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Abstract. The discrete Cesàro (Banach) sequence spaces ces(r), 1 < r < ∞, have been
thoroughly investigated for over 45 years. Not so for their dual spaces d(s) � (ces(r))′,
with 1

s + 1
r = 1, which are somewhat unwieldy. Our aim is to undertake a further

study of the spaces d(s) and of various operators acting between these spaces. It is
shown that d(s) ⊆ d(t) whenever s ≤ t, with the inclusion being compact if s < t.
The classical Cesàro operator C is continuous from d(s) into d(t) precisely when s ≤ t
and compact precisely when s < t. Moreover, C even maps the larger space ces(s)
continuously into d(s). This is a consequence of the Hardy-Littlewood maximal theorem
and the remarkable property, for each 1 < s < ∞, that x ∈ CN satisfies C(C(|x|)) ∈ d(s) if
and only if C(|x|) ∈ d(s). These results are used to analyze the spectrum and to determine
the norm and the mean ergodicity of C acting in d(s). Similar properties for multiplier
operators are also treated.

1. Introduction

Given an element x = (xn)n = (x1, x2, . . .) of CN set |x| := (|xn|)n ∈ CN and define x ≥ 0
if |x| = x. The Cesàro operator C : CN −→ CN is given by

C(x) :=
(

1
n

∑n
k=1 xk

)
n
, x ∈ CN;

it satisfies |C(x)| ≤ C(|x|) for each x ∈ CN and is a vector space isomorphism of CN onto
itself. Define

(1.1) ces(p) := {x ∈ CN : ‖x‖ces(p) := ‖C(|x|)‖p < ∞}, 1 < p < ∞,

with ‖ ·‖p denoting the standard norm in `p.A detailed investigation of the Banach spaces
ces(p), 1 < p < ∞, also called discrete Cesàro spaces, was undertaken in [6]; see also
the references therein. They are reflexive, p-concave, complex Banach lattices for the
coordinatewise order. In recent years there has been a keen interest in these spaces and
in various linear operators acting in them (e.g., the Cesàro operator, multiplier operators,
inclusion maps, convolution operators); see, for instance, [1], [3], [4], [6], [8], [10], [11],
[12], [13], [14], [18], [21], [24], [27], [30], [32], [33] and the references therein.

The dual Banach spaces (ces(p))′ of ces(p), 1 < p < ∞, are rather unwieldy. A de-
scription of these dual spaces was first presented in [21] as the solution to a problem
posed by the Dutch Mathematical Society in 1968. An alternate and more tractable iso-
morphic identification of (ces(p))′ is presented in [6, Corollary 12.17]. To describe this
identification consider

(1.2) d(s) :=
{
x ∈ `∞ : x̂ :=

(
sup
k≥n |xk|

)
n
∈ `s

}
, 1 < s < ∞,
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which is a Banach space for the norm ‖x‖d(s) := ‖x̂‖s. The sequence x̂ is called the least
decreasing majorant of x. Then (ces(p))′ is isomorphic to d(p′), where 1

p + 1
p′ = 1, with

the duality specified by

〈u, x〉 :=
∑∞

n=1 unxn, u ∈ ces(p), x ∈ d(p′);

see Section 2. The dual spaces (ces(p))′ � d(p′) are less prominent than the discrete
Cesàro spaces ces(p), although they have received some attention; see, for example, [6],
[10], [11], [18], [21], [24], [30] and the references therein. The aim of this paper is to
further study the spaces d(s), 1 < s < ∞, in detail as well as the properties of certain
linear operators acting in them. Let us be more precise.

In Section 2 the Banach spaces d(s), 1 < s < ∞, are investigated; they are reflexive
and the standard canonical vectors en := (δkn)k, for n ∈ N, form an unconditional basis. It
is shown that d(s) is lattice isomorphic to the dual Banach lattice (ces(s′))′ of ces(s′), 1 <
s < ∞, and hence, d(s) is s-convex. Whenever 1 < r ≤ s it turns out that d(r) $ d(s) (cf.
Proposition 2.7(i)) with a compact inclusion map d(r) ⊆ d(s) if r < s; see Remark 4.2.
Whenever r , s, it is shown in Proposition 2.7(ii) that d(r) and d(s) are not isomorphic
as Banach spaces. Although d(s) $ `s is a proper containment for every 1 < s < ∞,
it is clear that every eventually decreasing, non-negative sequence x ∈ `s does lie in
d(s) because x and x̂ coincide except for at most finitely many coordinates. The Banach
spaces ces(p), 1 < p < ∞, have the following remarkable property. Let 1 < p < ∞ and
x ∈ CN. Then

(1.3) C(|x|) ∈ ces(p) if and only if x ∈ ces(p),

[6, Theorem 20.31]. In view of (1.1) this can be equivalently formulated as

(1.4) CC(|x|) ∈ `p if and only if C(|x|) ∈ `p;

see Section 3. The relationship (1.4) between the spaces `p and the operator C acting
in these spaces has the following analogue for d(s); see Proposition 3.7. Namely, for
1 < s < ∞ and x ∈ CN it turns out that

CC(|x|) ∈ d(s) if and only if C(|x|) ∈ d(s).

A crucial property of d(s) is that it is solid in CN, that is, if x ∈ d(s) and y ∈ CN satisfy
|y| ≤ |x| then also y ∈ d(s).

Since d(s) � (ces(s′))′, it is clear from (1.1) that the Cesàro operator C is closely
connected to the spaces d(s), 1 < s < ∞; clarifying this connection is the purpose of
Section 3. It turns out that C : d(s) −→ d(s), denoted by Cd(s), is continuous with operator
norm ‖Cd(s)‖op = s′ (cf. Proposition 3.2). Moreover, the spectrum of Cd(s), denoted by
σ(Cd(s)), is given by

(1.5) σ(Cd(s)) = {λ ∈ C :
∣∣∣λ − s′

2

∣∣∣ ≤ s′
2 };

see Corollary 3.5. Consequently, Cd(s) fails to be mean ergodic. Moreover, the dual op-
erator C′d(s) : (d(s))′ −→ (d(s))′ of Cd(s) has a large point spectrum which implies that
Cd(s) cannot be supercyclic. Clearly Cd(s) is a positive operator (i.e., Cd(s)(x) ≥ 0 for every
x ∈ d(s) satisfying x ≥ 0) and hence, it is also a regular operator in the complex Banach
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lattice d(s). It is shown that the order spectrum of Cd(s), that is, its spectrum relative to
the Banach algebra of all regular operators in d(s), coincides with its spectrum σ(Cd(s))
as given in (1.5); see Proposition 3.6. An interesting and important fact (cf. Proposition
3.4) which will often be used is that C maps `s into the smaller space d(s) for every
1 < s < ∞. Perhaps more surprising is that C even maps ces(s), which is genuinely
larger that `s, into d(s); see Corollary 3.8.

Given a pair 1 < s, t < ∞, an element a ∈ CN is called a (d(s), d(t))-multiplier if it
multiplies d(s) into d(t), that is, if ax ∈ d(t) for every x ∈ d(s), where ax := (anxn)n is
the coordinatewise product. The closed graph theorem implies that the associated linear
(d(s), d(t))-multiplier operator Ma

d(s),d(t) : x 7−→ ax is then continuous from d(s) into d(t).
We denote Ma

d(s),d(s) simply by Ma
d(s) ; it is the operator acting in d(s) via the diagonal

matrix having the scalars {an : n ∈ N} in its diagonal. The vector spaceMd(s),d(t) of all
(d(s), d(t)-multipliers (brieflyMd(s) if s = t) has been identified by G. Bennett, [6, pp.69-
70].

In Section 4 we investigate certain features of the operators Ma
d(s),d(t) for all a ∈ Md(s),d(t)

and all pairs 1 < s, t < ∞. For example, those multipliers a ∈ Md(s),d(t) for which
Ma

d(s),d(t) : d(s) −→ d(t) is a compact operator are characterized in Propositions 4.1 and
4.4. Moreover, if a ∈ Md(s) = `∞, then it is shown that the spectrum of Ma

d(s) : d(s) −→
d(s) is given by

σ(Ma
d(s)) = a(N), 1 < s < ∞,

where a(N) := {an : n ∈ N} ⊆ C, and that ‖Ma
d(s)‖op = ‖a‖∞; see Proposition 4.5. In

addition, those a ∈ Md(s) for which the operator Ma
d(s) is mean ergodic are identified, as

well as those for which Ma
d(s) is uniformly mean ergodic; see Propositions 4.7 and 4.9,

respectively.

In the final Section 5 it is shown that C maps d(s) into d(t), necessarily continu-
ously, precisely when 1 < s ≤ t < ∞. Moreover, all pairs 1 < s, t < ∞ are identi-
fied for which C maps d(s) into `t and for which C maps `s into d(t) (cf. Proposition
5.3), as well as the subclasses of these continuous operators which are actually com-
pact; see Proposition 5.4. This will require a knowledge of the continuity and compact-
ness properties of various inclusion maps between pairs of spaces coming from the class
{d(s), `q, ces(p) : 1 < p, q, s < ∞}; see Propositions 5.1 and 5.2.

2. The spaces d(s) for 1 < s < ∞

That the canonical vectors {en : n ∈ N}, with en := (δnk)k for n ∈ N, form a Schauder
basis in d(s), 1 < s < ∞, is known, [1, Lemma 2.3]. The following result is a strengthen-
ing of this fact.

