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José Bonet (IUMPA, UPV)

La Laguna, February 2020

Joint work with A.A. Albanese and W.J. Ricker



Aim of the lecture

AIM

Investigate the behaviour of the Cesàro operator C, as well as Volterra
integral operator Vg , acting on certain Banach, Fréchet and (LB) spaces
of analytic functions.

In the first part we report on joint work in progress with Angela A.
Albanese (Univ. Lecce, Italy) and Werner J. Ricker (Univ. Eichstaett,
Germany) about the Cesàro operator.
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Ernesto Cesàro (1859-1906)
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Vito Volterra (1860-1940)
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Albanese and Ricker

Angela Albanese Werner Ricker
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The discrete Cesàro operator

The Cesàro operator C is defined for a sequence x = (xn)n ∈ CN of
complex numbers by

C(x) =

(
1

n

n∑
k=1

xk

)
n

, x = (xn)n ∈ CN.

Proposition.

The operator C : CN → CN is a bicontinuous isomorphism of CN onto
itself with

C−1(y) = (nyn − (n − 1)yn−1)n, y = (yn)n ∈ CN, (1)

where we set y−1 := 0.

Recall that CN is a Fréchet space for the topology of coordinatewise
convergence.
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The Cesàro operator for analytic functions

The Cesàro operator is defined for analytic functions on the disc D by

Cf =
∞∑
n=0

(
1

n + 1

n∑
k=0

an

)
zn, f (z) =

∞∑
n=0

anzn ∈ H(D).

The Cesàro operator acts continuously and has the integral representation

Cf (z) =
1

z

∫ z

0

f (ρ)

1− ρ
dρ, f ∈ H(D), z ∈ D.
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The Cesàro operator for analytic functions

Indeed, for f (z) =
∑∞

n=0 anzn ∈ H(D), we have

Cf (z) =
1

z

∫ z

0

f (ρ)

1− ρ
dρ =

1

z

∫ z

0

( ∞∑
n=0

anρ
n

)( ∞∑
m=0

ρm

)

=
∞∑
n=0

an

∞∑
m=0

1

z

∫ z

0

ρn+m dρ =
∞∑
n=0

an

∞∑
m=0

zn+m

n + m + 1

=
∞∑
n=0

an
∑
k=n

zk

k + 1
=
∞∑
k=0

(
1

k + 1

k∑
n=0

an

)
zk .
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The discrete Cesàro operator on Banach sequence spaces

Theorem. Hardy. 1920.

Let 1 < p <∞. The Cesàro operator maps the Banach space `p

continuously into itself, which we denote by C(p) : `p → `p, and
‖(C(p))‖ = p′, where 1

p + 1
p′ = 1, for all n ∈ N.

In particular, Hardy’s inequality holds:

‖(C(p))‖p ≤ p′‖x‖p, x ∈ `p.

Clearly C is not continuous on `1, since C(e1) = (1, 1/2, 1/3, ...).
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The discrete Cesàro operator on Banach sequence spaces

Proposition.

The Cesàro operators C(∞) : `∞ → `∞, C(c) : c → c and C(0) : c0 → c0
are continuous, and ‖C(∞)‖ = ‖C(c)‖ = ‖C(0)‖ = 1.

Moreover, lim Cx = lim x for each x ∈ c .
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Spectrum and point spectrum

X is a Hausdorff locally convex space (lcs).

L(X ) (resp. K(X )) is the space of all continuous (resp. compact)
linear operators on X .

The resolvent set ρ(T ,X ) of T ∈ L(X ) consists of all λ ∈ C such that
R(λ,T ) := (λI − T )−1 exists in L(X ).

The spectrum of T is the set σ(T ,X ) := C \ ρ(T ,X ). The point
spectrum is the set σpt(T ,X ) of those λ ∈ C such that T − λI is not
injective. The elements of σpt(T ,X ) are called eigenvalues of T .
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Spectrum and point spectrum

Theorem. Leibowitz. 1972.

