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Abstract. The dual spaces d(p), 1 < p < ∞, of the discrete Cesàro (Banach) spaces
ces(q), 1 < q < ∞, were studied by G. Bennett, A. Jagers and others. These (reflexive)
dual Banach spaces induce the non-normable Fréchet spaces d(p+) :=

⋂
r>p d(r), for

1 ≤ p < ∞, and the (LB)-spaces d(p−) :=
⋃

1<r<p d(r), for 1 < p ≤ ∞, recently
introduced and investigated in [11]. Here a detailed study is made of various aspects,
such as the spectrum, continuity, compactness, mean ergodicity and supercyclicity of
the Cesàro operator, multiplication operators and inclusion operators when they act on
(and between) such spaces.

1. Introduction

Given an element x = (xn)n of CN let |x| := (|xn|)n and write x ≥ 0 if x = |x|. By x ≤ z
we mean that (z− x) ≥ 0. The sequence space CN is a Frèchet space for the locally convex
topology of coordinatewise convergence. The Cesàro operator C : CN −→ CN, defined
by

(1.1) C(x) := (x1,
x1 + x2

2
, . . . ,

x1 + x2 + . . . + xn

n
, . . .), x = (xn)n ∈ CN,

satisfies 0 ≤ |C(x)| ≤ C(|x|), for x ∈ CN, and is a linear and topological isomorphism of
CN onto itself. Clearly C(x) ≥ 0 whenever x ≥ 0 in CN. It is known that C : `p −→ `p is
continuous for every 1 < p < ∞, [18, Theorem 326]. G. Bennett thoroughly investigated
the spaces

(1.2) ces(p) := {x ∈ CN : C(|x|) ∈ `p}, 1 < p < ∞,

which are reflexive Banach spaces relative to the norm

(1.3) ‖x‖ces(p) := ‖C(|x|)‖p, x ∈ ces(p),

where ‖ · ‖p denotes the usual norm in `p; see, for example, [9], as well as [8], [14],
[16], [24] and the references therein. The dual Banach spaces (ces(p))′, 1 < p < ∞, are
somewhat complicated, [19]. A more transparent isomorphic identification of (ces(p))′

is presented in Corollary 12.17 of [9]. It is shown there that

(1.4) d(p) := {x ∈ `∞ : x̂ := (supk≥n |xk|)n ∈ `p}, 1 < p < ∞,

is a Banach space for the norm

(1.5) ‖x‖d(p) := ‖x̂‖p, x ∈ d(p),
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which is isomorphic to (ces(p′))′, where 1
p + 1

p′ = 1. The duality is given by

〈w, x〉 :=
∞∑

n=1

wnxn, w ∈ ces(p′), x ∈ d(p).

The family of Banach spaces ces(p), 1 < p < ∞, induces the Fréchet spaces ces(p+) :=⋂
q>p ces(q) for 1 ≤ p < ∞ and induces the (LB)-spaces ces(p−) :=

⋃
1<q<p ces(q) for

1 < p ≤ ∞. These non-normable sequence spaces in CN were introduced and studied
in [3], [7], as well as the properties of various linear operators acting in them, [5], [7].
Similarly, the family of Banach spaces d(p), 1 < p < ∞, which were investigated in
some detail in [10], generate the corresponding Fréchet spaces d(p+) :=

⋂
q>p d(q) for

1 ≤ p < ∞ and the (LB)-spaces d(p−) :=
⋃

1<q<p d(q) for 1 < p ≤ ∞. The spaces d(p+)
and d(p−) were introduced and studied in [11], where it is shown that they are rather
different to their counterparts ces(p+) and ces(p−), respectively.

The purpose of this paper is to undertake an investigation of certain natural linear op-
erators (e.g., the Cesàro operator, inclusion maps, multiplication operators) acting in the
spaces d(p+), p ∈ [1,∞), and d(p−), 1 < p ≤ ∞, and to determine various properties
of such operators, e.g. their spectrum, compactness, mean ergodicity, etc. We point out
that a detailed investigation of the Cesàro operator C acting on the Banach spaces ces(p),
resp. d(p), for 1 < p < ∞, was carried out in [6], [14], resp. [10], and on the Fréchet
spaces ces(p+) for 1 ≤ p < ∞ in [5]. For the (LB)-spaces ces(p−), 1 < p ≤ ∞, see [7].
Here we treat C when it is acting in the spaces d(p+), p ∈ [1,∞), and d(p−), 1 < p ≤ ∞.
Its spectrum is determined in Theorem 3.2 for d(p+) and in Theorem 3.6 for d(p−). For
the mean ergodic properties of C, see Proposition 3.5 (for d(p+)) and Proposition 3.8
(for d(p−)). The properties of multiplication operators on ces(p+), resp. ces(p−), can be
found in [5], resp. [7]. Here we are concerned with such operators when they act in the
spaces d(p+) and d(p−), especially their spectrum, compactness and mean ergodicity;
see Section 4. For a characterization of multiplication operators in d(p+), resp. d(p−),
we refer to Theorem 4.8, resp. Theorem 4.7. Curiously, when acting in d(p+), the space
of multipliers is independent of p; see Remark 4.9. Theorem 4.13 identifies precisely
which multiplication operators, both in d(p+) and in d(p−), are compact; in both cases
the space of such operators is “independent” of p. The spectra of multiplication operators
in d(p+), resp. d(p−), are identified in Theorem 4.16, resp. Theorem 4.17. The mean
ergodic properties of multiplication operators are recorded in Theorem 4.20 and Theo-
rem 4.21. An interesting feature (see Theorem 4.10) is that algebra of all multiplication
operators, both in d(p+) and in d(p−), is maximal abelian, that is, it coincides with its
commutant algebra. The final section 5 is devoted to analyzing various operators acting
between different spaces. As a sample, we mention that C maps d(p+) continuously into
d(q+) if and only if 1 ≤ p ≤ q < ∞ (see Theorem 5.8), whereas it is a compact oper-
ator if and only if p < q (cf. Theorem 5.11). Moreover, C maps ces(p−) continuously
into d(q−) if and only if p ≤ q (see Theorem 5.9), whereas it is compact if and only
if p < q (cf. Theorem 5.12). Such results rely on a detailed knowledge of the conti-
nuity/compactness properties of inclusion maps between members within the family of
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spaces {`p+, ces(q+), d(r+) : 1 ≤ p, q, r < ∞} and also between members within the fam-
ily of spaces {`p−, ces(q−), d(r−) : 1 < p, q, r ≤ ∞}; see, for example, Theorem 5.3 and
Theorem 5.6.

2. Preliminaries

Let X,Y be locally convex Hausdorff spaces (briefly, lcHs’). The identity operator on
X is denoted by I and L(X,Y) is the space of all continuous linear operators from X into
Y; brieflyL(X) if X = Y. The null space and the range of T ∈ L(X) are denoted by Ker(T )
and Im(T), respectively. Let ΓX be any system of continuous seminorms generating the
topology of X. Then Ls(X) denotes L(X) equipped with the strong operator topology τs

which is given by the family of seminorms qx : T 7−→ q(T x), for every x ∈ X and q ∈ ΓX.
Furthermore,Lb(X) denotesL(X) endowed with the topology τb of uniform convergence
on the bounded subsets of X, i.e., generated by the seminorms qB : T 7−→ supx∈B q(T x),
for every q ∈ ΓX and every bounded set B ⊆ X. If ΓX can be taken to be countable and
X is complete, then X is called a Fréchet space. The dual operator of T ∈ L(X,Y) is
denoted by T ′ : Y ′ −→ X′, where X′ = L(X,C) is the topological dual space of X. The
strong topology in X (resp. in X′) is denoted by β(X, X′) (resp. by β(X′, X)) and we write
Xβ (resp. X′β). If X is a barrelled space, then Xβ = X, [25, Remark p. 271]. Given lcHs’
X,Y and T ∈ L(X,Y), its dual operator T ′ ∈ L(Y ′β, X

′
β), [25, Proposition 23.30(b)]. Our

basic references for functional analysis and operators in lcHs’ are [15], [20], [21], [22],
[25].