Proposition 2.1. For each 1 < s < ∞ the vectors {en : n ∈ N} form an unconditional
Schauder basis for the Banach space d(s). Moreover, ‖en‖d(s) = n1/s for each n ∈ N.
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Proof. We need to verify the following criterion: Given x ∈ d(s) and ε > 0 there exists
Mε ∈ N such that for all finite sets σ = {σ1 < σ2 < . . . σk} ⊆ N with σ1 > Mε we have
‖Σn∈σxnen ‖d(s) < ε; see [26, Vol. I, Proposition 1.c.1]. To verify this condition it suffices
to show (as {en : n ∈ N} is a Schauder basis for d(s)), that for every σ as stated, we have

(2.1) ‖
∑

n∈σ xnen ‖d(s) ≤ ‖x − x(N)‖d(s), ∀ N > Mε ,

where x(N) := Σk>N xkek. From the definition of û for u ∈ CN it is routine to verify that(∑
n∈σ xnen

)
ˆ≤ (x − x(N)) ,̂ ∀ N > Mε .

This inequality and (1.2) clearly imply (2.1).
For each n ∈ N we have ên = (1, . . . , 1, 0, 0, . . .) with 1 occurring n times. It is then

immediate that ‖en‖d(s) = n1/s. �

It follows immediately from Proposition 2.1 that x =
∑∞

n=1 xnen for each x ∈ d(s) and
hence, that 0 = limn→∞ ‖xnen‖d(s) = limn→∞ |xn|n1/s. This is Proposition 1 of [30].

It was already stated that d(s) is solid in CN; this is immediate from (1.2) and the fact
that if x ∈ d(s) and y ∈ CN satisfy |y| ≤ |x|, then ŷ ≤ x̂ and so ‖ŷ‖s ≤ ‖x̂‖s < ∞. The Köthe
dual of a solid Banach sequence space (X, ‖ · ‖X) with c00 ⊆ X ⊆ CN, is the Banach space

X× :=
{
x ∈ CN :

∑∞
n=1 |xnyn| < ∞, ∀ y ∈ X

}
when equipped with the norm

‖x‖X× := sup
{∑∞

n=1 |xnyn| : ‖y‖X ≤ 1
}
, x ∈ X×

[22, Section 30]. Here c00 ⊆ CN is the linear space of all vectors having only finitely
many non-zero coordinates. The duality for the pair of Banach spaces X and X× is given
by

[u, x] :=
∑∞

n=1 unxn, x = (xn)n ∈ X×, u = (un)n ∈ X.

Then X× is a closed subspace of the dual Banach space X′ of X and ‖v‖X× = ‖v‖X′ for
all v ∈ X×. For the following result we refer to [6, p.61 & Corollary 12.17], where 〈·, ·〉
denotes the duality between ces(p) and its dual Banach space (ces(p))′.

Lemma 2.2. Let 1 < p < ∞ and 1
p + 1

p′ = 1. Then (ces(p))× = d(p′) and (d(p′))× = ces(p)
with equivalent norms. Moreover, the map Φp : (ces(p))′ −→ d(p′) defined by

(2.2) Φp( f ) := (〈en, f 〉)n, f ∈ (ces(p))′

is a linear isomorphism of the dual Banach space (ces(p))′ onto the Banach space d(p′)
and satisfies

1
p′ ‖Φp( f )‖d(p′) ≤ ‖ f ‖(ces(p))′ ≤ (p − 1)1/p‖Φp( f )‖d(p′), f ∈ (ces(p))′,

and

〈x, f 〉 = 〈
∑∞

n=1 xnen, f 〉 =
∑∞

n=1 xn〈en, f 〉 = [x,Φp( f )], x ∈ ces(p), f ∈ (ces(p))′.

Remark 2.3. Since the Banach spaces ces(p), 1 < p < ∞, are known to be reflexive,
[6, p.61], the dual Banach spaces (ces(p))′, 1 < p < ∞, are also reflexive. In view of
Lemma 2.2, the Banach spaces d(s), 1 < s < ∞, are necessarily reflexive. �
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Let ER be a real Banach lattice and E = ER ⊕ iER be the complex Banach lattice that
it generates. The modulus |z| of an element z = x + iy in E is given by

|z| := sup
0≤θ<2π

Re(eiθz) = sup
0≤θ<2π

(cos(θ)x + sin(θ)y)

and satisfies |z| ∈ E+ (defined to be the positive cone E+
R := {x ∈ ER : x ≥ 0} of ER). The

norm in E is defined by ‖z‖ := ‖ |z| ‖ER , where ‖ · ‖ER is the norm in ER. The positive cone
of the real dual Banach space (ER)′ is specified by

x′ ≤ y′ if and only if 〈x, x′〉 ≤ 〈x, y′〉, ∀x ∈ E+
R.

Then (ER)′ is also a real Banach lattice, called the dual lattice of ER. Moreover, the
dual Banach space E′ is then the complexification (ER)′ ⊕ i(ER)′ of (ER)′; [28, p.71] and
[34, p.235, Corollary 3]. Standard references for complex Banach lattices are [28], [34].
The relevant spaces in this paper are the real Banach lattices ER = dR(s) := {x ∈ RN :
‖x̂‖s < ∞} for 1 < s < ∞. The norm in dR(s) is again given by (1.2) and its lattice order
is defined to be the coordinatewise one, that is, x ≤ y if and only if xn ≤ yn for all n ∈ N.
This is precisely the lattice ordering induced in dR(s) via the unconditional Schauder ba-
sis {en : n ∈ N} when it is normalized; see [26, Vol.II, p.2]. Since ‖ · ‖s is a lattice norm in
`s, it follows from (2.4) below that ‖ ·‖dR(s) is a lattice norm in dR(s), that is, if x, y ∈ dR(s)
satisfy |x| ≤ |y|, then ‖x‖dR(s) ≤ ‖y‖dR(s). The complex Banach lattice d(s) = dR(s) ⊕ idR(s)
is then the complexification of dR(s). Moreover, (ces(p))′ = (cesR(p))′ ⊕ i(cesR(p))′,
for 1 < p < ∞, is the dual Banach lattice of ces(p) = cesR(p) ⊕ i cesR(p), where
cesR(p) := {x ∈ RN : ‖C(|x|)‖p < ∞}.

Let E = ER ⊕ iER and F = FR ⊕ iFR be complex Banach lattices. For any continuous
linear operator T : E −→ F there exist canonical continuous, R-linear operators Re T
and Im T from ER into FR such that T (x) = (Re T )(x) + i(Im T )(x) for all x ∈ ER. A
continuous R-linear operator S : ER −→ FR is called a (Banach) lattice homomorphism
if S (x ∧ y) = S (x) ∧ S (y) and S (x ∨ y) = S (x) ∨ S (y) for all x, y ∈ ER. This is equivalent
to the condition that |S (x)| = S (|x|) for all x ∈ ER, [28, Proposition 1.3.11]. In particular,
every lattice homomorphism S is necessarily a positive operator (denoted by S ≥ 0),
i.e., S (E+

R) ⊆ F+
R. Generally, whenever S ≥ 0 we have |S (x)| ≤ S (|x|) for all x ∈ ER,

[34, p.58]. For complex Banach lattices E, F a continuous linear operator T : E −→ F is
called a lattice homomorphism if |T (z)| = T (|z|) for z ∈ E, [34, p.136], i.e., if both Re T
and Im T are lattice homomorphisms. If, in addition, T is a bijection, then it is called a
lattice isomorphism.

The following result is a strengthening of Lemma 2.2.

Proposition 2.4. Let 1 < p < ∞ and 1
p + 1

p′ = 1. Then the linear Banach space isomor-
phism Φp : (ces(p))′ −→ d(p′) as given by (2.2) is actually a Banach lattice isomorphism.

Proof. In view of the above discussion and the fact that (ces(p))′, resp. d(p′), is the
complexification of (cesR(p))′, resp. of dR(p′), it suffices to show that the restriction
Φp : (cesR(p))′ −→ dR(p′) of (2.2) is a Banach lattice isomorphism.
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Since {en : n ∈ N} ⊆ (cesR(p))+, it is clear from (2.2) and the definition of the order in
d(p′) that Φp ≥ 0. Accordingly,

(2.3) |Φp( f )| ≤ Φp(| f |), f ∈ (cesR(p))′.

By Lemma 2.2 the linear operator Φp is a Banach space isomorphism and so, in particu-
lar, the inverse operator Φ−1

p : dR(p′) −→ (cesR(p))′ exists and is linear and continuous.
If y = (yn)n ∈ dR(p′), then Φ−1

p (y) ∈ (cesR(p))′ is given by

〈x,Φ−1
p (y)〉 :=

∞∑
n=1

xnyn, x = (xn)n ∈ cesR(p),

from which it is clear that Φ−1
p ≥ 0. Accordingly,

|Φ−1
p (y)| ≤ Φ−1

p (|y|), y ∈ dR(p′).

Fix f ∈ (cesR(p))′ and set y := Φp( f ). By the previous inequality

|Φ−1
p (Φp( f ))| ≤ Φ−1

p (|Φp( f )|)

and so
0 ≤ | f | = |Φ−1

p (Φp( f ))| ≤ Φ−1
p (|Φp( f )|), f ∈ (cesR(p))′.

Apply Φp ≥ 0 to this inequality yields

Φp(| f |) ≤ |Φp( f )|, f ∈ (cesR(p))′.

Combining this inequality with (2.3) it follows that Φp(| f |) = Φp( f )| for all f ∈ (cesR(p))′.
Hence, Φp is a Banach lattice homomorphism and, being a bijection, it is a Banach lattice
isomorphism. �

Corollary 2.5. For each 1 < s < ∞, the Banach lattice d(s) is s-convex.

