪µ<γA−µ0 ,

for each 0 < γ ≤ ∞.
The space A−γ+ is a Fréchet space when endowed with the locally convex topology

generated by the increasing sequence of norms |||f |||k := supz∈D(1 − |z|)γ+
1
k |f(z)|, for f ∈

A−γ+ and each k ∈ N. Clearly, A−γ+ is a Fréchet space of holomorphic functions of type
A0H(D) for an increasing sequence A = (an)n.

Each space A−γ− is endowed with the finest locally convex topology such that all the

natural inclusion maps A−µ ⊂ A−γ− , for µ < γ, are continuous. In particular, A−γ− :=

indk A
−(γ− 1

k
) = indk A

−(γ− 1
k
)

0 is an (LB)-space. Of course, the inductive limit is taken
over all k ∈ N such that (γ − 1

k ) > 0. The Korenblum space (see [25]) A−∞− , denoted
A−∞, is A−∞ = indnA

−n. All these (LB)-spaces are weighted inductive limits of the form
V0H(G) for a decreasing sequence V = (vn)n.

Theorem 4.1 (1) If A = (an)n is an increasing sequence of weights on the unit disc
D, then the integration operator J : A0H(D) → A0H(D) is continuous and every proper
closed invariant subspace of J on the weighted Fréchet space A0H(D) is of the form

{f ∈ A0H(D) | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N.
(2) If V = (vn)n is a decreasing sequence of weights on the unit disc D, then the inte-

gration operator J : V0H(D) → V0H(D) is continuous and every proper closed invariant
subspace of J on the weighted (LB)-space V0H(D) is of the form

{f ∈ V0H(D) | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N.
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Proof. For each weight v on the unit disc D, it follows from [4, proposition 3.1 and
Theorem 3.8] (see also [2]), that the integration operator J : H0

v (D)→ H0
v (D) is continuous

(even compact), and that every proper closed invariant subspace of J on H0
v (D) is of the

form
{f ∈ H0

v (D) | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N.
(1) The integration operator on the Fréchet space A0H(D) = projnH

0
an(D) satisfies all

the hypothesis of Theorem 3.2. The conclusion follows from this result.
(2) Similarly, J : V0H(D)→ V0H(D) satisfies the assumptions of Theorem 3.3, which

permits to complete the proof.
2

We have the following consequence of Theorem 4.1.

Corollary 4.2 The integration operator J is continuous on the Korenblum type spaces
E = A−γ+ , γ ≥ 0 and E = A−γ− , 0 < γ ≤ ∞, and every proper closed invariant subspace

of J on E is of the form AEK = {f ∈ E | f (j)(0) = 0, 0 ≤ j < K} for some K ∈ N.

5 Invariant subspaces of the integration operator on Hör-
mander algebras.

A function p : C →]0,∞[ is called a weight exponent function if it satisfies the following
properties: (w1) p is continuous and subharmonic, (w2) p is radial, p(z) = p(|z|), z ∈ C,
(w3) log(1 + |z|2) = o(p(z)) as |z| → ∞; and (w4) p is doubling, i.e. p(2z) = O(p(z)) as
|z| → ∞.

Given a weight p, we define the following weighted spaces of entire functions:

Ap(C) := {f ∈ H(C) : there is A > 0 : sup
z∈C
|f(z)| exp(−Ap(z)) <∞},

endowed with the inductive limit topology, for which it is an (LB)-space and

A0
p(C) := {f ∈ H(C) : for all ε > 0 : sup

z∈C
|f(z)| exp(−εp(z)) <∞},

endowed with the projective limit topology, for which it is a Fréchet space.
These spaces are topological algebras. They are called Hörmander algebras of entire

functions. Clearly A0
p(C) ⊂ Ap(C). Condition (w3) implies that A0

p(C) contains the
polynomials, and condition (w4) implies that the spaces are stable under differentiation.
Weighted algebras of entire functions of this type have been considered by many authors.
See e.g. [1], [10], [11], [27] and [28] and the references therein.

Here are some examples: When p(z) = |z|s, s > 0, then Ap(C) consists of all entire
functions of order s and finite type or order less than s; and A0

p(C) is the space of all entire
functions of order at most s and type 0. For s = 1, Ap(C) is the space of all entire functions
of exponential type Exp(C), and A0

p(C) is the space of entire functions of infraexponential
type.

It was proved by Beltrán, Fernández and the author in [9, Lemma 4.1] that the inte-
gration operator J is continuous on E = Ap(C) and E = A0

p(C) for every weight exponent
p. Concerning invariant subspaces we have the following result.
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Theorem 5.1 Let p be a differentiable weight exponent such that limr→∞ p
′(r) = ∞.

Then every proper closed invariant subspace of J on E = A0
p(C) or E = Ap(C) is of the

form
AEK = {f ∈ E | f (j)(0) = 0, 0 ≤ j < K}

for some K ∈ N. This holds in particular for p(z) = α|z|s, α > 0, s > 1, and for
p(z) = e|z|.

Proof. Define, for β > 0, the weight vβ(z) := exp(−βp(z)). The polynomials are dense
in H0

vβ
and, by [3, Theorem 3.8], the operator J : H0

vβ
→ H0

vβ
is continuous. Indeed,

wβ(r) := 1/vβ(r) = exp(βp(r)), r ≥ 0, satisfies

lim infr→∞
w′(r)

w(r)
= lim infr→∞βp

′(r) > 1,

since limr→∞
w′(r)
w(r) = limr→∞ βp

′(r) =∞. Moreover, the latter fact implies by (the proof

of) [4, Theorem 3.16] that every proper closed invariant subspace of J on H0
vβ

has the

form {f ∈ H0
vβ
| f (j)(0) = 0, 0 ≤ j < K} for some K ∈ N.