Recall that an operator T ∈ L(X,Y),with X,Y lcHs’, is called bounded (resp. compact)
if there exists a neighbourhood U of 0 ∈ X such that T (U) is a bounded (resp. a relatively
compact) subset of Y. If Y is Montel (i.e., each bounded set is relatively compact), then
T ∈ L(X,Y) is compact if and only if it is bounded. All of the Fréchet spaces considered
in this paper are of the type described in the following result, [5, Lemma 25].

Lemma 2.1. Let X := projkXk and Y := projmYm be Fréchet spaces such that X =⋂
k∈N Xk with each (Xk, ‖ · ‖k) a Banach space (resp. Y =

⋂
m∈N Ym with each (Ym, ‖ · ‖m)

a Banach space). Moreover, it is assumed that X is dense in Xk and that Xk+1 ⊆ Xk with
a continuous inclusion for each k ∈ N (resp. Ym+1 ⊆ Ym with a continuous inclusion for
each m ∈ N). Let T : X −→ Y be a linear operator.

(i) T is continuous if and only if for each m ∈ N there exists k ∈ N such that T has a
unique continuous linear extension Tk,m : Xk −→ Ym.

(ii) Assume that T ∈ L(X,Y). Then T is bounded if and only if there exists k0 ∈ N
such that, for every m ∈ N, the operator T has a unique continuous linear extension
Tk0,m : Xk0 −→ Ym.

Let Y = indmYm be a regular (LB)-space, [20, p. 83]. Then a set B ⊆ Y is bounded if
and only if there exists m ∈ N such that B ⊆ Ym and B is bounded in the Banach space Ym.
All of the (LB)-spaces considered in this paper are of the type described in the following
result, [7, Lemma 17].

Lemma 2.2. Let X = indkXk and Y = indmYm be two (LB)-spaces with increasing unions
of Banach spaces X =

⋃
k∈N Xk and Y =

⋃
m∈N Ym. Let T : X −→ Y be a linear operator.
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(i) T is continuous if and only if for each k ∈ N there exists m ∈ N such that T (Xk) ⊆
Ym and the restriction T : Xk −→ Ym is continuous.

(ii) Assume that Y is regular. Then T is bounded if and only if there exists m ∈ N such
that T (Xk) ⊆ Ym and T : Xk −→ Ym is continuous for all k ≥ m.

The following result, [22, §42.1(6), p. 202], is a version of Schauder’s theorem in the
Banach space setting.

Lemma 2.3. Let X,Y be Montel spaces. Then T ∈ L(X,Y) is compact if and only if
T ′ ∈ L(Y ′β, X

′
β) is compact.

For T ∈ L(X), with X a lcHs, the resolvent set ρ(T ) of T consists of all λ ∈ C such that
R(λ,T ) := (λI − T )−1 exists in L(X). The set σ(T ) := C r ρ(T ) is called the spectrum of
T. The point spectrum σpt(T ) of T consists of all λ ∈ C such that (λI−T ) is not injective.
If the space X needs to be stressed, then we also write σ(T ; X), σpt(T ; X) and ρ(T ; X).
Unlike for Banach spaces, it may happen that ρ(T ) = ∅ or that ρ(T ) is not open in C. This
is why some authors (eg. [28]) prefer the subset ρ∗(T ) of ρ(T ) consisting of all λ ∈ C for
which there exists δ > 0 such that the open disc B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T )
and {R(µ,T ) : µ ∈ B(λ, δ)} is an equicontinuous subset of L(X). If X is a Fréchet space
or an (LB)-space, then it suffices that such sets are bounded in Ls(X). Define σ∗(T ) :=
C r ρ∗(T ), which is a closed set containing σ(T ). If X happens to be a Banach space,
then σ∗(T ) = σ(T ). An advantage of ρ∗(T ), if it is non-empty, is that it is open and the
resolvent map λ 7−→ R(λ,T ) is analytic from ρ∗(T ) into Lb(X), [1, Proposition 3.4]. In
[1, Remark 3.5(vi), p. 265] an example of an operator T ∈ L(X), with X a Fréchet space,
is presented which satisfies σ(T ) ⊆ σ∗(T ) properly.

The following two facts are important for determining the spectra of operators in cer-
tain Fréchet spaces and (LB)-spaces. The first result occurs in [2, Lemma 2.1] .

Lemma 2.4. Let X =
⋂

n∈N Xn be a Fréchet space which is the intersection of a sequence
of Banach spaces (Xn, ‖ · ‖n), for n ∈ N, satisfying Xn+1 ⊆ Xn with ‖x‖n ≤ ‖x‖n+1 for each
n ∈ N and x ∈ Xn+1. Let T ∈ L(X) satisfy the following condition:

(A) For each n ∈ N there exists Tn ∈ L(Xn) such that the restriction of Tn to X (resp.
of Tn to Xn+1) coincides with T (resp. with Tn+1).

Then σ(T ; X) ⊆
⋃

n∈N σ(Tn; Xn) and R(λ,T ) coincides with the restriction of R(λ,Tn) to
X for each n ∈ N and λ ∈

⋂
n∈N ρ(Tn; Xn).

Moreover, if
⋃

n∈N σ(Tn; Xn) ⊆ σ(T ; X), then

σ∗(T ; X) = σ(T ; X).

Concerning (LB)-spaces, the following result is Lemma 5.2 of [4].

Lemma 2.5. Let X = indnXn be a Hausdorff inductive limit of a sequence of Banach
spaces (Xn, ‖ · ‖n), for n ∈ N. Let T ∈ L(X) satisfy the following condition:

(A) For each n ∈ N the restriction Tn of T to Xn maps Xn into itself and Tn ∈ L(Xn).
Then the following properties are satisfied.

(i) σpt(T ; X) =
⋃

n∈N σpt(Tn; Xn).
(ii) σ(T ; X) ⊆

⋂
m∈N(
⋃∞

n=m σ(Tn; Xn)). Moreover, if λ ∈
⋂∞

n=m ρ(Tn; Xn) for some m ∈
N, then R(λ,Tn) coincides with the restriction of R(λ,T ) to Xn for each n ≥ m.
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(iii) If
⋃∞

n=m σ(Tn; Xn) ⊆ σ(T, X) for some m ∈ N, then

σ∗(T ; X) = σ(T ; X).

We conclude this section with the following useful result.

Proposition 2.6. Let X be a reflexive lcHs and T ∈ L(X).
(i) σ(T ; X) = σ(T ′; X′β).

(ii) σ∗(T ; X) = σ∗(T ′; X′β).

Proof. (i) We will require the following
Fact. If S ∈ L(X) is an isomorphism, then S ′ ∈ L(X′β) is also an isomorphism.

By assumption there exists R ∈ L(X) such that S R = RS = IX (the identity operator on
X). Noting that both R′, S ′ ∈ L(X′β) it follows that S ′R′ = R′S ′ = IX′β , that is, S ′ ∈ L(X′β)
is an isomorphism. This proves the Fact.