Proof. Set p := s′. According to Proposition 2.1(iii) of [14] the Banach lattice ces(p) is
p-concave. Hence, its dual Banach lattice (ces(p))′ is s = p′ convex; combine Proposition
1.d.4 of [26, Vol.II], which is formulated for real Banach lattices, with [29, Lemma 2.49].
Since (ces(p))′ is Banach lattice isomorphic to d(p′) = d(s) by Proposition 2.4, it follows
that d(s) is s-convex. �

Remark 2.6. Since the Banach lattice d(s), 1 < s < ∞, is reflexive (cf. Remark 2.3),
it is known that d(s) has order continuous norm (i.e., if 0 ≤ x(N) ∈ d(s), for N ∈ N,
is a decreasing sequence with x(N) ↓ 0 in the order of d(s), then limN→∞ ‖x(N)‖d(s) =

0). Moreover, d(s) has the property that whenever a sequence {u(N)}∞N=1 ⊆ (d(s))+ is
increasing and satisfies supN ‖u

(N)‖d(s) < ∞, then there exists u ∈ (d(s))+ such that u(N) ↑u
and limN→∞ u(N) = u in d(s), [36, Theorem 114.8]. The Banach lattice d(s) is also
Dedekind complete, [36, Theorem 113.4]. �

We now exhibit some further properties of the class of Banach spaces d(s), 1 < s < ∞.

Proposition 2.7. (i) For each pair 1 < s ≤ t < ∞, we have d(s) ⊆ d(t) with

‖x‖d(t) ≤ ‖x‖d(s), x ∈ d(s).

(ii) For each pair 1 < s, t < ∞ with s , t, the Banach spaces d(s) and d(t) are not
isomorphic. In particular, for s < t the containment in part (i) is proper.
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(iii) For each 1 < s < ∞ we have d(s) ⊆ `s, with a proper containment, and

‖x‖s ≤ ‖x‖d(s), x ∈ d(s).

In particular, the natural inclusion map d(s) ⊆ `s is continuous.
(iv) For each pair 1 < s, t < ∞, the Banach spaces `s and d(t) are not isomorphic.
(v) For each pair 1 < s ≤ t < ∞ we have d(s) ⊆ `t with the continuous inclusion

map satisfying
‖x‖t ≤ ‖x‖d(s), x ∈ d(s).

Moreover, the containment d(s) ⊆ `t is then proper.
(vi) Let 1 < s < ∞. For each x = (xn)n ∈ d(s) we have

|xn| ≤ ‖x‖d(s), n ∈ N.

Hence, convergence of a sequence in d(s) implies its coordinatewise convergence.

Proof. (i) Let x ∈ d(s). Then x̂ ∈ `s ⊆ `t and ‖x̂‖t ≤ ‖x̂‖s. It follows from (1.2) that
‖x‖d(t) ≤ ‖x‖d(s).

(ii) If d(s) and d(t) are isomorphic as Banach spaces, then also their dual spaces
(d(s))′ and (d(t))′ are isomorphic, that is, ces(s′) and ces(t′) are isomorphic (cf. Lemma
2.2). Since s′ , t′, this is not the case, [1, Proposition 3.3].
Suppose that s < t and d(s) = d(t). By part (i) and the open mapping theorem the identity
map from d(s) into d(t) would be an isomorphism, which is a contradiction.

(iii) It is clear from the definition of x̂ that

(2.4) 0 ≤ |x| ≤ x̂, ∀ x ∈ `∞.

Fix x ∈ d(s). By definition x̂ ∈ `s and so (2.4) yields that also x ∈ `s. Hence, d(s) ⊆ `s.
Since ‖ · ‖s is a lattice norm it follows from (2.4) that

‖x‖s = ‖ |x| ‖s ≤ ‖x̂‖s = ‖x‖d(s).

Set mk = [ks] for k ∈ N, where [·] denotes integer part, and define

x = (1, 0, . . . , 0, 1
2 , 0, . . . , 0,

1
3 , 0, . . . , 0,

1
4 , 0 . . .)

with 0 occuring mk times between 1
k−1 and 1

k , for k ≥ 2. Clearly x ∈ `s as
∑∞

j=1
1
js < ∞.

On the other hand
x̂ = (1, 1

2 , . . . ,
1
2 ,

1
3 , . . . ,

1
3 ,

1
4 , . . . ,

1
4 , . . .),

where 1
k occurs 1 + mk times, for each k ≥ 2. Since 1+mk

ks ≥ 1 for each k ∈ N, it follows
that x̂ < `s as

∑∞
k=1(x̂)s

k =
∑∞

k=1
1+mk

ks = ∞. Hence, x < d(s).
(iv) Assume that `s and d(t) are isomorphic. Then their dual Banach spaces (`s)′

and (d(t))′) are also isomorphic, that is, `s′ and ces(t′) are isomorphic. This contradicts
[6, Proposition 15.13].

(v) Observe that d(s) ⊆ `s (by part (iii)) and so d(s) ⊆ `t. Fix x ∈ d(s). Then x ∈ `t

and so ‖x‖t ≤ ‖x‖s. Part (iii) implies that ‖x‖t ≤ ‖x‖d(s).
Suppose that d(s) = `t. Then the identity map from d(s) into `t is surjective and hence,

is an isomorphism. This contradicts part (iv).
(vi) Let x = (xn)n ∈ d(s). Fix n ∈ N. Then (2.4) implies that |xnen| ≤ |x| ≤ x̂. Since

‖ · ‖s is a lattice norm, it follows that

|xn| = ‖xnen‖s ≤ ‖x̂‖s = ‖x‖d(s). �
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Remark 2.8. (i) The example given in the proof of Proposition 2.7(iii) can be modified
to show, for all choices of 1 < s, t < ∞, that `s * d(t). To see this fix 1 < t < ∞. Choose
m ∈ N such that m > t and define

x =
(
1, 0, 1

2 , 0, . . . , 0,
1
22 , 0, . . . , 0, 1

23 , 0, . . . . . . , 1
2n−1 , 0, . . . , 0, 1

2n , 0, . . .
)
,

where 0 occurs 2mn times between 1
2n−1 and 1

2n for each n ≥ 2. Clearly x ∈ `1 with
‖x‖1 =

∑∞
j=0

1
2 j = 2. Observe that

x̂ =
(
1, 1

2 ,
1
2 ,

1
22 , . . . ,

1
22 ,

1
23 , . . . ,

1
23 , . . . ,

1
23 , . . . . . . ,

1
2n , . . . ,

1
2n , . . .

)
,

where 1
2n occurs 2nm + 1 times for each n ≥ 2. Accordingly,

‖x̂‖tt = 1 + 2 1
2t +

∑∞
n=2(1 + 2nm) 1

2nt > 1 + 2 1
2t +

∑∞
n=2

2nm

2nt = ∞

because 2n(m−t) > 1 for all n ≥ 2. So, x̂ < `t. Hence, x ∈ `1 ⊆ `s for all 1 < s < ∞ but,
x < d(t).

(ii) Since `s ⊆ ces(s) for 1 < s < ∞, the same x from part (i) shows that ces(s) * d(t)
for all choices of 1 < s, t < ∞.

(iii) The proof of Proposition 2.7(iv) uses Proposition 15.13 of [6], in whose proof the
following property of the spaces d(s) is established.

(2.5) Let 1 < s < ∞. Then there exists an unconditionally convergent series∑∞
k=1 x(k) in d(s) such that

∑∞
k=1 ‖x

(k)‖rd(s) = ∞ f or every 1 ≤ r < ∞.

By the classical Orlicz theorem, [16, Ch.IV, §1,(5)a], such a sequence cannot exist in any
space `s, for 1 < s < ∞. �

For our next result we will require an equivalent norm for the Cesàro spaces ces(p),
for 1 < p < ∞, [18, Theorem 4.1]. Namely, x ∈ CN belongs to ces(p) if and only if

(2.6) ‖x‖[p] :=
(∑∞

j=0 2 j(1−p)
(∑2 j+1−1

k=2 j |xk|
)p)1/p

< ∞.

Proposition 2.9. (i) Let 1 < s < ∞. Then d(s) contains a complemented subspace
which is isomorphic to `s.

(ii) For any pair 1 < s, t < ∞ with s , t, the Banach spaces d(s) and ces(t) are not
isomorphic.

Proof. (i) Set p := s′. According to (2.6) the sectional (hence, complemented) subspace

Y := {x ∈ ces(p) : xk = 0 unless k = 2 j for some j = 0, 1, 2, . . .}

is isomorphic to a weighted `p-space (as ‖x‖[p] = (
∑∞

j=0 2 j(1−p)|x2 j |p)1/p for x ∈ Y) and
hence, Y is also isomorphic to `p. That is, ces(p) = Y ⊕ Z with Y isomorphic to `p.
Accordingly, (ces(p))′ � Y ′ ⊕ Z′, that is, d(s) ' `s ⊕ Z′.

(ii) Assume that d(s) and ces(t) are isomorphic. By part (i) it follows that `s is iso-
morphic to a closed subspace of ces(t). The same argument as in the proof of Proposition
3.3 in [1], replacing there p with s and q with t, shows that this is impossible. �

It would be interesting to know whether or not d(s) isomorphic to ces(s).
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3. The Cesàro operator acting in d(s)

The aim of this section is to make a detailed analysis of the Cesàro operator when
it acts in the spaces d(s), 1 < s < ∞. We begin by collecting some useful elementary
inequalities. Recall that C : CN −→ CN is a positive operator.

Lemma 3.1. (i) Let x ∈ (RN)+ be a decreasing sequence (i.e. xn+1 ≤ xn for all
n ∈ N). Then also C(x) is a decreasing sequence.

(ii) 0 ≤ |C(x)| ≤ C(|x|) ≤ C(x̂), ∀x ∈ `∞.
(iii) 0 ≤ (C(x))ˆ≤ C(x̂), x ∈ `∞.

Proof. (i) Direct calculation yields

(C(x))n − (C(x))n+1 = 1
n

∑n
j=1 x j −

1
(n+1)

∑n+1
j=1 x j =

(x1+...+xn)−nxn+1
n(n+1) ,

for each n ∈ N. Since x ≥ 0 is decreasing, it is clear that (C(x))n− (C(x))n+1 ≥ 0 for n ∈ N
and hence, C(x) is a decreasing sequence.

(ii) Fix x ∈ `∞. Then

(3.1) |C(x)| =
(
| 1n

∑n
j=1 x j|

)
≤

(
1
n

∑n
j=1 |x j|

)
n

= C(|x|).