We have A0
p(C) = projnH

0
v(1/n)

and the conclusion follows from Theorem 3.2 since all
the hypothesis of this result hold.

Similarly, since Ap(C) = indnH
0
vn the result follows from Theorem 3.3 in this case. 2

A different approach enables us to treat the case of the integration operator on the
(LB)-algebra Exp(C) of entire functions of exponential type.

Let (Bf) (z) = f(z)−f(0)
z denote the backward shift on H(C). We recall that the norm

in the Hardy space H2 is given by

‖f‖H2 = sup
0≤r<1

( 1

2π

∫ 2π

0

∣∣f(reit)
∣∣2 dt

) 1
2 .

In what follows we denote
gε(z) := g(εz).

Lemma 5.2 Any transcendent function f ∈ H(C) is a cyclic vector for B.

Proof. According to [21, Theorem 2.2.4], the restriction of any transcendent function to
the unit circle is a cyclic vector for the backward shift on the Hardy space H2. We now
fix a compact set K ⊂ C and g ∈ H(C). Take r > 0 so that |z| ≤ r for all z ∈ K and put
R = 2r. Since Bf is also a transcendent function and

Bn (fR) = Rn (Bnf)R

we have
gR ∈ span

((
Bn(Bf)

)
R

: n ∈ N0

)
= span

((
Bnf

)
R

: n ∈ N
)
,

where the closure is taken in H2. So, for every ε > 0 we can find coefficients a1, . . . aN
such that

‖gR −
N∑
k=1

ak

(
Bkf)R

)
‖H2 < ε.

8



For every z ∈ K we have∣∣∣∣∣g(z)−
N∑
k=1

ak

(
Bkf

)
(z)

∣∣∣∣∣ ≤ R

2π

∫ 2π

0

∣∣∣g(Reit)−
∑N

k=1 ak
(
Bkf

)
(Reit)

∣∣∣
|Reit − z|

dt

≤ 2

2π

∫ 2π

0

∣∣∣∣∣g(Reit)−
N∑
k=1

ak

(
Bkf

)
(Reit)

∣∣∣∣∣ dt
≤ 2‖gR −

N∑
k=1

ak

(
Bkf)R

)
‖H2 < 2ε.

2

Theorem 5.3 Every proper closed invariant subspace of J on E = Exp (C) has the form
AEK = {f ∈ E : f j(0) = 0, 0 ≤ j < K} for some K ∈ N.

Proof. We consider the topological isomorphism (see for instance [31, p.94])

Φ : Exp (C)→ H (C)′b , 〈Φ(g), f〉 =

∞∑
k=0

akbkk!,

where

f(z) =
∞∑
k=0

akz
k, g(z) =

∞∑
k=0

bkz
k.

We identify f ∈ H(C) with Tf ∈ H(C)′′, Tf (u) := u(f). Then

Φt : H(C)→ Exp (C)′, 〈Φt(Tf ), g〉 = 〈Tf ,Φ(g)〉 = Φ(g)(f).

Let us assume that M is a proper closed subspace of Exp (C) satisfying J(M) ⊂ M.
Obviously we also have J t(M◦) ⊂M◦. We now check that

J t ◦ Φt = Φt ◦B. (5.1)

For f ∈ H(C), f(z) =
∑∞

k=0 akz
k and g ∈ Exp (C), g(z) =

∑∞
k=0 bkz

k, we have

〈
(
J t ◦ Φt

)
(f), g〉 = 〈f,Φ(Jg)〉 =

∞∑
k=1

ak
bk−1
k

k! =
∞∑
k=1

akbk−1(k − 1)!.

Also

〈
(
Φt ◦B

)
(f), g〉 = 〈B(f),Φ(g)〉 =

∞∑
k=0

ak+1bkk!.

Identity (5.1) is proved. Consequently

F :=
(
Φt
)−1

(M◦)

is a proper closed subspace of H(C) and satisfies B(F ) ⊂ F. According to Lemma 5.2, F
cannot contain transcendent functions. Since F is a closed subspace of the Fréchet space
H(C) and it consists only of polynomials then an application of Baire’s theorem permits
us to conclude that F is finite dimensional. Let f0(z) =

∑N−1
k=0 akz

k +zN be an element of
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F with the largest possible degree N . We observe that (Bf0)(z) =
∑N−2

k=0 ak+1z
k + zN−1.

Then the polynomials
f0, Bf0, B

2f0, . . . , B
Nf0

are linearly independent and we conclude

span
{
f0, Bf0, B

2f0, . . . , B
Nf0

}
= span

{
1, z, z2, . . . , zN

}
= F.

Finally
M = M◦◦ =

{
g ∈ Exp (C)| 〈Φt(f), g〉 = 0 ∀f ∈ F

}
=
{
g ∈ Exp (C)| 〈zk,Φ(g)〉 = 0, 0 ≤ k ≤ N

}
=
{
g ∈ Exp (C)| g(k)(0) = 0, 0 ≤ k ≤ N

}
.

2

Remark 5.4 The integration operator is continuous on all the Hörmander algebras de-
fined above A0

p(C) and Ap(C) by [9, Lemma 4.1]. However, we do not know whether the
conclusion of Theorem 5.1 holds if the condition limr→∞ p

′(r) =∞ fails, in particular for
the weight exponents p(z) = |z|s, 0 < s ≤ 1, except in the case covered by Theorem 5.3.
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