Since X is reflexive, also X′β is reflexive, [21, §23.5(5), p. 303]. Moreover T ′′ = T.
Accordingly, it suffices to show that σ(T ′; X′β) ⊂ σ(T ; X) as the reverse containment will
follow by “the same” argument via duality. But, if λ < σ(T ; X), then (λIX − T ) ∈ L(X)
is an isomorphism. By the above Fact, (λIX − T )′ = (λIX′β − T ′) is also an isomorphism,
that is, λ < σ(T ′; X′β).

(ii) By the reflexivity of X it suffices to show that σ∗(T ′; X′β) ⊆ σ∗(T ; X). If λ <
σ∗(T ; X), then there exists δ > 0 such that B(λ, δ) ⊆ ρ(T ; X) and {(µIX − T )−1 : µ ∈
B(λ, δ)} ⊆ L(X) is equicontinuous. Since reflexive spaces are barrelled, [25, Proposition
23.22], it follows from [22, §39.3(6), p. 138] that {((µIX − T )−1)′ : µ ∈ B(λ, δ)} ⊆ L(X′β)
is equicontinuous. But, it was shown in the proof of part (i) that

(2.1) ((µIX − T )−1)′ = (µIX′β − T ′)−1

and so {(µIX′β−T ′)−1 : µ ∈ B(λ, δ)} is equicontinuous inL(X′β). That is, λ < σ∗(T ′; X′β). �

3. The Cesàro operator in d(p+) and d(p−)

The aim of this section is to investigate the spectrum and certain operator theoretic
aspects of the Cesàro operator when it acts in the Fréchet spaces d(p+), 1 ≤ p < ∞, and
in the (LB)-spaces d(p−), 1 < p ≤ ∞. We begin with the Fréchet space setting.

The reflexive Banach spaces d(p) for 1 < p < ∞ satisfy d(r) ⊆ d(s) with ‖·‖d(s) ≤ ‖·‖d(r)

on d(r) whenever 1 < r ≤ s < ∞; see (1.4), (1.5) and [10, Proposition 2.7(i)]. Given
1 ≤ p < ∞, consider any strictly decreasing sequence {pk}k∈N ⊆ (p,∞) satisfying pk ↓ p,
in which case d(pk+1) ⊆ d(pk) for all k ∈ N. Then d(p+) :=

⋂
q>p d(q) =

⋂
k∈N d(pk)

is a Fréchet space relative to the increasing sequence of norms on d(p+) defined by
‖ · ‖k : x 7−→ ‖x‖d(pk) for k ∈ N; see (1.5). Since each Banach space d(q), 1 < q < ∞, is
solid in CN (i.e., if x ∈ d(q) and y ∈ CN satisfy |y| ≤ |x|, then y ∈ d(q)), it is clear that
d(p+) is also solid in CN. The space d(p+) is actually a Fréchet-Schwartz space (but, it is
not nuclear) in which the canonical vectors en := (δnk)k, for n ∈ N, form an unconditional
basis. In particular, d(p+) is dense in d(pk) for all k ∈ N. Moreover, with continuous
inclusions, it is the case that d(p) ⊆ d(p+) ⊆ CN for 1 < p < ∞ (also d(1+) ⊆ CN) and
that d(p+) ⊆ d(q+) whenever 1 ≤ p ≤ q < ∞. As a consequence of Lemma 2.1, for each
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1 ≤ p ≤ q < ∞ the Cesàro operator C ∈ L(d(p+), d(q+)). All of the above facts, and
more, can be found in Sections 3, 4 of [11].

In order to determine the spectra of C acting in d(p+) we first recall the Banach space
case. The following facts are recorded in [10]; see Proposition 3.2 (and its proof), Re-
mark 3.3 and Corollary 3.5.

Proposition 3.1. Let 1 < p < ∞. Then C ∈ L(d(p)) satisfies ‖C‖op = p′ and its spectra
are given by

(3.1) σ(C; d(p)) = {λ ∈ C : |λ − p′

2 | ≤
p′

2 } and σpt(C; d(p)) = ∅.

Moreover,

(3.2) {λ ∈ C : |λ − p′

2 | <
p′

2 } ⊆ σpt(C′; (d(p))′)

and Im(C − λI) , d(p) whenever |λ − p′

2 | <
p′

2 .

The spectra of C acting in d(p+), p ≥ 1, can now be determined. They should be
compared with the case of C when it acts in the spaces ces(p+), p ≥ 1, [5, Theorem 3].

Theorem 3.2. (i) Let 1 < p < ∞. The following statements are valid.
(a1) σpt(C; d(p+)) = ∅.

(a2) σ(C; d(p+)) = {λ ∈ C : |λ − p′

2 | <
p′

2 } ∪ {0}.
(a3) σ∗(C; d(p+)) = σ(C; d(p+)) = {λ ∈ C : |λ − p′

2 | ≤
p′

2 }.
(ii) For p = 1 the following statements are valid.

(b1) σpt(C; d(1+)) = ∅.
(b2) σ(C; d(1+)) = {λ ∈ C : Re(λ) > 0} ∪ {0}.
(b3) σ∗(C; d(1+)) = σ(C; d(1+)) = {λ ∈ C : Re(λ) ≥ 0}.

Proof. By using Lemma 2.4 above, together with Proposition 3.1 above in place of [5,
Theorem 1], a careful examination of the proof of Theorem 3 given in [5] for C acting in
the spaces ces(p+), shows that it can be adapted to also apply to C acting in the spaces
d(p+).

However, there is one point which needs to be clarified. For the proof of the fact
that 0 ∈ σ(C; ces(p+)), as given on p. 1537 of [5] it is important that the vector y :=∑∞

i=1
1

2i−1e2i−1 defined there belongs to ces(p+). Fortunately, the same vector y also be-
longs to the smaller space d(p+) ⊆ ces(p+). Indeed, since ŷ = (1, 1

3 ,
1
3 ,

1
5 ,

1
5 ,

1
7 ,

1
7 , . . .)

belongs to `q for all 1 < q < ∞, it follows that y ∈ d(r) for all 1 < r < ∞ (cf. (1.4))
and hence, that y ∈ d(p+), p ≥ 1. Moreover, for each q > 1, the vector x := C−1(y) =

((−1)n+1)n satisfies |x| = (1)n < d(q) as d(q) ⊆ `q. Accordingly, x < d(p+) for p ≥ 1. With
these observations the proof that 0 ∈ σ(C; d(p+)) follows the lines of that given in [5]
for proving that 0 ∈ σ(C; ces(p+)). �

Since d(p+) is isomorphic to the power series Fréchet space Λ∞0 (α) for each 1 ≤ p <
∞, with α := (log(n))n, [11, Corollary 4.5(ii)], its strong dual (d(p+))′β (which is the
(DFS)-space ces(p′−), [11, Remark 4.4]) is a sequence space [25, p. 357]. It is then
routine to verify that the dual operator C′ ∈ L((d(p+))′β) is given by the formula

(3.3) C′(y) := (
∑∞

k=n
yk
k )n, y = (yn)n ∈ (d(p+))′β.
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Using this observation and Proposition 3.1 above, the proof of Proposition 4 in [5] can
be modified to yield the following result.

Proposition 3.3. (i) For each 1 < p < ∞ it is the case that

{λ ∈ C : |λ − p′

2 | <
p′

2 } ⊆ σpt(C′; (d(p+))′β).

(ii) If p = 1, then
{λ ∈ C : Re(λ) > 0} ⊆ σpt(C′; (d(1+))′β).