Since 0 ≤ |x| ≤ x̂ (see (2.4) ) and C is a positive operator we have C(|x|) ≤ C(x̂).
Combining this with (3.1) yields the desired inequalities.

(iii) It follows from part (ii) and the definition of û for u ∈ `∞ that

(3.2) (C(x))ˆ= (|C(x)|)ˆ≤ (C(x̂)) ,̂ x ∈ `∞.

Since x̂ ∈ `+
∞ is decreasing, it follows from part (i) that C(x̂) ≥ 0 is also decreasing.

Hence, (C(x̂))ˆ= C(x̂) and the required inequality follows from (3.2). �

We require some notation. Consider a pair 1 < s, t < ∞. Denote by Cd(s),d(t) (resp.
Cd(s),t; Cs,d(t); Cs,t) the Cesàro operator C when it acts from d(s) into d(t) (resp. from d(s)
into `t; from `s into d(t); from `s into `t), whenever this operator exists. The closed graph
theorem then ensures that this operator is continuous. With c(p) as an abbreviation for
the space ces(p), 1 < p < ∞, it is clear which Cesàro operator is meant by the notation
Cd(s),c(p); Cc(p),d(s); Cc(p),c(q); Cs,c(p); Cc(p),s for 1 < s, q < ∞. For w ∈ {d(s), c(p), t} the oper-
ator Cw,w is denoted simply by Cw. It is known that ‖Cs‖op = s′ and ‖Cc(p)‖op = p′ for all
1 < p, s < ∞; see [20, Theorem 326] and [14, Theorem 5.1], respectively.

Given Banach spaces X,Y we denote the space of all continuous linear operators from
X into Y by L(X,Y). If X = Y, we simply write L(X) for L(X, X). Let T ∈ L(X). Then

ρ(T ) := {λ ∈ C : (T − λI)−1 exists in L(X)}

is called the resolvent set of T ; its complement σ(T ) := C \ ρ(T ) is the spectrum of T.
The quantity r(T ) := sup{|λ| : λ ∈ σ(T )} is the spectral radius of T and satisfies

(3.3) r(T ) ≤ ‖T‖op,

[17, Ch.VII, Lemma 3.4]. A complex number λ for which there exists x ∈ X\{0} such that
T (x) = λx is called an eigenvalue of T and x is called an eigenvector of T corresponding
to λ. The set of all eigenvalues of T is denoted by σpt(T ) and satisfies σpt(T ) ⊆ σ(T ).

Proposition 3.2. Let 1 < s < ∞.
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(i) The Cesàro operator Cd(s) : d(s) −→ d(s) is continuous.
(ii) The point spectrum σpt(Cd(s)) = ∅.

(iii) {λ ∈ C : |λ − s′
2 | ≤

s′
2 } ⊆ σ(Cd(s)).

(iv) ‖Cd(s)‖op = s′.

Proof. (i) Let x ∈ d(s) ⊆ `∞. By Lemma 3.1(iii) we have 0 ≤ (C(x))ˆ≤ C(x̂). Since x̂ ∈
`s and Cs : `s −→ `s is continuous, we can conclude that C(x̂) = Cs(x̂) ∈ `s and hence,
by the previous inequality, that (C(x))ˆ ∈ `s with ‖(C(x))ˆ‖s ≤ ‖C(x̂)‖s. Accordingly,
C(x) ∈ d(s) and

(3.4) ‖C(s)‖d(s) = ‖(C(x))ˆ‖s ≤ ‖C(x̂)‖s = ‖Cs(x̂)‖s.

Moreover,

(3.5) ‖Cs(x̂)‖s ≤ ‖Cs‖op ‖x̂ ‖s = s′‖x ‖d(s).

It follows from (3.4) and (3.5) that Cd(s) : d(s) −→ d(s) is continuous with ‖Cd(s)‖op ≤ s′.
(ii) Suppose that there exists a point λ ∈ σpt(Cd(s)). Choose x ∈ d(s)\{0} such that

C(x) = λx. Since d(s) ⊆ `s (cf. Proposition 2.7(iii)) we can conclude that λ ∈ σpt(Cs),
that is, σpt(Cs) , ∅. This is known not to be the case, [23, Theorem 1(a)].

(iii) It is known for the dual operator C′s : (`s)′ −→ (`s)′ of Cs that

(3.6) {λ ∈ C : |λ − s′
2 | <

s′
2 } ⊆ σpt(C′s),

[23, Theorem 1(b)]. Let λ satisfy |λ − s′
2 | <

s′
2 and choose u ∈ (`s)′\{0} such that C′s(u) =

λu. Proposition 2.7(iii) implies that (`s)′ ⊆ (d(s))′ and so u ∈ (d(s))′\{0}, that is, λ ∈
σpt(C′d(s)). This shows that

(3.7) {λ ∈ C : |λ − s′
2 | <

s′
2 } ⊆ σpt(C′d(s)) ⊆ σ(C′d(s)) = σ(Cd(s)),

[17, Ch.VII, Lemma 3.7] Since σ(Cd(s)) is a closed subset of C, it follows that the closure
of the set in the left-side of (3.7) is also contained in σ(Cd(s)).

(iv) It follows from part (iii) that the spectral radius r(Cd(s)) ≥ s′ and hence, via
(3.3), that ‖Cd(s)‖op ≥ s′. In the proof of part (i) the reverse inequality ‖Cd(s)‖op ≤ s′ was
established. Hence, ‖Cd(s)‖op = s′. �

Remark 3.3. Let 1 < s < ∞. For each λ ∈ C satisfying |λ − s′
2 | <

s′
2 it follows from (3.6)

that the range of the operator (Cs − λI) is not dense in d(s). �

In order to show that equality holds in Proposition 3.2(iii) we require the following
result concerning the Cesàro operator Cs,d(s) which was stated in [6, p.3] without a proof.

Given x ∈ c0 the Hardy-Littlewood maximal sequence M(x) = ((M(x))k)k of x is
defined by

(3.8) (M(x))k := sup
{

1
n−m+1

∑n
j=m |x j| : 1 ≤ m ≤ k, n ≥ k

}
, k ∈ N.

The operator M : x 7−→ M(x) is called the Hardy-Littlewood maximal operator.

Proposition 3.4. For each 1 < s < ∞, the Cesàro operator C maps `s into d(s), that is,
Cs,d(s) exists and is continuous.
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Proof. Fix x ∈ c0. For each k ∈ N it follows from (3.8), for the choice m = 1, that

(M(x))k ≥ sup
n≥k

1
n

∑n
j=1 |x j| = sup

n≥k
(C(|x|))n = ((C(|x|))ˆ)k,

that is,

(3.9) (C(|x|))ˆ≤ M(x), x ∈ c0.

By the Corollary on p.527 of [7] and the comment following it, we have the well known
fact that M(`s) ⊆ `s. It follows from (3.9) that (C(|x|))ˆ ∈ `s whenever x ∈ `s ⊆ c0, that
is, C(|x|) ∈ d(s) for every x ∈ `s. Accordingly, C maps `s into d(s). As noted earlier, the
continuity of Cs,d(s) is then a consequence of the closed graph theorem. �

Corollary 3.5. For each 1 < s < ∞, we have

(3.10) σ(Cd(s)) = {λ ∈ C : |λ − s′
2 | ≤

s′
2 }.

Proof. Fix λ ∈ C such that |λ − s′
2 | >

s′
2 . Since σ(Cs) equals the right-side of (3.10),

[23, Theorem 2], the operator T := (Cs − λI)−1 ∈ L(`s) exists. Set S := (Cs − λI) ∈ L(`s)
so that TS = I = S T in L(`s).

Step 1. T maps d(s) into d(s).
Fix x ∈ `s. Then T (x) ∈ `s and so CT (x) ∈ d(s); see Proposition 3.4. This shows that

CT maps `s into d(s). It is routine to verify that CT = TC in L(`s) and so also TC maps
`s into d(s). In particular, TC maps d(s) into d(s). Note that λ , 0 and that λT = I + TC
as an identity in L(`s). This identity implies that λT maps d(s) into d(s) and hence, so
does T.

Step 2. The restriction T̃ := T |d(s) belongs to L(d(s)).
Suppose that the sequence {x(n)}∞n=1 ⊆ d(s) satisfies x(n) −→ 0 in d(s) and that T̃ (x(n)) −→

y in d(s) for n −→ ∞. Since the inclusion d(s) ⊆ `s is continuous (cf. Proposition 2.7(iii)),
we have that x(n) −→ 0 in `s and T (x(n)) = T̃ (x(n)) −→ y in `s for n −→ ∞. But, T ∈ L(`s)
and so y = 0. Accordingly, T̃ is a closed operator in d(s) and hence, is continuous.

Step 3. The restriction S̃ := S |d(s) = (Cs − λI)|d(s) belongs to L(d(s)).
The continuity of S̃ in d(s) follows from Proposition 3.2(i) and the continuous inclu-

sion d(s) ⊆ `s.
To complete the proof of the Corollary let x ∈ d(s). Then d(s) ⊆ `s implies that

T̃ S̃ (x) = T̃ (S (x)) = T (S (x)) = x.

Similarly, S̃ T̃ (x) = x.Hence, S̃ T̃ = I = T̃ S̃ as an identity in L(d(s)). That is, the operator
S̃ = (C − λI)|d(s) is invertible in L(d(s)) with inverse T̃ = (Cs − λI)−1|d(s). Accordingly,
λ ∈ ρ(Cd(s)). Hence, we have shown that {λ ∈ C : |λ − s′

2 | >
s′
2 } ⊆ ρ(Cd(s)), that is,

σ(Cd(s)) ⊆ {λ ∈ C : |λ − s′
2 | ≤

s′
2 }. The reverse containment is Proposition 3.2(iii) and so

the equality (3.10) is established. �

Let E be a complex Banach lattice. An operator T ∈ L(E) is called regular if it is a
finite linear combination of positive operators. The complex vector space of all regular
operators is denoted by Lr(E); it is a unital Banach algebra for the norm

‖T‖r := inf{S ‖op : 0 ≤ S ∈ L(E), |T (z)| ≤ S (|z|) ∀z ∈ E}, T ∈ Lr(E).