(i) σ(C; `∞) = σ(C; c0) = {λ ∈ C |
∣∣λ− 1

2

∣∣ ≤ 1
2}.

(ii) σpt(C; `∞) = {(1, 1, 1, ...)}.

(iii) σpt(C; c0) = ∅.
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Spectrum and point spectrum

Theorem. Leibowitz. 1972.

Let 1 < p <∞ and 1/p + 1/p′ = 1.

(i) σ(C; `p) = {λ ∈ C |
∣∣λ− p′

2

∣∣ ≤ p′

2 }.

(ii) σpt(C; `p) = ∅.

In particular, C is not compact in the spaces `p, 1 < p ≤ ∞, or in the
space c0.

José Bonet Cesàro and Volterra operators on function spaces



More about the spectrum and point spectrum

Theorem

The Cesàro operator satisfies

(a) σ(C,H(D)) = σpt(C,H(D)) = { 1

m
: m ∈ N}.

Persson showed in 2008 the following facts:

For every m ∈ N the operator (C− 1
m I ) : H(D)→ H(D) is not injective

because Ker(C− 1
m I ) = span{em}, where em(z) = zm−1(1− z)−m,

z ∈ D, and it is not surjective because the function fm(z) := zm−1,
z ∈ D, does not belong to the range of (C− 1

m I ).
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The growth spaces

For γ > 0 the growth classes A−γ and A−γ0 are the Banach spaces
defined by

A−γ = {f ∈ H(D) : ‖f ‖−γ := sup
z∈D

(1− |z |)γ |f (z)| <∞}.

A−γ0 = {f ∈ H(D) : lim
|z|→1

(1− |z |)γ |f (z)| = 0}.

A−γ0 is the closure of the polynomials on A−γ .

The Cesàro operator acts continuously on A−γ . Its spectrum on these
(and many other spaces of analytic functions on the disc) has been
studied by Aleman and Persson 2008-2010.
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The result of Aleman and Persson

Theorem. Aleman, Persson.

Let γ > 0. The Cesàro operator Cγ,0 : A−γ0 → A−γ0 has the following
properties.

(i) σpt(Cγ,0) = { 1
m : m ∈ N, m < γ}.

(ii) σ(Cγ,0) = σpt(Cγ,0) ∪
{
λ ∈ C :

∣∣∣λ− 1
2γ

∣∣∣ ≤ 1
2γ

}
.

(iii) If
∣∣∣λ− 1

2γ

∣∣∣ < 1
2γ (equivalently Re

(
1
λ

)
> γ), then Im(λI − Cγ,0) is a

closed subspace of A−γ0 and has codimension 1.

Moreover, the Cesàro operator Cγ : A−γ → A−γ satisfies

(iv) σpt(Cγ) = { 1
m : m ∈ N, m ≤ γ}, and

(v) σ(Cγ) = σ(Cγ,0).
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The norm

The continuity of Cγ and Cγ,0 as established by Aleman and Persson
gives no quantitative estimate for their operator norm.

Theorem.

(i) Let γ ≥ 1. Then ‖Cn
γ‖ = ‖Cn

γ,0‖ = 1 for all n ∈ N.

(ii) Let 0 < γ < 1. Then ‖Cn
γ‖ = ‖Cn

γ,0‖ = 1/γn for all n ∈ N.
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Definition of the *-spectrum.

X is a Hausdorff locally convex space (lcs).

ρ∗(T ) consists of all λ ∈ C for which there exists δ > 0 such that
each µ ∈ B(λ, δ) := {z ∈ C : |z − λ| < δ} belongs to ρ(T ) and the
set {R(µ,T ) : µ ∈ B(λ, δ)} is equicontinuous in L(X ).

σ∗(T ) := C \ ρ∗(T ).

σ∗(T ) is a closed set containing σ(T ). If T ∈ L(X ) with X a
Banach space, then σ(T ) = σ∗(T ). There exist continuous linear
operators T on a Fréchet space X such that σ(T ) ⊂ σ∗(T ) properly.
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More about the spectrum

Notation:

Σ := { 1
m : m ∈ N} and Σ0 := Σ ∪ {0}.