Remark 3.4. Since the spectrum of a compact operator acting in a Fréchet space is
necessarily a compact subset of C, [15, Theorem 9.10.2], it follows from parts (a2) and
(b2) of Theorem 3.2 that the operator C ∈ L(d(p+)) fails to be compact for every p ≥ 1.
Since d(p+) is a Fréchet-Schwartz space, it is also Montel, [25, Remark 24.24(b)], and
hence, there is no distinction between compact and bounded operators in d(p+); see
Section 2. �

Let X be a lcHs. An operator T ∈ L(X) is called power bounded if {T n : n ∈ N}
is an equicontinuous subset of L(X). Given T ∈ L(X), the averages T[n] := 1

n

∑n
m=1 T m,

for n ∈ N, are called the Cesàro means of T. It is straight-forward to check that T n

n =

T[n] −
(n−1)

n T[n−1] for n ≥ 2. The operator T is called mean ergodic (resp. uniformly mean
ergodic) if {T[n]}n∈N is a convergent sequence in Ls(X) (resp. in Lb(X)), [23]. If X
is separable, then T ∈ L(X) is called supercyclic if there exists x ∈ X such that the
projective orbit {λT nx : λ ∈ C, n ∈ N0} is dense in X, where N0 := {0} ∪ N.

By replacing the use of Proposition 4 in [5] with Proposition 3.3 above, an analogous
proof to that of Proposition 5 in [5] for the spaces ces(p+) yields a proof of the following
result for the spaces d(p+).

Proposition 3.5. The Cesàro operator C ∈ L(d(p+)), for p ≥ 1, is not power bounded,
not mean ergodic and not supercyclic.

We now turn our attention to C acting in the (LB)-spaces d(p−). Given 1 < p ≤
∞, for the remainder of this section let {pk}k∈N ⊆ (1, p) be any strictly increasing se-
quence satisfying pk ↑ p, in which case d(pk) ⊆ d(pk+1) for all k ∈ N. Then d(p−) =⋃

1<q<p d(q) = indkd(pk) is an (LB)-space, that is, a countable inductive limit of Banach
spaces, [25, pp. 290-291]. Clearly d(p−) is solid in CN. Since the (inclusion) linking
maps d(r) ⊆ d(s) are compact whenever 1 < r < s < ∞, [10, Proposition 5.2(iii)], it
follows that d(p−), p ∈ (1,∞], is actually a (DFS)-space, [25, p. 304], (but, it is not nu-
clear) which is isomorphic to the strong dual (ces(p′+))′β of the Fréchet-Schwartz space
ces(p′+), [11, Proposition 4.3(i)]. We note that each space ces(q+), 1 ≤ q < ∞, is iso-
morphic to the fixed power series Fréchet space Λ1

0(α), with α = (log(n))n, of type 0 and
order 1, [3, Corollary 3.2]. The canonical vectors {en : n ∈ N} form an unconditional
basis for each space d(p−), p ∈ (1,∞], [11, Theorem 4.6]. As a consequence of Lemma
2.2, for each 1 < p ≤ q ≤ ∞ the Cesàro operator C ∈ L(d(p−), d(q−)), [11, Proposition
4.8(ii)(a)]. For further properties of the spaces d(p−), 1 < p ≤ ∞, see Section 4 of [11].
Since d(p−) = indk d(pk) with 1 < pk ↑ p, we point out that C ∈ L(d(p−)) satisfies all of
the assumptions of Lemma 2.5 with Tn := C|d(pn) ∈ L(d(pn)) for n ∈ N.

The spectra of C acting in d(p−), p ∈ (1,∞], can now be identified. They should be
compared with C when it acts in the spaces ces(p−), p ∈ (1,∞], [7, Section 3].
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Theorem 3.6. Let p ∈ (1,∞].
(i) σpt(C; d(p−)) = ∅.

(ii) {0} ∪ {λ ∈ C : |λ − p′

2 | <
p′

2 } ⊆ σ(C; d(p−)) ⊆ {λ ∈ C : |λ − p′

2 | ≤
p′

2 }.

(iii) σ∗(C; d(p−)) = {λ ∈ C : |λ − p′

2 | ≤
p′

2 }.

(iv) {λ ∈ C : |λ − p′

2 | <
p′

2 } ⊆ σpt(C′; (d(p−))′β), 1 < p < ∞.

Proof. (i) This follows from Lemma 2.5(i) and Proposition 3.1.
(ii) An analogous proof as that given for Proposition 8 in [7] applies here. The use of

Lemma 5 and Theorem 6 in [7] needs to be replaced, respectively, with Lemma 2.5 and
Proposition 3.1 above.

Again one point needs to be clarified. For the proof that 0 ∈ σ(C; ces(p−)), given
on p. 10 in Proposition 8 of [7], it was required that the vector y := (1−(−1)n

2n )n should
belong to ces(p−) for each p ∈ (1,∞] and satisfy C−1(y) = ((−1)n+1)n < ces(p−). The
analoguous argument can be applied here after noting that y also belongs to the smaller
space d(p−), 1 < p ≤ ∞. Indeed, this is the same y as that in the proof of Proposition
3.2 above, where it was shown that y ∈ d(r) for all 1 < r < ∞ and hence, in particular,
y ∈ d(p−) =

⋃
1<r<p d(r). Moreover, since d(p−) ⊆ ces(p−) and C−1(y) < ces(p−), also

C−1(y) < d(p−).
(iii) The proof of Proposition 10 given in [7] can be adapted to apply here. The use of

Theorem 6 and Proposition 8 in [7] need to be replaced, respectively, with Proposition
3.1 above and part (ii) of this theorem.

(iv) Fix 1 < p < ∞ and note that the natural inclusion d(p−) ⊆ d(p) is continuous, as
a consequence of Lemma 2.2(i). It follows that (d(p))′ ⊆ (d(p−))′β ⊆ CN. Moreover, C′

as given by (3.3) is the “same” operator in each of these three spaces. Hence,

(3.4) σpt(C′; (d(p))′) ⊆ σpt(C′; (d(p−))′β).

But, it is shown in the proof of [10, Proposition 3.2(iii)] (see (3.7) there) that {λ ∈ C :
|λ− p′

2 | <
p′

2 } ⊆ σpt(C′; (d(p))′). Combining this containment with (3.4) yields the desired
result. �

Remark 3.7. Theorem 3.6(ii) shows that each spectrum σ(C; d(p−)), 1 < p ≤ ∞, is an
uncountable set. Accordingly, C ∈ L(d(p−)) is not a compact operator, [15, Theorem
9.10.2], [17, p. 204]. As noted above, d(p−) is the strong dual of a Fréchet-Schwartz
space and hence, d(p−) is a Montel space, [25, Proposition 24.25]. So, C : d(p−) −→
d(p−) also fails to be a bounded operator.

Proposition 3.8. Let p ∈ (1,∞]. The Cesàro operator C ∈ L(d(p−)) is not power
bounded, not mean ergodic and not supercyclic.

Proof. That C is not mean ergodic and not power bounded in d(p−) can be established
along the lines of the proof of Proposition 11 in [7] by simply replacing the space ces(p−)
there with the space d(p−) and noting that any vector of the form x := γ(1, 1, 1, . . .), with
γ ∈ C, belongs to d(p−) =

⋃
1<q<p d(q) ⊆

⋃
1<q<p `q, [10, Proposition 2.7(iii)], if and only

if γ = 0.
Again by replacing ces(p−) with d(p−), the proof of Proposition 14 (or Remark 15) in

[7] can be routinely modified to yield that C ∈ L(d(p−)) is not supercyclic. �
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4. Multiplication operators in d(p+) and d(p−).

Given an element a = (an)n ∈ CN, the multiplication (or diagonal) operator Ma :
CN −→ CN is defined coordinatewise by

(4.1) Ma(x) := (anxn)n, x ∈ CN.