Then ‖T‖op ≤ ‖T‖r for T ∈ Lr(E) with equality whenever T ≥ 0. The spectrum of
T ∈ Lr(E), considered as an element of the Banach algebra Lr(E), is denoted by σo(T )
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and is called its order spectrum. Then ρo(T ) := Crσo(T ) is the order resolvent set of T.
Clearly

(3.11) σ(T ) ⊆ σo(T ), T ∈ Lr(E).

Standard references for the above concepts and facts are [2], [34], [35].

Since C is a positive operator in CN it is a regular operator in the Banach lattices
`s, d(s) and ces(s), for 1 < s < ∞. It is known that

σo(Cs) = σo(Cces(s)) = σ(Cs) = σ(Cces(s)) = {λ ∈ C : |λ − s′
2 ≤

s′
2 },

[8]. We now show that the same identities hold for Cd(s). First we require some notation.

Let Σ0 := {0}∪{ 1n : n ∈ N}. The formula for the inverse operator (C−λI)−1 : CN −→ CN

whenever λ ∈ C\Σ0 is known, [31, p.266]. Namely, for n ∈ N the n-th row of the lower
triangular matrix determining (C − λI)−1 has the entries

(3.12) −1
nλ2 ∏n

k=m(1− 1
kλ )
, 1 ≤ m < n, and n

1−nλ = 1
( 1

n−λ)
, m = n,

with all other entries in row n being 0. We write

(3.13) (C − λI)−1 = Dλ −
1
λ2 Eλ,

where the diagonal matrix Dλ = (dnm(λ))∞n,m=1 is given by

(3.14) dnn(λ) := 1
( 1

n−λ)
and dnm(λ) := 0 if n , m.

Moreover, Eλ = (enm(λ))∞n,m=1 is the lower triangular matrix given by e1m(λ) = 0, for
m ∈ N, and for all n ≥ 2 by

(3.15) enm(λ) :=


1

nΠn
k=m(1− 1

kλ )
if 1 ≤ m < n

0 if m ≥ n.

Proposition 3.6. For each 1 < s < ∞ the order spectrum of Cd(s) satisfies

σo(Cd(s)) = σ(Cd(s)) = {λ ∈ C : |λ − s′
2 | ≤

s′
2 }.

Proof. In view of (3.11), with T := Cd(s), it suffices to verify that ρ(Cd(s)) ⊆ ρo(Cd(s)).We
decompose ρ(Cd(s)) =

{
λ ∈ C : |λ − s′

2 | >
s′
2

}
(see (3.10)) into two disjoint parts, namely

ρ1 := {λ ∈ C\{0} : Re( 1
λ
) ≤ 0} = {u ∈ C\{0} : Re(u) ≤ 0}

and its complement ρ2 := ρ(Cd(s)) r ρ1.
First fix λ ∈ ρ1 in which case (Cd(s) − λI)−1 ∈ L(d(s)). Then λ < Σ0 and so we may

consider Dλ and Eλ as specified by (3.14) and (3.15), respectively. It is shown on p.72 of
[14] that

(3.16) |enm(λ)| ≤ 1
n , 1 ≤ m < n, n ∈ N.

Warning. In [14] the set N = {0, 1, 2, . . .} is used rather than N = {1, 2, . . .} which is used
here and so the inequalities from [14] are slightly different when they are stated here.
Back to our proof, it is clear from the definition of C that the matrix A = (anm)∞n,m=1 of C
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is lower triangular with its n-th row, for each n ∈ N, given by anm := 1
n for 1 ≤ m ≤ n and

anm = 0 for m > n. Let B = (bnm)∞n,m=1 be the matrix of Eλ. It is clear from (3.16) that

|bnm| ≤ anm, m, n ∈ N.

Since the space X := d(s) has the property that A = Cd(s) maps X into X continuously, it
follows via Lemma 3.1 and Corollary 3.2 from [8] that Eλ : d(s) −→ d(s) is continuous
and regular. Also the diagonal operator Dλ is continuous and regular in d(s), [8, Lemma
3.3]. It follows from (3.13) that (Cd(s) − λI)−1 ∈ Lr(d(s)).

Concerning ρ2 it is known that ρ2 =
⋃

0<α<1/s′ Γα, where

Γα := {z ∈ C\{0} : Re(1
z ) = α} = {z ∈ C\{0} : |z − 1

2α | =
1

2α };

see the proof of Proposition 5.1 in [8]. Fix λ ∈ ρ2. Then there exists a unique α ∈ (0, 1
s′ )

such that λ ∈ Γα namely, α := Re( 1
λ
). Then, for 1 ≤ m < n and n ≥ 2 we have from (3.15)

that

|enm(λ)| = 1
n|Πn

k=m(1− 1
kλ )|

(3.17)

≤ 1
nΠn

k=m(1− αk ) = enm( 1
α
),

where we have used that 1
|z| ≤

1
|Re(z)| whenever Re(z) , 0 and (1 − α

k ) > 0 for all k ∈ N.
Moreover, 1

α
> s′ implies that 1

α
∈ ρ(Cd(s)), that is , (Cd(s) −

1
α

I)−1 ∈ L(d(s)). Since
D1/α ∈ L(d(s)), it follows that

E1/α = α2(D1/α − (Cd(s) −
1
α

I)−1) ∈ L(d(s)).

Accordingly, (3.17) and Corollary 3.2 of [8] imply that Eλ ∈ Lr(d(s)). It then follows
from [8, Lemma 3.3] and (3.13) that (Cd(s) − λI)−1 ∈ Lr(d(s)). �

A remarkable property of the spaces ces(p), 1 < p < ∞, as stated in (1.3), is due
to Bennett, [6, Theorem 20.31]. In view of (1.1), which implies (via Lemma 3.1(ii))
that C : ces(p) −→ `p, this property can be equivalently formulated as follows. Let
1 < p < ∞ and x ∈ CN. Then

(3.18) C2(|x|) ∈ `p if and only if C(|x|) ∈ `p.

Clearly (3.18) is a relationship between the class of spaces `p, 1 < p < ∞, and the action
of a particular operator, namely C, in these spaces. It is known that (3.18) remains valid if
`p is replaced with c0 or `∞, [14]. The same is true for the class of spaces N p, 1 < p < ∞,
arising in harmonic analysis and introduced in [5]; see [15, Theorem 2.4]. Namely,
N p := {x ∈ CN : |x| ≤ F ( f ) for some f ∈ Lp(T)}, where T := {z ∈ C : |z| = 1} is the circle
group and F ( f ) is the Fourier transform of f . Another class of such spaces is given by
the following result.

Proposition 3.7. Let 1 < s < ∞ and x ∈ CN. Then

(3.19) C2(|x|) ∈ d(s) i f and only i f C(|x|) ∈ d(s).

Proof. Fix 1 < s < ∞. Define ρ : CN −→ [0,∞] via

ρ(x) :=
(∑∞

n=1((x̂)n)s)1/s , x ∈ CN.
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Then X := {x ∈ CN : ρ(x) < ∞} is precisely the space d(s) and so we know that C maps
X intoX continuously. Furthermore,

ces(X) := {x ∈ CN : C(|x|) ∈ X}

is the space {x ∈ CN : C(|x|) ∈ d(s)}. Since C is a positive operator in CN we have
C(|C(|x|)|) = C2(|x|) for each x ∈ CN. So, (3.19) will follow from Theorem 3 of [13] and
the discussion after that result once we establish the following property ofX = d(s) :

(3.20) x ∈ CN belongs to d(s) whenever [x] ∈ d(s).

Here, given x = (xn)n ∈ CN the element [x] ∈ CN is defined by [x] := (x1, x1, x2, x2, x3, x3, . . .).
So, suppose that [x] ∈ d(s). It is routine to verify that

[x]ˆ= ((x̂)1, (x̂)1, (x̂)2, (x̂)2, (x̂)3, (x̂)3, . . .) = [x̂].

Since [x] ∈ d(s) implies that [x]ˆ ∈ `s, the previous identity shows that [x̂] ∈ `s. Ac-
cordingly, 2

∑∞
j=1((x̂) j)s < ∞ which clearly implies that x̂ ∈ `s, that is, x ∈ d(s). This

establishes (3.20) and thereby completes the proof of the proposition. �

Since the containment `s ⊆ ces(s) is strict for each 1 < s < ∞, [14, Remark 2.2(ii)],
the following result is an improvement on Proposition 3.4.

Corollary 3.8. For each 1 < s < ∞, the Cesàro operator C maps ces(s) into d(s), that
is, Cces(s),d(s) exists and is continuous.

Proof. If x ∈ ces(s), then Lemma 3.1(ii) implies that

‖C(x)‖s = ‖ |C(x)| ‖s ≤ ‖C(|x|)‖s = ‖x‖ces(s),

which shows that C : ces(s) −→ `s is continuous. Since also C : `s −→ d(s) is continuous
(cf. Proposition 3.4), it follows that the composition C2 maps ces(s) continuously into
d(s). That is,

(3.21) C2(x) ∈ d(s), ∀ x ∈ ces(s).