Proposition.

(i) σ(C;CN) = σpt(C;CN) = Σ.

(ii) Fix m ∈ N. Let x (m) := (x
(m)
n )n ∈ CN where x

(m)
n := 0 for

n ∈ {1, . . . ,m − 1}, x
(m)
m := 1 and x

(m)
n := (n−1)!

(m−1)!(n−m)! for n > m.

Then the eigenspace

Ker

(
1

m
I − C

)
= span{x (m)} ⊆ CN

is 1-dimensional.

(iii) σ∗(C,H(D)) = Σ ∪ {0} = σ∗(C;CN).
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The Fréchet growth spaces

Let γ ≥ 0.

A−γ+ := ∩µ>γA−µ = ∩µ>γA−µ0 .

The space A−γ+ is Fréchet when it is endowed with the lc-topology
generated by the fundamental sequence of seminorms

‖f ‖k := sup
z∈D

(1− |z |)γ+ 1
k |f (z)|.

It is a Fréchet-Schwartz space because the inclusion A−µ1 ↪→ A−µ2 is
compact for all 0 < µ1 < µ2. In particular, every bounded subset of A−γ+

is relatively compact, i.e. the space is Montel
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The (LB) growth spaces

Let 0 < γ ≤ ∞

A−γ− := ∪µ<γA−µ = ∪µ<γA−µ0 ,

and it is endowed with the finest locally convex topology such that all the
inclusions A−µ ↪→ A−γ , µ < γ, are continuous.
In particular, A−γ− is the (DFS)-space

A−γ− := ind
k

A−(γ−
1
k ) = ind

k
A
−(γ− 1

k )
0 .

As a consequence A−γ− is a Montel space, too.
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The (LB) growth spaces. The Korenblum space

The Korenblum space A−∞− was introduced by Korenblum in 1975 is
usually denoted by

A−∞ = ∪0<γ<∞A−γ = ∪n∈NA−n.

All these spaces play an important role in the study of interpolation and
sampling of holomorphic functions on the disc.

The Cesàro operators C: A−γ− → A−γ− and C: A−γ+ → A−γ+ are
continuous because C acts continuously in every step.
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The spectrum of C in the Fréchet growth spaces

Theorem

(1) Let γ ∈]0,∞[.

(a) σpt(C,A−γ+ ) = { 1
m : m ∈ N, m ≤ γ}.

(b) σ(C,A−γ+ ) = {0} ∪ { 1
m : m, m ≤ γ} ∪ {λ ∈ C : |λ− 1

2γ | <
1
2γ }.

(c) σ∗(C,A−γ+ ) = σ(C,A−γ+ ).

(2) Let γ = 0.

(a) σpt(C,A−0+ ) = ∅.

(b) σ(C,A−0+ ) = {0} ∪ {λ ∈ C | Reλ > 0}.

(c) σ∗(C,A−0+ ) = σ(C,A−0+ ).
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The spectrum of C in the (LB) growth spaces

Theorem

(1) Let γ ∈]0,∞[.

(a) σpt(C,A−γ− ) = { 1
m : m ∈ N, m < γ}.

(b) σ(C,A−γ− ) = { 1
m : m ∈ N, m < γ} ∪ {λ ∈ C : |λ− 1

2γ | ≤
1
2γ }.

(c) σ∗(C,A−γ− ) = σ(C,A−γ− ).

(2) For the Korenblum space A−∞ (i.e. γ =∞) we have:

(a) σ(C,A−∞) = σpt(C,A−∞) = { 1
m : m ∈ N}.

(b) σ∗(C,A−∞) = { 1
m : m ∈ N} ∪ {0}.
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Mean ergodic properties. Definitions

Power bounded operators

An operator T ∈ L(X ) is said to be power bounded if {Tm}∞m=1 is an
equicontinuous subset of L(X ).

If X is a Banach space, an operator T is power bounded if and only if
supn ||T n|| <∞.