Clearly Ma ∈ L(CN) and MaMb = MbMa for all a, b ∈ CN. Such operators acting on
certain Banach spaces X ⊆ CN, interpreted to mean that Ma(X) ⊆ X, are investigated in
[9], for example; see also [6], [10]. The classical Banach spaces X such as `p, 1 ≤ p ≤
∞, c0 and c are treated in [27]. For X being one of the Fréchet spaces `p+ or ces(p+) see
[5] (also [13], [26] are relevant) and for the (LB)-spaces `p− or ces(p−) we refer to [7].
Our aim in this section is to study the case when X is one of the spaces d(p+), p ∈ [1,∞),
or d(p−), 1 < p ≤ ∞.

Given any pair 1 < p, q < ∞, an element a ∈ CN is called a (d(p), d(q))-multiplier
if Ma(d(p)) ⊆ d(q), where Ma is given by (4.1). The closed graph theorem implies
that the associated linear multiplication operator Ma

d(p),d(q) : x 7−→ Ma(x) is then neces-
sarily continuous from d(p) into d(q), that is, Ma

d(p),d(q) ∈ L(d(p), d(q)). If p = q, then
we denote Ma

d(p),d(p) simply by Ma
d(p). The vector subspace of CN consisting of all the

(d(p), d(q)-multipliers is denoted byMd(p),d(q) (brieflyMd(p) if p = q). The notions of a
(ces(p), ces(q))-multiplier a ∈ CN, its associated operator Ma

ces(p),ces(q) : ces(p) −→ ces(q)
and the multiplier space Mces(p),ces(q) are defined analogously. Since the Banach spaces
ces(p) and d(p) for 1 < p < ∞ are solid and

|Ma(x)| = |ax| = |a| · |x|, a, x ∈ CN,

it follows thatMd(p),d(q) andMces(p),ces(q) are solid for all 1 < p, q < ∞. For the following
result we refer to table 6 on p. 69 and table 22 on p. 70 of [9].

Proposition 4.1. Let a ∈ CN.

(i) Let 1 < p ≤ q < ∞. Then a ∈ Md(p),d(q) if and only if (ann(1/q)−(1/p))n ∈ `∞.
(ii) Let 1 < q < p < ∞. Then a ∈ Md(p),d(q) if and only if a ∈ d(r) with 1

r = 1
q −

1
p .

Remark 4.2. For 1 < p ≤ q < ∞, it follows that (1
q −

1
p ) ≤ 0 and so `∞ ⊆ Md(p),d(q).

If p = q, then Md(p) = `∞. Moreover, for a ∈ `∞ it is the case that ‖Ma
d(p)‖op = ‖a‖∞.

Indeed, (4.3) in Section 4 of [10] states that ‖Ma
d(p)‖op ≤ ‖a‖∞. Given n ∈ N, the vector

x := n−1/pen satisfies ‖x‖d(p) = 1. Moreover,

(ax)ˆ= n−1/p |an| (1, 1, . . . , 1, 0, 0, . . .)

with 1 occuring n-times and so ‖(ax)ˆ‖p = |an|, that is, ‖Ma
d(p)(x)‖d(p) = |an|. It follows that

‖Ma
d(p)‖op = ‖a‖∞. �

Duality will feature prominently in this section. Let 1 < p, q < ∞ and a ∈ Md(p),d(q),
that is, Ma

d(p),d(q) ∈ L(d(p), d(q)). Note that the dual spaces are given by (d(p))′ = ces(p′)
and (d(q))′ = ces(q′). Moreover, p ≤ q if and only if q′ ≤ p′. The calculation

(4.2) 〈Ma
d(p),d(q)(x), y′〉 = 〈ax, y′〉 = 〈x, ay′〉, x ∈ d(p), y′ ∈ (d(q))′ = ces(q′),
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shows that the dual operator (Ma
d(p),d(q))

′ ∈ L((d(q))′, (d(p))′) = L(ces(q′), ces(p′)) of
Ma

d(p),d(q) is precisely the multiplication operator Ma
ces(q′),ces(p′) : u 7−→ au from ces(q′) into

ces(p′). Accordingly,Md(p),d(q) =Mces(q′),ces(p′).
Every Fréchet space has a web and is ultra-bornological; see Corollary 24.29 and Re-

mark 24.15(c) of [25], respectively. The same is true of every (LB)-space, [25, Remark
24.36]. Accordingly, the closed graph theorem is available for closed operators between
two Fréchet spaces and between two (LB)-spaces, [25, Theorem 24.31]. This observation
allows us to meaningfully adapt the definitions and terminology used for Banach spaces
prior to Proposition 4.1. Namely, with obvious notation, the (solid) multiplier spaces
Mces(p+),Md(p+),Mces(p−) andMd(p−) exist as do the corresponding multiplication oper-
ators Ma

ces(p+),M
a
d(p+),M

a
ces(p−) and Ma

d(p−) for the appropriate elements a ∈ CN. Our aim
is to identify the spacesMd(p+),Md(p−) and to determine various properties of the multi-
plication operators that they generate. As alluded to above, duality will be an important
aspect. In this regard, we point out that the strong dual spaces are given by

(4.3) (d(p+))′β = ces(p′−), p ∈ [1,∞) and (d(p−))′β = ces(p′+), 1 < p ≤ ∞,

and by

(4.4) (ces(p+))′β = d(p′−), p ∈ [1,∞) and (ces(p−))′β = d(p′+), 1 < p ≤ ∞;

see Proposition 4.3 and Remark 4.4 in [11]. Moreover, each space d(p+), ces(p+), for
p ∈ [1,∞), is a Fréchet-Schwartz space and each space d(p−), ces(p−), for 1 < p ≤ ∞, is
a (DFS)-space; see [3, Proposition 3.5(ii)], [7, Proposition 1(ii)] and [11, Lemma 4.2(i)
& Proposition 4.3(ii)]. In particular, all spaces involved are complete Montel spaces and
hence, they are also reflexive.

The following result is Proposition 6 of [5].

Proposition 4.3. Let p ∈ [1,∞) and a = (an)n ∈ CN. The following conditions are
equivalent.

(i) a ∈ Mces(p+), that is, Ma
ces(p+) ∈ L(ces(p+)).

(ii) For each r > p there exists s ∈ (p, r] such that (ann(1/r)−(1/s))n ∈ `∞.
(iii) For each η ∈ (0, 1) the element (ann−η)n ∈ `∞.

Remark 4.4. (i) Part (iii) of Proposition 4.3 implies that `∞ ⊆ Mces(p+), p ∈ [1,∞).
Moreover, this containment is proper as a = (log(n + 1))n ∈ (Mces(p+) r `∞).

(ii) Given η ∈ (0, 1), let ωη := (n−η)n ∈ CN and write u ∈ `∞(ωη) if and only if the
coordinatewise product uωη ∈ `∞. Then Proposition 4.3 implies that

(4.5) Mces(p+) =
⋂

0<η<1
`∞(ωη), p ∈ [1,∞),

[5, Remark 2]. In particular, Mces(p+) is independent of p ∈ [1,∞) and, via part (i),
properly contains `∞. �

The following result, [7, Proposition 18], will also be needed .

Proposition 4.5. Let 1 < p ≤ ∞ and a = (an)n ∈ CN. The following conditions are
equivalent.

(i) a ∈ Mces(p−), that is, Ma
ces(p−) ∈ L(ces(p−)).
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(ii) For each u ∈ (1, p) there exists v ∈ [u, p) such that (ann(1/v)−(1/u))n ∈ `∞.