Let 0 ≤ x ∈ ces(s). It follows from (3.21) that C2(x) = C2(|x|) ∈ d(s) and hence,
by Proposition 3.7, that C(x) = C(|x|) ∈ d(s). This shows that C maps the positive cone
(ces(s))+ of ces(s) into d(s). Since each x ∈ ces(s) can be written as (Re(x))+− (Re(x))−+

i((Im(x))+−(Im(x))−) with {(Re(x))+, (Re(x))−, (Im(x))+, (Im(x))−} ⊆ (ces(s))+, it follows
that C maps ces(s) into d(s). The continuity of Cces(s),d(s) is a consequence of the closed
graph theorem. �

Since C : d(s) −→ d(s) is a positive operator, we may ask if there exist d(s)-valued
extensions of C to larger, solid Banach lattices in CN. Proposition 3.4 and Corollary
3.8 show that this is indeed possible. The largest of those solid Banach lattices for
which such a continuous d(s)-valued extension is possible is denoted by [C, d(s)]s. With
obvious notation, it is known that [C, `s]s = ces(s) and that [C, ces(s)]s = ces(s); see p.62
and Theorem 2.5 of [14], respectively.

Corollary 3.9. For each 1 < s < ∞ it is the case that

[C, d(s)]s = ces(s).
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Proof. Clearly [C, d(s)]s ⊆ [C, `s]s. Via the above discussion we see that [C, d(s)]s ⊆

ces(s). On the other hand, Corollary 3.8 shows that ces(s) ⊆ [C, d(s)]s. �

Given any Banach space operator T ∈ L(X) define its sequence of Cesàro averages by
T[n] := 1

n

∑n
m=1 T m for n ∈ N. Setting T[0] := I it is routine to verify that

(3.22) 1
nT n = T[n] −

(n−1)
n T[n−1], n ∈ N.

If the sequence {T[n]}
∞
n=1 converges in the strong operator topology (briefly, s.o.t.), that

is, limn→∞ T[n](x) exists in X for each x ∈ X, then T is called mean ergodic, [17, Ch.
VIII]. We note that σ(T ) ⊆ D whenever an operator T ∈ L(X) satisfies limn→∞

1
nT n = 0

in the s.o.t., [17, p.709, Lemma 1]. Here D := {z ∈ C : |z| < 1}. It is clear from (3.22)
that necessarily limn→∞

1
nT n = 0 in the s.o.t. whenever T is mean ergodic. An operator

T ∈ L(X) is called uniformly mean ergodic if {T[n]}
∞
n=1 is a convergent sequence in L(X)

for the operator norm.

Proposition 3.10. For each 1 < s < ∞, the Cesàro operator Cd(s) : d(s) −→ d(s) fails to
be mean ergodic.

Proof. If Cd(s) was mean ergodic, then the discussion prior to the proposition shows that
necessarily σ(Cd(s)) ⊆ D. But, this is not the case by Corollary 3.5. �

Let X be a separable Banach space and T ∈ L(X). If, for some x ∈ X, the projective
orbit {λT n(x) : λ ∈ C, n = 0, 1, 2, . . .} is dense in X, then T is called supercyclic. For the
theory of such operators see [19], for example. Since the projective orbit coincides with⋃∞

n=0 T n(span{x}), we see that being supercyclic is the same as being 1-supercyclic in the
sense of [9].

Proposition 3.11. For each 1 < s < ∞, the Cesàro operator Cd(s) : d(s) −→ d(s) fails to
be supercyclic.

Proof. It follows from (3.7) that the dual operator C′d(s) of Cd(s) has at least two linearly
independent eigenvectors. Hence, Cd(s) is not supercyclic, [9, Theorem 2.1]. �

4. Multiplier operators from d(s) into d(t)

Let a = (an)n ∈ CN. According to table 6 on p.69 of [6] we have (in the notation of
Section 1) that:

(4.1) Let 1 < s ≤ t < ∞ and a ∈ CN. Then a ∈ Md(s),d(t) i f and only i f (ann
1
t −

1
s )n ∈ `∞.

Note that ( 1
t −

1
s ) ≤ 0. In particular, `∞ ⊆ Md(s),d(t). If s = t, thenMd(s) = `∞. For fixed

a ∈ `∞ it is routine to verify that

(4.2) (ax)ˆ≤ ‖a‖∞ x̂, x ∈ `∞.

For each 1 < s < ∞, it follows from (4.2) that

‖Ma
d(s)(x)‖d(s) = ‖(ax)ˆ‖s ≤ ‖a‖∞‖x̂‖s = ‖a‖∞‖x‖d(s), x ∈ d(s).

Given n ∈ N, the vector x := n−1/sen satisfies ‖x‖d(s) = 1. Moreover,

(ax)ˆ= n−1/s|an|(1, 1, . . . 1, 0, 0, . . .)



16 J. BONET AND W.J. RICKER

with 1 occuring n-times and so ‖(ax)ˆ‖s = |an|, that is, ‖Ma
d(s)(x)‖d(s) = |an|. Accordingly,

Ma
d(s) : d(s) −→ d(s) is continuous and satisfies

(4.3) ‖Ma
d(s)‖op = ‖a‖∞, a ∈ `∞, 1 < s < ∞.

The following fact is from table 22 on p.70 of [6]:

(4.4) For 1 < t < s < ∞, we haveMd(s),d(t) = d(r) with 1
r = 1

t −
1
s .

Let 1 < s, t < ∞ and a ∈ Md(s),d(t), that is, Ma
d(s),d(t) ∈ L(d(s), d(t)). The dual Banach

spaces are given by (d(s))′ = ces(s′) and (d(t))′ = ces(t′); see Lemma 2.2. Moreover,
s ≤ t if and only if t′ ≤ s′. Accordingly, the identities

〈Ma
d(s),d(t)(x), y〉 = 〈ax, y〉 = 〈x, ay〉, x ∈ d(s), y ∈ ces(t′),

show that the dual operator (Ma
d(s),d(t))

′ ∈ L(ces(t′), ces(s′)) of Ma
d(s),d(t) is precisely the

multiplier operator Ma
c(t′),c(s′) : y 7−→ ay from ces(t′) to ces(s′).Here we have used the fact

(as the Copson space cop(p) = ces(p) for 1 < p < ∞, [6, p.47]) that the multiplier spaces
Mc(t′),c(s′) as given in tables 16 and 32 on pp.69–70 of [6] are consistent with the dual map
T 7−→ T ′ from L(d(s), d(t)) to L((d(t))′, (d(s))′) = L(ces(t′), ces(s′)). That is, a ∈ Md(s),d(t)

is a multiplier from d(s) to d(t) if and only if a ∈ Mc(t′),c(s′) is a multiplier from ces(t′) into
ces(s′). This will allow us to use duality arguments to deduce information about Ma

d(s),d(t)
via known facts about Ma

c(t′),c(s′).

Proposition 4.1. Let 1 < s ≤ t < ∞ and a ∈ Md(s),d(t). Then the continuous multiplier
operator Ma

d(s),d(t) : d(s) −→ d(t) is compact if and only if (ann
1
t −

1
s )n ∈ c0.

Proof. According to Schauder’s theorem, [17, Ch. VI, Theorem 5.2], Ma
d(s),d(t) is a com-

pact operator if and only if (Ma
d(s),d(t))

′ = Ma
c(t′),c(s′) is compact. Since t′ ≤ s′, it follows

from [1, Proposition 2.2] that Ma
c(t′),c(s′) is compact if and only if (ann

1
s′ −

1
t′ )n ∈ c0. But,

( 1
s′ −

1
t′ ) = (1

t −
1
s ) and so Ma

d(s),d(t) is compact if and only if (ann
1
t −

1
s )n ∈ c0. �

Remark 4.2. (i) Let 1 < s < t < ∞. For the constant sequence a = (1, 1, . . .) ∈ `∞ ⊆
Md(s),d(t) it follows from Proposition 4.1 that the natural inclusion map id(s),d(t) = Ma

d(s),d(t)

from d(s) into d(t) is compact because (ann
1
t −

1
s )n = (n

1
t −

1
s )n ∈ c0.

(ii) For the case when s = t and a ∈ Md(s) = `∞, Proposition 4.1 implies that the
multiplier operator Ma

d(s) : d(s) −→ d(s) is compact if and only if a ∈ c0. �

Lemma 4.3. Let 1 < t < s < ∞ and r satisfy 1
r = 1

t −
1
s . Then there exists a constant

Bs,t > 0 such that

‖Ma
d(s),d(t)‖op ≤ Bs,t ‖a‖d(r), ∀a ∈ Md(s),d(t) = d(r).

Proof. ThatMd(s),d(t) = d(r) is precisely (4.4). Since the norm ‖Ma
d(s),d(t)‖op of Ma

d(s),d(t)
coincides with the norm ‖(Ma

d(s),d(t))
′‖op of the dual operator (Ma

d(s),d(t))
′ = Ma

c(t′),c(s′) and
1 < s′ < t′ < ∞, the stated inequality follows from Lemma 2.4 of [1]. �

The following result, for 1 < t < s < ∞, shows that every multiplier operator Ma
d(s),d(t)

for a ∈ Md(s),d(t) is compact.

Proposition 4.4. Let 1 < t < s < ∞. For a ∈ CN the following assertions are equivalent.
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(i) a ∈ Md(s),d(t), that is Ma
d(s),d(t) : d(s) −→ d(t) is continuous.

(ii) Ma
d(s),d(t) : d(s) −→ d(t) is compact.

(iii) a ∈ d(r), where 1
r = 1

t −
1
s .

Proof. (i)⇔ (iii) is (4.4) and (ii)⇒ (i) is clear.
(iii) ⇒ (ii). Using Lemma 4.3 above in place of Lemma 2.4 in [1] it is clear that the

proof of (iii)⇒ (ii) in Proposition 2.5 of [1] can be adapted to apply here; one needs to
replace Ma

p,q (= Ma
c(p),c(q)) in the notation from there in [1] with Ma

d(s),d(t) here. �

In view of (4.3), the following fact can be verified by modifying suitably the proofs of
Lemma 2.6 and Proposition 2.7 in [1].

Proposition 4.5. Let 1 < s < ∞. For each a ∈ `∞ =Md(s) we have that

(4.5) ‖Ma
d(s)‖op = ‖a‖∞

and that

(4.6) σ(Ma
d(s)) = a(N) = {an : n ∈ N}.