If X is a barrelled space, an operator T is power bounded if and only if
the orbits {Tm(x)}∞m=1 of all the elements x ∈ X under T are bounded.
This is a consequence of the uniform boundedness principle.
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Mean ergodic properties. Definitions

For T ∈ L(X ), we set T[n] := 1
n

∑n
m=1 Tm.

Mean ergodic operators

An operator T ∈ L(X ) is said to be mean ergodic if the limits

Px := lim
n→∞

1

n

n∑
m=1

Tmx , x ∈ X , (2)

exist in X .

If T is mean ergodic, then one then has the direct decomposition

X = Ker(I − T )⊕ (I − T )(X ).
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Mean ergodic properties. Definitions

Uniformly mean ergodic operators

If {T[n]}∞n=1 happens to be convergent in Lb(X ) to P ∈ L(X ), then T is
called uniformly mean ergodic.

Theorem. Lin. 1974.

Let T a (continuous) operator on a Banach space X which satisfies
limn→∞ ||T n/n|| = 0. The following conditions are equivalent:

(1) T is uniformly mean ergodic.

(4) (I − T )(X ) is closed.
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Ergodic properties of C on classical sequence spaces

Proposition.

The Cesàro operator C : CN → CN is power bounded and uniformly
mean ergodic.

The Cesàro operator C(p) : `p → `p, 1 < p <∞, is not power
bounded and not mean ergodic.

The Cesàro operator C(0) : c0 → c0 is power bounded, not mean
ergodic.
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Hypercyclicity. Definitions

Hypercyclic operator

T ∈ L(X ), with X separable, is called hypercyclic if there exists x ∈ X
such that the orbit {T nx : n ∈ N0} is dense in X .

Supercyclic operator

If, for some z ∈ X , the projective orbit {λT nz : λ ∈ C, n ∈ N0} is dense
in X , then T is called supercyclic.

Clearly, hypercyclicity always implies supercyclicity.
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Dynamics of C on classical sequence spaces

Proposition.

The Cesàro operator C : CN → CN is power bounded, uniformly
mean ergodic and not supercyclic.

The Cesàro operator C(p) : `p → `p, 1 < p <∞, is not power
bounded, not mean ergodic and not supercyclic.

The Cesàro operator C(0) : c0 → c0 is power bounded, not mean
ergodic and not supercyclic.
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Ergodicity of C on growth Banach spaces

Theorem. Albanese, Bonet, Ricker.

(i) Let 0 < γ < 1. Both of the operators Cγ and Cγ,0 fail to be power
bounded and are not mean ergodic. Moreover,

Ker(I − Cγ) = Ker(I − Cγ,0) = {0},

and Im(I − Cγ) (resp. Im(I − Cγ,0)) is a proper closed subspace of A−γ

(resp. of A−γ0 ).

(ii) Both of the operators C1 and C1,0 are power bounded but not mean
ergodic. Moreover, Im(I − C1) (resp. Im(I − C1,0)) is not a closed
subspace of A−γ (resp. of A−γ0 ).

José Bonet Cesàro and Volterra operators on function spaces



Ergodicity of C on growth Banach spaces

Theorem continued

(iii) Let γ > 1. Both of the operators Cγ and Cγ,0 are power bounded
and uniformly mean ergodic. Moreover, Im(I − Cγ) (resp. Im(I − Cγ,0))
is a proper closed subspace of A−γ (resp. of A−γ0 ). In addition,

Im(I − Cγ) = {h ∈ A−γ : h(0) = 0}. (3)

Moreover, with ϕ(z) := 1/(1− z), for z ∈ D, the linear projection
operator Pγ : A−γ → A−γ given by

Pγ(f ) := f (0)ϕ, f ∈ A−γ ,

is continuous and satisfies limn→∞(Cγ)[n] = Pγ in the operator norm.
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Hypercyclicity of C on growth Banach spaces

Theorem

The Cesàro operator C acting on H(D) is power bounded, uniformly
mean ergodic and not supercyclic, hence not hypercyclic.