Remark 4.6. Proposition 4.5 can be formulated in terms of the weighted spaces `∞(wv,u),
where wv,u(n) := n(1/v)−(1/u) for n ∈ N. Namely,

(4.6) Mces(p−) =
⋂

1<u<p(
⋃

u≤v<p `∞(wv,u)), 1 < p ≤ ∞;

[7, p. 14]. It is clear from (4.6) that `∞ ⊆ Mces(p−) and that this containment is proper as
a := (log(n + 1))n ∈ (Mces(p−) r `∞). �

Let X denote any one of the spaces d(p+), ces(p+), p ∈ [1,∞), or any one of the spaces
d(p−), ces(p−), 1 < p ≤ ∞. Given a ∈ CN recall that we write a ∈ MX if the operator
Ma ∈ L(CN), as given by (4.1), satisfies Ma(X) ⊆ X. In this case the restriction Ma|X,
denoted by Ma

X, belongs to L(X). DefineMop(X) := {Ma
X : a ∈ MX} ⊆ L(X). Using the

identities (4.3) and (4.4), an analogous calculation as in (4.2) reveals that the linear map
Φ : T 7−→ T ′ is a vector space isomorphism which satisfies

(4.7) Φ(Mop(d(p−))) =Mop(ces(p′+)), 1 < p ≤ ∞,

and

(4.8) Φ(Mop(d(p+))) =Mop(ces(p′−)), 1 ≤ p < ∞.

We can now characterize the multiplication operators in L(d(p−)).

Theorem 4.7. Let 1 < p ≤ ∞ and a = (an)n ∈ CN. The following conditions are
equivalent.

(i) a ∈ Md(p−), that is, Ma
d(p−) ∈ L(d(p−)).

(ii) For each u ∈ (1, p) there exists v ∈ [u, p) such that (ann(1/v)−(1/u))n ∈ `∞.

Proof. According to (4.7) it is the case that a ∈ Md(p−) if and only if a ∈ Mces(p′+). By
Proposition 4.3 this is equivalent to the condition:

(4.9) For each r > p′ there exists s ∈ (p′, r] such that (ann(1/r)−(1/s))n ∈ `∞.

But, (4.9) is precisely equivalent to the statement in part (ii). Indeed, fix any u ∈ (1, p).
Then r := u′ satisfies r > p′. By (4.9) there exists s ∈ (p′, r] such that (ann(1/r)−(1/s))n ∈

`∞. Set v := s′ and note that v ∈ [u, p). Since 1
r −

1
s = 1

v −
1
u , we can conclude that

(ann(1/v)−(1/u))n ∈ `∞. This argument is clearly reversible. �

A similar duality argument as in the proof of Theorem 4.7 (using now (4.8) and Propo-
sition 4.5 in place of (4.7) and Proposition 4.3) can be applied to establish the following
result.

Theorem 4.8. Let p ∈ [1,∞) and a = (an)n ∈ CN. The following conditions are equiva-
lent.

(i) a ∈ Md(p+), that is, Ma
d(p+) ∈ L(d(p+)).

(ii) For each r > p there exists s ∈ (p, r] such that (ann(1/r)−(1/s))n ∈ `∞.
(iii) For each η ∈ (0, 1) the element (ann−η)n ∈ `∞.

Remark 4.9. Proposition 4.3, Remark 4.4 and Theorem 4.8 imply that

(4.10) Md(p+) =Mces(p+) =
⋂

0<η<1 `∞(ωη), p ∈ [1,∞).
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Note that the final term in (4.10) is independent of p. Also, Proposition 4.5, Remark 4.6
and Theorem 4.7 show that

(4.11) Md(p−) =Mces(p−) =
⋂

1<u<p(
⋃

u≤v<p `∞(wv,u)), 1 < p ≤ ∞.

Let X be a lcHs andA ⊆ L(X) be a non-empty set. The commutantAc ofA is defined
by

Ac := {T ∈ L(X) : TS = S T for all S ∈ A},
in which caseAc is a unital subalgebra of L(X), that is,Ac is a vector subspace of L(X)
with I ∈ Ac and both RS and S R belong to Ac whenever R, S ∈ Ac. In the event that
A is commutative it is routine to check that A ⊆ Ac. If A satisfies A = Ac, then A is
called maximal abelian. Of course,A is then necessarily commutative.

Theorem 4.10. (i) For each p ∈ [1,∞) both of the commutative, unital subalgebras
Mop(d(p+)) ⊆ L(d(p+)) andMop(ces(p+)) ⊆ L(ces(p+)) are maximal abelian.

(ii) For each 1 < p ≤ ∞ both of the commutative, unital subalgebrasMop(d(p−)) ⊆
L(d(p−)) andMop(ces(p−)) ⊆ L(ces(p−)) are maximal abelian.

Proof. Fix p ∈ [1,∞). Since the canonical vectors {en : n ∈ N} are a Schauder basis
(even unconditional) in d(p+) (cf. Lemma 4.1(i) in [11]) each x ∈ d(p+) has a unique
expansion x =

∑∞
k=1 xkek and the linear map Pn : d(p+) −→ d(p+) defined by

(4.12) Pn(x) := xnen, x ∈ d(p+),

is a continuous rank-1 projection; see [20, Section 4.2]. Moreover, PnPm = PmPn =

δmnPn, for all m, n ∈ N, and {Pn : n ∈ N} ⊆ Mop(d(p+)) as Pm = Mϕm
d(p+), where ϕm :=

(δmk)k ∈ `∞ ⊆ Md(p+) for each m ∈ N. By (4.12) it is clear that Pn(d(p+)) ⊆ 〈en〉 := {λen :
λ ∈ C} for each e ∈ N.
Claim. {Pn : n ∈ N}c = (Mop(d(p+)))c.

Since {Pn : n ∈ N} ⊆ Mop(d(p+)), it is clear that (Mop(d(p+)))c ⊆ {Pn : n ∈ N}c.
On the other hand, suppose that T ∈ L(d(p+)) satisfies T Pn = PnT for each n ∈ N. Fix

a ∈ Md(p+). Given any x ∈ d(p+), the series x =
∑∞

k=1 xkek converges (unconditionally)
in d(p+) and so, by the continuity of Ma

d(p+) ∈ L(d(p+)) and (4.12), it follows that

(4.13) Ma
d(p+)(x) =

∑∞
k=1 xkMa

d(p+)(ek) =
∑∞

k=1 xkakek =
∑∞

k=1 akPk(x).

Applying the continuous operator T to the convergent series in (4.13) yields

(4.14) T Ma
d(p+)(x) =

∑∞
k=1 akT Pk(x).

Replacing x in (4.13) with T (x) yields

Ma
d(p+)(T (x)) =

∑∞
k=1 akPk(T (x)) =

∑∞
k=1 akT (Pk(x)).

Comparing this identity with (4.14) shows that T Ma
d(p+) = Ma

d(p+)T. Since a ∈ Md(p+)

is arbitrary, it follows that T ∈ (Mop(d(p+)))c. This establishes that {Pn : n ∈ N}c ⊆
(Mop(d(p+)))c and completes the proof of the Claim.

The commutativity ofMop(d(p+)) implies thatMop(d(p+)) ⊆ (Mop(d(p+)))c.
To establish the reverse containment it suffices to show, because of the above Claim,

that T ∈ Mop(d(p+)) whenever T ∈ L(d(p+)) satisfies

(4.15) T Pn = PnT, n ∈ N.
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Now, applying (4.15) to each basis vector en ∈ d(p+) yields

T (en) = T (Pn(en)) = Pn(T (en)) ∈ 〈en〉, n ∈ N,

that is, for each n ∈ N, there exists a unique scalar an ∈ C such that T (en) = anen. Define
a := (an)n in which case Ma ∈ L(CN).