Remark 4.6. The Banach lattices d(s), 1 < s < ∞, are also Banach function spaces over
the σ-finite measure space (N, 2N, µ),where µ is counting measure, [36, p.252 and §112].
Since Md(s) = `∞, it follows from [8, Proposition 2.1(iii)] and Proposition 4.5 that the
order spectrum

σo(Ma
d(s)) = σ(Ma

d(s)) = a(N), ∀ a ∈ Md(s), 1 < s < ∞. �

A Banach space operator T ∈ L(X) is called power bounded if supn∈N ‖T
n‖op < ∞.

In this case limn→∞
1
n‖T

n‖op = 0. The following result characterizes which multiplier
operators are mean ergodic.

Proposition 4.7. Let 1 < s < ∞ and a ∈ Md(s) = `∞. The following statements are
equivalent.

(i) ‖a‖∞ ≤ 1.
(ii) The operator Ma

d(s) ∈ L(d(s)) is power bounded.
(iii) The operator Ma

d(s) ∈ L(d(s)) is mean ergodic.
(iv) The spectrum σ(Ma

d(s)) ⊆ D.
(v) limn→∞

1
n (Ma

d(s))
n = 0 for the s.o.t. in L(d(s)).

By using the identities (4.5) and (4.6) it is routine to establish Proposition 4.7 by
suitably adapting the proof of Proposition 2.8 in [1].

In view of Proposition 4.7 we can suppose that ‖a‖∞ ≤ 1 and that Ma
d(s) is power

bounded whenever it is mean ergodic. Then limn→∞
1
n‖(Ma

d(s))
n‖op = 0 and so, by a

known result, [25], the uniform mean ergodicity of Ma
d(s) is equivalent to the range

(I − Ma
d(s))(d(s)) = (M1−a

d(s))(d(s)) of I − Ma
d(s) being a closed subspace of d(s), where

1 denotes the constant sequence with all coordinates equal to 1.

Given w ∈ CN define its support by S (w) := {n ∈ N : wn , 0}. Then wχS (w) = w as
elements of CN. If w ∈ `∞, then the range

(4.7) Mw
d(s)(d(s)) := {wx : x ∈ d(s)} = {wxχS (w) : x ∈ d(s)},
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for each 1 < s < ∞. We also require the closed subspace of d(s) which is the range of
the continuous projection operator MχS (w)

d(s) , that is,

(4.8) Xw,d(s) := {xχS (w) : x ∈ d(s)} = MχS (w)

d(s) (d(s)).

It is routine to check that Xw,d(s) is Mw
d(s)-invariant. Let M̃w

d(s) : Xw,d(s) −→ Xw,d(s) be
the restriction of Mw

d(s) to Xw,d(s) so that M̃w
d(s) ∈ L(Xw,d(s)). Since wn , 0 for each

n ∈ S (w), it follows that M̃w
d(s) is injective. Hence, M̃w

d(s) is a vector space isomor-
phism of Xw,d(s) onto its range M̃w

d(s)(Xw,d(s)) in Xw,d(s). It follows from (4.7) and (4.8)
that M̃w

d(s)(Xw,d(s)) = Mw
d(s)(d(s)) provided that Mw

d(s)(d(s)) is closed in d(s).

The facts recorded in the previous paragraph can be used to establish the following
result by adequately adapting the proof of Lemma 2.9 in [1].

Lemma 4.8. Let w ∈ `∞ and 1 < s < ∞. If the range Mw
d(s)(d(s)) is closed in d(s), then

0 < (wχS (w))(N).

Equipped with Lemma 4.8 and the identities (4.7) and (4.8) the following result can
be established along the lines of the proof of Proposition 2.10 in [1].

Proposition 4.9. Let 1 < s < ∞ and a ∈ Md(s) = `∞. The following assertions are
equivalent.

(i) Ma
d(s) is uniformly mean ergodic.

(ii) ‖a‖∞ ≤ 1 and 1 < a(N)\{1}.

Example 4.10. Let 1 < s < ∞ and set a := (1 − 1
n )n. Then a ∈ `∞ and ‖a‖∞ = 1.

Proposition 4.7 ensures that Ma
d(s) is mean ergodic. However, as 1 ∈ a(N)\{1} it follows

from Proposition 4.9 that Ma
d(s) is not uniformly mean ergodic. �

Proposition 4.11. Let 1 < s < ∞ and a ∈ Md(s) = `∞. The multiplier operator Ma
d(s) ∈

L(d(s)) fails to be supercyclic.

Proof. Since d(s) is dense in the Frèchet space CN (equipped with its topology of coordi-
natewise convergence) and the natural inclusion d(s) ⊆ CN is continuous (cf. Proposition
2.7(vi)), the supercyclicity of Ma

d(s) would imply the supercyclicity of the multiplication
operator Ma : CN −→ CN defined by x 7−→ ax for x ∈ CN. But, it is known that this is
not the case, [1, Lemma 2.11]. So, Ma

d(s) is not supercyclic. �

5. Cesàro and inclusion operators

Let X,Y ∈ {d(s), ces(p), `t : 1 < p, s, t < ∞}. The notation when considering the
Cesàro operator C : X −→ Y was introduced in Section 3. We use the analogous notation
for the natural inclusion maps i : X −→ Y, whenever they exist. As a sample, id(s),t (resp.
id(s),c(p)) denotes the inclusion map from X = d(s) into Y = `t (resp. from X = d(s) into
Y = ces(p)). The main aim of this section is to identify those pairs of spaces X,Y such
that C : X −→ Y and i : X −→ Y do exist (in which case continuity follows from the
closed graph theorem) and, for such a pair X,Y, to determine whether or not the operator
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is compact. Recalling the notation Cp := Cp,p and Cc(p) := Cc(p),c(p) and Cd(p) := Cd(p),d(p),
it was already noted earlier that

(5.1) σ(Cp) = σ(Cc(p)) = σ(Cd(p)) = {λ ∈ C : |λ − p′

2 | ≤
p′

2 }, 1 < p < ∞.

Accordingly, all such Cesàro operators fail to be compact as their spectrum is uncount-
able. Concerning inclusion maps, it is routine to check that i : X −→ Y exists if and only
if its dual operator i′ : Y ′ −→ X′ exists. Of course, the dual operator i′ is the natural
inclusion map i : Y ′ −→ X′. According to Schauder’s theorem, i : X −→ Y is compact
if and only if i : Y ′ −→ X′ is compact. The situation when both spaces X,Y belong to
{ces(p), `q : 1 < p, q < ∞} is completely answered in Section 3 of [1]. So, we only
need to consider the remaining cases, that is, when at least one of X or Y is d(s) for some
1 < s < ∞.

Let us begin with various inclusion operators.

Proposition 5.1. Let 1 < s, t < ∞ be an arbitrary pair.
(i) The inclusion map id(s),c(t) : d(s) −→ c(t) exists if and only if s ≤ t.

(ii) The inclusion map id(s),t : d(s) −→ `t exists if and only if s ≤ t.
(iii) The inclusion map id(s),d(t) : d(s) −→ d(t) exists if and only if s ≤ t.
(iv) `s * d(t) and ces(s) * d(t).

Proof. (i) Let s ≤ t. Proposition 2.7(iii) implies that id(s),s : d(s) −→ `s exists and, by
Proposition 3.2(ii) of [1], also is,c(t) : `s −→ ces(t) exists. Accordingly, the composition
id(s),c(t) = is,c(t) ◦ id(s),s exists .

Let s > t. Suppose that id(s),c(t) exists. Since the operator Cc(s),d(s) : ces(s) −→ d(s)
exists (cf. Corollary 3.8), it follows that the operator Cc(s),c(t) = id(s),c(t) ◦ Cc(s),d(s) also
exists. But, this is not the case, [1, Proposition 3.5(iii)]. So, id(s),c(t) does not exist.

(ii) Note that s ≤ t if and only if the conjugate indices satisfy t′ ≤ s′. Moreover, the
dual operator (id(s),t)′ is the natural inclusion map it′,c(s′) : `t′ −→ ces(s′), interpreted to
mean that whenever one of the operators exists then so does the other one. The stated
claim then follows by setting p := t′ and q := s′ in Proposition 3.2(ii) of [1].

(iii) Let s ≤ t. Then the inclusion map id(s),d(t) : d(s) −→ d(t) exists by Proposition
2.7(i). On the other hand, Proposition 2.7(ii) shows that d(t) $ d(s) whenever s > t, that
is, the inclusion id(s),d(t) does not exist.

(iv) Remark 2.8(i) implies that `s * d(t). Remark 2.8(ii) shows that ces(s) * d(t). �

The following result characterizes, for those inclusion maps which exist, precisely
when they are compact.

Proposition 5.2. Let 1 < s ≤ t < ∞ be an arbitrary pair.
(i) The inclusion map id(s),c(t) : d(s) −→ c(t) is compact if and only if s < t.

(ii) The inclusion map id(s),t : d(s) −→ `t is compact if and only if s < t.
(iii) The inclusion map id(s),d(t) : d(s) −→ d(t) is compact if and only if s < t.

Proof. (i) Suppose that s < t. By Remark 4.2(i) the inclusion map id(s),d(t) is compact
and by Proposition 5.1(i) the inclusion id(t),c(t) is continuous. So, id(s),c(t) = id(t),c(t) ◦ id(s),d(t)

is compact.
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For the case when s = t, suppose that the continuous inclusion map id(s),c(s) (cf. Propo-
sition 5.1(i)) is actually compact. Since the Cesàro operator Cc(s),d(s) : ces(s) −→ d(s) is
continuous (cf. Corollary 3.7), it follows that Cd(s) = Cc(s),d(s) ◦ id(s),c(s) is compact, which
is not the case by (5.1). Hence, id(s),c(s) fails to be compact.