As a consequence, C is not supercyclic on the spaces A−γ , γ ≥ 0, and
A−γ0 , 0 < γ ≤ ∞.
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Ergodicity of C on the Fréchet growth spaces

Proposition

Let γ ∈ [0,∞[.

The following conditions are equivalent:

(a) C is power bounded on A−γ+ .

(b) C is (uniformly) mean ergodic on A−γ+ .

(c) 1 ≤ γ <∞.
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Ergodicity of C on the (LB) growth spaces

Proposition

Let γ ∈]0,∞].

The following conditions are equivalent:

(a) C is power bounded on A−γ− .

(b) C is (uniformly) mean ergodic on A−γ− .

(c) 1 < γ ≤ ∞.
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To Volterra operators

The Cesàro operator has the integral representation for f ∈ H(D)

Cf (z) =
1

z

∫ z

0

f (ρ)

1− ρ
dρ =

1

z

∫ z

0

f (ρ)g ′(ρ)dρ.

with g(z) = − log(1− z), z ∈ D. The Volterra operators are defined by

Vg (f )(z) :=

∫ z

0

f (ζ)g ′(ζ)dζ.

This operator on spaces analytic functions on the disc was considered by
Pommerenke, Aleman, Siskakis, Constantin, Pau, Peláez and
Rättyä, among others. The work by Bassallote, Contreras,
Hernández-Mancera, Mart́ın and Paul in 2012 is important for us.
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The Volterra operator

The Volterra operator Vg with symbol g ∈ H(C) is defined on H(C) by

Vg (f )(z) :=

∫ z

0

f (ζ)g ′(ζ)dζ (z ∈ C).

Question

How it acts on A−γ+ and A−γ− ?

What is the spectrum in case it is continuous?

The case of Vg on A−γ was investigated by Malman in 2018.
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A result

Proposition.

Let g ∈ H(D) be an analytic function.

(1) Let 0 ≤ γ <∞. The operator Vg : A−γ+ → A−γ+ is continuous if and
only if g ∈ A−0+ .

(2) Let 0 < γ <∞. The operator Vg : A−γ− → A−γ− is continuous if and

only if g ∈ A−0+ .

(3) The operator Vg : A−∞ → A−∞ is continuous if and only if
g ∈ A−∞.
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A few comments

The Volterra operator Vg , g ∈ H(D), is continuous (respectively
compact) on A−α and, equivalently on A−α0 , if and only if g belongs to
the Bloch space B (respectively to the little Bloch space B0). This was
proved by Hu and Stević.

Recall that a function g ∈ H(D) belongs to B if and only if
supz∈D(1− |z |)|g ′(z)| <∞, and g belongs to B0 if and only if
lim|z|→1(1− |z |)|g ′(z)| = 0.

Define the weight vlog (z) := (log(e/(1− |z |))−1, z ∈ D. We say that
g ∈ H(D) has logarithmic mean growth if supz∈D vlog (z)|g(z)| <∞. It
is well known that every analytic function g in the Bloch space B has
logarithmic mean growth.
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A few comments

There are analytic functions g /∈ B which have logarithmic mean growth;
examples are due to Girela, González and Peláez. It is easy to see that
every analytic function with logarithmic mean growth belongs to A−0+ .
Therefore the Volterra operator Vg for such symbols g is continuous on
A−γ+ and A−γ− for each γ, but it is not continuous on each A−α for each
α > 0.

The space Hvlog of all analytic functions with logarithmic mean growth is
a Banach space for the norm ||g ||log := supz∈D vlog (z)|g(z)|, and it is
contained but different from A−0+ . Indeed, if they were equal, the closed
graph theorem would imply that the space is simultaneously a Banach
space and a Fréchet Schwartz space, hence finite dimensional. A
contradiction.

José Bonet Cesàro and Volterra operators on function spaces



Spectrum of Volterra operators

Now we investigate the spectrum of the Volterra operator when it
acts continuously on Korenblum type spaces.

Aleman and Constantin in 2009 and Aleman and Peláez in 2012
investigated the spectra of Volterra operators on several spaces of of
holomorphic functions on the disc.