Fix x ∈ d(p+). Then limm→∞
∑m

k=1 xk ek = x in d(p+). By the linearity and the conti-
nuity of T, also

limm→∞
∑m

k=1 xkT (ek) = limm→∞
∑m

k=1 akxkek = T (x)

with convergence in d(p+). Since d(p+) ⊆ CN continuously (cf. (4.1) in [11, Section 4]),
it follows that also

limm→∞
∑m

k=1 xkek = x and limm→∞
∑m

k=1 akxkek = T (x)

with both sequences converging in the Fréchet space CN. But,∑m
k=1 akxkek = Ma(

∑m
k=1 xkek), m ∈ N,

and so, by the continuity of Ma ∈ L(CN), also limm→∞
∑m

k=1 akxkek = Ma(x) in CN. By the
uniqueness of limits of CN we can conclude that Ma(x) = T (x), that is, Ma(x) ∈ d(p+).
Since x ∈ d(p+) is arbitrary, we have established that Ma(d(p+)) ⊆ d(p+), that is,
Ma

d(p+) ∈ Mop(d(p+)). Moreover, we have seen that Ma and T coincide on the dense
subspace span({en : n ∈ N}) of d(p+). Accordingly, T = Ma

d(p+) ∈ Mop(d(p+)). This
completes the proof ofMop(d(p+)) being maximal abelian.

The proofs for the remaining three cases, namely Mop(ces(p+)),Mop(d(p−)) and
Mop(ces(p−)), follow along the same line of that for Mop(d(p+)). One only requires
that {en : n ∈ N} is a Schauder basis for each of the three spaces ces(p+), d(p−) and
ces(p−), which is indeed the case (see, respectively, [3, Proposition 3.5(i)], [11, Theo-
rem 4.6] and [7, Proposition 1(ii)]), and that each of these three spaces is continuously
included in CN, which is also the case; see, respectively, [11, Section 3], [11, Lemma
4.2(ii)] and [11, Proposition 3.5(i)]. �

Remark 4.11. (i) Let X be a lcHs and T ∈ L(X). If T is invertible, then TT−1 = T−1T.
Suppose that X is any one of the spaces ces(p+), d(p+) for 1 ≤ p < ∞ or any one of the
spaces ces(p−), d(p−) for 1 < p ≤ ∞. The previous comment and Theorem 4.10 imply
thatMop(X) is an inverse closed subalgebra of L(X), that is, if S ∈ Mop(X) is invertible
inL(X), then S −1 ∈ Mop(X). Indeed,Mop(X) is commutative and so S ∈ Mop(X) implies
that S A = AS for all A ∈ Mop(X). Hence, S −1(S A)S −1 = S −1(AS )S −1, that is, AS −1 =

S −1A for all A ∈ Mop(X). This shows that S −1 ∈ (Mop(X))c =Mop(X).
(ii) The subalgebra Mop(X) is topologically closed in the lcHs Ls(X). Indeed, let

{Tα}α ⊆ Mop(X) be any net which is τs-convergent to T ∈ L(X). Fix any S ∈ Mop(X).
Then, for each x ∈ X, it is the case that

S (T (x)) = limα S (Tα(x)) = limα Tα(S (x)) = T (S (x)).

Accordingly, S T = TS and so, by Theorem 4.10, T ∈ (Mop(X))c = Mop(X). Since the
τb-closure ofMop(X) is contained in the τs-closure ofMop(X), it follows that Mop(X) is
closed in the lcHs Lb(X). �
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Turning to the compactness of multiplication operators we first recall what is known
for the spaces ces(p+) and ces(p−); see, respectively, Lemma 8, Proposition 10 of [5]
and Proposition 19, Remark 20 of [7]. The main ingredient for the proofs of these results
are Lemma 2.1(ii) above for ces(p+) and Lemma 2.2(ii) above for ces(p−).

Proposition 4.12. (i) Let p ∈ [1,∞) and a ∈ Mces(p+). The following assertions are
equivalent.

(a) The multiplication operator Ma
ces(p+) ∈ L(ces(p+)) is compact.

(b) There exists q > p such that for all r ∈ (p, q) we have that a ∈ Mces(q),ces(r).
(c) a ∈ d(∞−) =

⋃
s>1 d(s) ⊆ c0.

(ii) Let 1 < p ≤ ∞ and a ∈ Mces(p−). The following assertions are equivalent.
(a) The multiplication operator Ma

ces(p−) ∈ L(ces(p−)) is compact.
(b) There exists t > p′ such that â = (supk≥n |ak|)n ∈ `t, that is, a ∈ d(t).
(c) The element a ∈ d(∞−) :=

⋃
q>1 d(q) =

⋃
t>p′ d(t) ⊆ c0.

Note that the space d(∞−) in (c) of parts (i) and (ii) of Proposition 4.12 is independent
of p. The containment d(∞−) ⊆ c0 is proper, [5, Remark 4(i)].

Since the spaces ces(p+), d(p+), ces(p−) and d(p−) are all Montel, there is no distinc-
tion between compact and bounded operators in these spaces.

Theorem 4.13. (i) Let p ∈ [1,∞) and a ∈ Md(p+). Then the multiplication operator
Ma

d(p+) ∈ L(d(p+)) is compact if and only if a ∈ d(∞−).
(ii) Let 1 < p ≤ ∞ and a ∈ Md(p−). Then the multiplication operator Ma

d(p−) ∈

L(d(p−)) is compact if and only if a ∈ d(∞−).

Proof. (i) We know by (4.8) that Ma
d(p+) ∈ L(d(p+)) if and only if Ma

ces(p′−) = (Ma
d(p+))

′ ∈

L(ces(p′−)). Moreover, Lemma 2.3 implies that Ma
d(p+) is compact if and only if Ma

ces(p′−)
is compact. But, Ma

ces(p′−) is compact if and only if a ∈ d(∞−); see Proposition 4.12(ii).
(ii) Replacing (4.8) with (4.7) and Proposition 4.12(ii) with Proposition 4.12(i), the

proof of part (i) can be modified to also apply to part (ii). �

Remark 4.14. It follows from Theorem 4.13 and Proposition 4.12 that

M
cpt
d(p+) =M

cpt
ces(p+) = d(∞−) for p ∈ [1,∞)

and that
M

cpt
d(p−) =M

cpt
ces(p−) = d(∞−) for 1 < p ≤ ∞,

where the superscript cpt indicates those multipliers in the given space whose corre-
sponding multiplication operator is compact. �

We now consider the spectra of multiplication operators in d(p+), d(p−), for which
we first require the following result; see Proposition 7 of [5] and Proposition 22 of [7].
Since each space ces(p+), 1 ≤ p < ∞, is a Köthe echelon space (see [3]), part (i) of the
following result can also be deduced from Lemma 2, Corollary 1 and Theorem 1 of the
recent paper [26]. Let 1 := (1, 1, . . .) ∈ `∞. If b ∈ CN satisfies bn , 0 for all n ∈ N, we
write b−1 := (1/bn)n.

Proposition 4.15. (i) Let p ∈ [1,∞) and a = (an)n ∈ Mces(p+).

(a) σpt(Ma
ces(p+)) = {an : n ∈ N}.
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(b) σ(Ma
ces(p+)) = σ∗(Ma

ces(p+)) = {an : n ∈ N}.
(c) For each λ ∈ ρ(Ma

ces(p+)) the element (λ1 − a)−1 ∈ Mces(p+) and

(λI − Ma
ces(p+))

−1 = (Mλ1−a
ces(p+))

−1 = M(λ1−a)−1

ces(p+) .

(ii) Let 1 < p ≤ ∞ and a = (an)n ∈ Mces(p−).

(a) σpt(Ma
ces(p−)) = {an := n ∈ N}.