(ii) Note that s ≤ t if and only if t′ ≤ s′ and that the dual operator (id(s),t)′ is the natural
inclusion map it′,c(s′) : `t′ −→ ces(s′). So, by Schauder’s theorem, the stated claim follows
by setting p := t′ and q := s′ in Proposition 3.4(iii) of [1].

(iii) If s < t, then id(s),d(t) is compact by Remark 4.2(i). For the case of s = t we see
that id(s),d(s) is the identity operator on d(s) and hence, is surely not compact. �

We now turn our attention to various Cesàro operators. First we need to determine
which of these operators actually exist. By the closed graph theorem they are then con-
tinuous.

Proposition 5.3. Let 1 < s, t < ∞ be an arbitrary pair.
(i) The Cesàro operator Cd(s),c(t) : d(s) −→ ces(t) exists if and only if s ≤ t.

(ii) The Cesàro operator Cd(s),t : d(s) −→ `t exists if and only if s ≤ t.
(iii) The Cesàro operator Cd(s),d(t) : d(s) −→ d(t) exists if and only if s ≤ t.
(iv) The Cesàro operator Cs,d(t) : `s −→ d(t) exists if and only if s ≤ t.
(v) The Cesàro operator Cc(s),d(t) : ces(s) −→ d(t) exists if and only if s ≤ t.

Proof. (i) Suppose that s ≤ t. Then the inclusion map id(s),s exists (cf. Proposition 5.1(ii))
as does Cs,c(t), [1, Proposition 3.5(ii)]. Hence, also Cd(s),c(t) = Cs,c(t) ◦ id(s),s exists.

Let s > t and assume that Cd(s,),c(t) does exist. Since Cc(t),d(t) is continuous by Corollary
3.8 and id(t),d(s) is compact by Proposition 5.2(iii), it follows that the operator

(Cd(s))2 = id(t),d(s) ◦Cc(t),d(t) ◦Cd(s),c(t)

is compact. But, this is impossible because (5.1) and the spectral mapping theorem,
[17, VII Theorem 3.11], imply that the set σ((Cd(s))2) = {λ2 : λ ∈ σ(Cd(s))} is uncountable
(it contains the real interval [0, (s′)2], for example). Hence, Cd(s),c(t) does not exist.

(ii) Assume that s ≤ t. Proposition 5.1(ii) implies the existence of id(s),s and [1, Propo-
sition 3.5(i)] ensures the existence of Cs,t. The existence of Cd(s),t = Cs,t ◦ id(s),s is then
clear.

Let s > t. Suppose that Cd(s),t does exist. The continuity of Ct,d(t) is known (cf. Propo-
sition 3.4) and id(t),d(s) is compact by Proposition 5.2(iii). Accordingly,

(Cd(s))2 = id(t),d(s) ◦Ct,d(t) ◦Cd(s),t

is compact. The proof of part (i) shows that this is not the case and so Cd(s),t does not
exist.

(iii) Let s ≤ t. Proposition 3.2(i) shows that Cd(t) exists and the map id(s),d(t) exists by
Proposition 2.7(i). So, the existence of Cd(s),d(t) = Cd(t) ◦ id(s),d(t) is clear.

Let s > t and suppose that Cd(s),d(t) exists. Since id(t),d(s) is compact (cf. Proposition
5.2(iii)), it follows that Cd(s) = id(t),d(s) ◦ Cd(s),d(t) is also compact which contradicts (5.1).
So, Cd(s),d(t) does not exist.

(iv) Suppose that s ≤ t. It is well known that is,t exists and, by Proposition 3.4, also
Ct,d(t) exists. Accordingly, Cs,d(t) = Ct,d(t) ◦ is,t surely exists.
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Let s > t. Note that id(s),s exists by Proposition 5.1(i) and that id(t),d(s) is compact by
Proposition 5.2(iii). If Cs,d(t) exists, then Cd(s) = id(t),d(s) ◦ Cs,d(t) ◦ id(s),s is a compact
operator, which is impossible by (5.1). Hence, Cs,d(t) does not exist.

(v) Let s ≤ t. Then Cc(t),d(t) exists by Corollary 3.7 and the map ic(s),c(t) exists by
[1, Proposition 3.2(iii)]. Hence, Cc(s),d(t) = Cc(t),d(t) ◦ ic(s),c(t) also exists.

Assume that s > t. By Proposition 5.2(i) we see that id(t),c(s) is compact. So, if Cc(s),d(t)

exists, then Cc(s) = id(t),c(s) ◦ Cc(s),d(t) is a compact operator, which is impossible by (5.1).
Accordingly, Cc(s),d(t) does not exist. �

Our final result determines precisely which Cesàro operators, when they exist (see
Proposition 5.3), are compact.

Proposition 5.4. Let 1 < s ≤ t < ∞ be arbitrary.
(i) The Cesàro operator Cd(s),c(t) is compact if and only if s < t.

(ii) The Cesàro operator Cd(s),t is compact if and only if s < t.
(iii) The Cesàro operator Cd(s),d(t) is compact if and only if s < t.
(iv) The Cesàro operator Cs,d(t) is compact if and only if s < t.
(v) The Cesàro operator Cc(s),d(t) is compact if and only if s < t.

Proof. (i) Let s < t. The inclusion map id(s),d(t) is compact (cf. Proposition 5.2(iii)) and
id(t),t is continuous (cf. Proposition 5.1(ii)). Since Ct,c(t) is also continuous, [1, Proposition
3.5(ii)], it follows that Cd(s),c(t) = Ct,c(t) ◦ id(t),t ◦ id(s),d(t) is a compact operator.

Suppose that s = t. Both Cd(s),c(s) and Cc(s),d(s) are continuous; see parts (i) and (v) of
Proposition 5.3, respectively. If Cd(s),c(s) were also compact, then (Cd(s))2 = Cc(s),d(s) ◦

Cd(s),c(s) would be compact, which is not the case; see the proof of part (i) of Proposition
5.3(i). So, Cd(s),c(s) fails to be compact.

(ii) Let s < t. By Proposition 5.2(iii) the inclusion id(s),d(t) is compact and Cd(t),t is
continuous by Proposition 5.2(ii). Hence, Cd(s),t = Cd(t),t ◦ id(s),d(t) is compact.

Assume that s = t. Both Cd(s),s and Cs,d(s) are continuous; see parts (ii) and (iv) of
Proposition 5.3, respectively. If Cd(s),s were also compact, then (Cd(s))2 = Cs,d(s) ◦ Cd(s),s

would be compact which is not so. Hence, Cd(s),s is not compact.
(iii) Let s < t. By Proposition 5.2(iii) the inclusion id(s),d(t) is compact. Moreover, Cd(t)

is continuous by Proposition 5.3(iii). So, Cd(s),d(t) = Cd(t) ◦ id(s),d(t) is necessarily compact.
For s = t we note that Cd(s),d(s) (= Cd(s)) is not compact; see (5.1) and the discussion

following it.
(iv) Let s < t. Then id(s),d(t) is compact by Proposition 5.2(iii). Moreover, Cs,d(s) is

continuous by Proposition 5.3(iv). Hence, Cs,d(t) = id(s),d(t) ◦Cs,d(s) is a compact operator.
Suppose that s = t. Both Cs,d(s) and id(s),s are continuous by Proposition 5.3(iv) and

Proposition 5.1(ii), respectively. If Cs,d(s) were also compact, then Cs = id(s),s ◦ Cs,d(s)

would be compact which is not the case. Hence, Cs,d(s) fails to be compact.
(v) Let s < t. Then id(s),d(t) is compact by Proposition 5.2(iii) and Cc(s),d(s) is continuous

by Proposition 5.3(v). Accordingly, Cc(s),d(t) = id(s),d(t) ◦Cc(s),d(s) is compact.
Assume that s = t. Both Cc(s),d(s) and Cd(s),c(s) are continuous; see parts (v) and (i) of

Proposition 5.3, respectively. If Cc(s),d(s) were also compact, then (Cc(s))2 = Cd(s),c(s) ◦

Cc(s),d(s) would be compact. But, (5.1) and the spectral mapping theorem imply that this
is not the case. So, Cc(s),d(s) is not compact. �
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[24] K. Leśnik, L. Maligranda, Abstract Cesàro spaces. Duality, J. Math. Anal. Appl., 424 (2015), 932–

951.
[25] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43 (1974), 337–340.
[26] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I and II, Springer Verlag, Berlin Heidelberg

New York, 1996.



OPERATORS ACTING IN THE DUAL SPACES OF DISCRETE CESÀRO SPACES 23

[27] L. Maligranda, N. Petrot, S. Suantai, On the James constant and B-convexity of Cesàro and Cesàro-
Orlicz sequence spaces, J. Math. Anal. Appl. 326 (2007), 312–331.

[28] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin Heidelberg New York, 1991.
[29] S. Okada, W.J. Ricker, E.A. Sánchez-Pérez, Optimal Domain and Integral Extension of Opera-

tors Acting in Function Spaces, Operator Theory Advances and Applications, Vol. 180, Birkhäuser,
Berlin, 2008.

[30] J.C. Ramos-Fernández, M.A. Rivera-Sariento, M. Salas-Brown, On the essential norm of multiplica-
tion operators acting on Cesàro sequence spaces, J. Funct. Spaces 2019, Art. Id. 5069610, 5 pp.

[31] J.B. Reade, On the spectrum of the Cesàro operator, Bull London Math. Soc., 117 (1985), 263–267.
[32] W.J. Ricker, Convolution operators in discrete Cesàro spaces, Arch. Math., 112 (2019), 71–82.
[33] W.J. Ricker, The order spectrum of convolution operators in discrete Cesàro spaces, Indag. Math.

(N.S)., https://doi.org/10.1016/j.indag.2019.01.008
[34] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin Heidelberg New York, 1974.
[35] H.H. Schaefer, On the o-spectrum of order bounded operators, Math. Z., 154 (1977), 79–84.
[36] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam, 1983.
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