We assume that g ∈ H(C) be a non-constant entire function such that
g(0) = 0 and Vg is the Volterra operator.
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Results about the spectrum

Proposition

Let g ∈ H∞ be a bounded analytic function with g(0) = 0.

1) If γ ≥ 0, then σ(Vg ,A
−γ
+ ) = σ∗(Vg ,A

−γ
+ ) = {0}.

(2) If 0 < γ ≤ ∞, then σ(Vg ,A
−γ
− ) = σ∗(Vg ,A

−γ
− ) = {0}.

The same statements hold if g ∈ B0.
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Results about the spectrum

We understand 0 ∈ {λ ∈ C | Re( c
λ ) ≥ α}. Therefore, this set coincides

with the disc {λ ∈ C | |λ− c
2α | ≤

|c|
2α}.

Proposition

Let g(z) = c log(1/(1− wz)), z ∈ D with c ,w ∈ C, c 6= 0, |w | = 1, For
each γ ≥ 0 the operator Vg : A−γ+ → A−γ+ is continuous. Moreover

σ(Vg ,A
−γ
+ ) = {λ ∈ C | Re( c

λ ) > γ} and σ∗(Vg ,A
−γ
+ ) = σ(Vg ,A

−γ
+ ).

If γ = 0, then σ(Vg ,A
−0
+ ) = {λ ∈ C | Re( c

λ ) > 0} is the union of {0}
and an open half plane of C with 0 at the boundary, which depends on c .
Therefore it is unbounded. If γ > 0, then σ(Vg ,A

−0
+ ) is bounded but not

closed.
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Results about the spectrum

Proposition

Let g(z) = c log(1/(1− wz)), z ∈ D with c ,w ∈ C, c 6= 0, |w | = 1, For
each γ ∈]0,∞[ the operator Vg : A−γ− → A−γ− is continuous, and

σ(Vg ,A
−γ
− ) = σ∗(Vg ,A

−γ
− ) = {λ ∈ C | Re( c

λ ) ≥ γ}.

For A−∞ we have the following complement for symbols with logarithmic
mean growth. Observe that in this case the Volterra operator need not
act from each step into itself.

Proposition

If g ∈ H(D) is an analytic function with g(0) = 0 such that

sup
z∈D

vlog (z)|g(z)| <∞, with vlog (z) := (log(e/(1− |z |))−1, z ∈ D,

then Vg : A−∞ → A−∞ is continuous and
σ(Vg ,A

−∞) = σ∗(Vg ,A
−∞) = {0}.
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Results about the spectrum

Now we investigate the spectrum of Vg on the Korenblum space A−∞ for
symbols that are not of logarithmic mean growth.

Theorem

Let g ∈ A−∞ satisfy g(0) = 0. The following conditions are equivalent.

(1) The function g is of logarithmic mean growth.

(2) σ∗(Vg ,A
−∞) = {0}.

(3) σ∗(Vg ,A
−∞) is bounded.
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Results about the spectrum

Proposition

If g ∈ A−∞ with g(0) = 0 satisfies eg /∈ A−∞, then
[0,+∞[⊂ σ(Vg ,A

−∞).

This holds in particular for the functions gs(z) := −1 + 1/(1− z)s , s > 0.

Proposition

The function g(z) = z/(1− z), which belongs to A−∞ satisfies

(1) {λ ∈ C | λ not a negative real number} ⊂ σ(Vg ,A
−∞), and

(2) σ∗(Vg ,A
−∞) = C.
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Korenblum type spaces of analytic functions. Collect. Math. 69
(2018), 263-281.

3 A. Aleman, A.-M. Persson, Resolvent estimates and
decomposable extensions of generalized Cesàro operators, J. Funct.
Anal. 258 (2010), 67–98.

4 J. Bonet, The spectrum of Volterra operators on Korenblum type
spaces of analytic functions. Integral Equations Operator Theory 91
(2019), no. 5, Art. 46, 16 pp.

5 B. Malman, Spectra of generalized Cesàro operators acting on
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