(b) σ(Ma
ces(p−)) = σ∗(Ma

ces(p−)) = {an : n ∈ N}.
(c) For each λ ∈ ρ(Ma

ces(p−)) the element (λ1 − a)−1 ∈ Mces(p−) and

(λI − Ma
ces(p−))

−1 = (Mλ1−a
ces(p−))

−1 = M(λ1−a)−1

ces(p−) .

We are now able to treat the cases of d(p+) and d(p−). Noting that each space d(p+),
1 ≤ p < ∞, is a Köthe echelon space, [11, Corollary 4.5(ii)], the following result can be
deduced from Lemma 2, Corollary 1 and Theorem 1 of [26]. We indicate a proof based
on the methods of this paper.

Theorem 4.16. Let p ∈ [1,∞) and a = (an)n ∈ Md(p+).

(i) σpt(Ma
d(p+)) = {an : n ∈ N}.

(ii) σ(Ma
d(p+)) = σ∗(Ma

d(p+)) = {an : n ∈ N}.
(iii) For each λ ∈ ρ(Ma

d(p+)) the element (λ1 − a)−1 ∈ Md(p+) and

(λI − Ma
d(p+))

−1 = (Mλ1−a
d(p+))

−1 = M(λ1−a)−1

d(p+) .

Proof. (i) Since Ma
d(p+)(en) = anen for each n ∈ N, it is clear that {an : n ∈ N} ⊆

σpt(Ma
d(p+)). On the other hand, if λ ∈ C satisfies Ma

d(p+)(x) = λx (i.e., anxn = λxn for all
n ∈ N) for some non-zero x ∈ d(p+), then λ ∈ {an : n ∈ N}.

(ii) Since (ces(p′−))′β = d(p+) and Ma
d(p+) = (Ma

ces(p′−))
′, it follows from Proposition

2.6(i) that σ(Ma
d(p+)) = σ(Ma

ces(p′−)). Then Proposition 4.15(ii), with p′ in place of p,
implies that

σ(Ma
d(p+)) = σ(Ma

ces(p′−))) = σ∗(Ma
ces(p′−)) = {an : n ∈ N}.

This is precisely the statement of (ii) as σ∗(Ma
ces(p′−)) = σ∗(Ma

d(p+)) by Proposition 2.6(ii).
(iii) Let λ ∈ ρ(Ma

d(p+)), in which case λ ∈ ρ(Ma
ces(p′−)) by Proposition 2.6(i). According

to Proposition 4.15(ii)(c) we have that (λ1−a)−1 ∈ Mces(p′−) and (Mλ1−a
ces(p′−))

−1 = M(λ1−a)−1

ces(p′−) .

Then (4.8) shows that (λ1 − a)−1 ∈ Md(p+) and so

M(λ1−a)−1

d(p+) = (M(λ1−a)−1

ces(p′−) )′ = ((λI − Ma
ces(p′−))

−1)′ = (λI − Ma
d(p+))

−1,

where the last equality is a consequence of (2.1). �

Theorem 4.17. Let 1 < p ≤ ∞ and a = (an)n ∈ Md(p−).

(i) σpt(Ma
d(p−)) = {an : n ∈ N}.

(ii) σ(Ma
d(p−)) = σ∗(Ma

d(p−)) = {an : n ∈ N}.
(iii) For each λ ∈ ρ(Ma

d(p−)) the element (λ1 − a)−1 ∈ Md(p−) and

(λI − Ma
d(p−))

−1 = (Mλ1−a
d(p−))

−1 = M(λ1−a)−1

d(p−) .
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Proof. Noting that d(p−) = (ces(p′+))′β and Ma
d(p−) = (Ma

ces(p′+))
′, one can argue analo-

gously to the proof of Theorem 4.16. One only needs to replace (4.8) and Proposition
4.15(ii) used there by (4.7) and Proposition 4.15(i) in the current setting. �

We now turn our attention to the mean ergodic properties of multiplication operators
in d(p+) and d(p−). We first record the known results for ces(p+) and ces(p−); see
[5, Proposition 21], [26, Section 3], for ces(p+) and [7, Proposition 21] for ces(p−). Let
D := {z ∈ C : |z| < 1}.

Proposition 4.18. (i) Let p ∈ [1,∞) and a ∈ Mces(p+). The following conditions are
equivalent.

(a) Ma
ces(p+) ∈ L(ces(p+)) is power bounded.

(b) Ma
ces(p+) ∈ L(ces(p+)) is mean ergodic.

(c) Ma
ces(p+) ∈ L(ces(p+)) is uniformly mean ergodic.

(d) a ∈ `∞ and ‖a‖∞ ≤ 1.
(e) σ(Ma

ces(p+)) ⊆ D.

(ii) Let 1 < p ≤ ∞ and a ∈ Mces(p−). The following conditions are equivalent.
(a) Ma

ces(p−) ∈ L(ces(p−)) is power bounded.
(b) Ma

ces(p−) ∈ L(ces(p−)) is mean ergodic.
(c) Ma

ces(p−) ∈ L(ces(p−)) is uniformly mean ergodic.
(d) a ∈ `∞ and ‖a‖∞ ≤ 1.
(e) σ(Ma

ces(p−)) ⊆ D.

Remark 4.19. The condition (e) of part (ii) in Proposition 4.18 does not actually occur
in Proposition 21 of [7]. However, in view of Proposition 4.15(ii)(b), it is clear that (d)
and (e) in part (ii) of Proposition 4.18 are equivalent. �

Concerning the proof of Proposition 4.18(i) above, as given in [5, Proposition 21],
some relevant comments are in order. An important ingredient is that the Fréchet space
ces(p+), 1 ≤ p < ∞, is Montel (and hence, also reflexive). Being a Fréchet-Schwartz
space, the same property is true for d(p+), 1 ≤ p < ∞. Also important is that the norm
‖ · ‖ces(q) in each Banach space ces(q), 1 < q < ∞, is a lattice norm, that is, if x, y ∈ ces(q)
satisfy |x| ≤ |y|, then ‖x‖ces(q) ≤ ‖y‖ces(q). The same is true for the norm ‖ · ‖d(s) in each
Banach space d(s), 1 < s < ∞. Indeed, if x, y ∈ d(s) satisfy |x| ≤ |y|, then 0 ≤ x̂ ≤ ŷ in
`s and so ‖x̂‖s ≤ ‖ŷ‖s, that is, ‖x‖d(s) ≤ ‖y‖d(s). Finally, the proof of (d) ⇐⇒ (e) above
(i.e., of (iv)⇐⇒ (v) in [5]) relies on part (b) of Proposition 4.15(i). These identities also
hold in d(p+); see Theorem 4.16(ii). The previous observations show that the proof of
Proposition 21 (for (ces(p+)) given in [5] can be easily adapted to establish the following
result. Or, one can apply the results of [26, Section 3] to the Köthe echelon spaces d(p+).

Theorem 4.20. Let p ∈ [1,∞) and a ∈ Md(p+). The following conditions are equivalent.
(i) Ma

d(p+) ∈ L(d(p+)) is power bounded.
(ii) Ma

d(p+) ∈ L(d(p+)) is mean ergodic.
(iii) Ma

d(p+) ∈ L(d(p+)) is uniformly mean ergodic.
(iv) a ∈ `∞ and ‖a‖∞ ≤ 1.
(v) σ(Ma

d(p+)) ⊆ D.
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The proof of Proposition 4.18(ii) above, as given in [7, Proposition 21], relies on the
following ingredients. First, that ces(p−) is barrelled and Montel, which is also the case
for d(p−) as it is a (DFS)-space. Second, that the operator norm of Ma, for a ∈ `∞, when
acting in the Banach space ces(q), 1 < q < ∞, satisfies ‖Ma

ces(q)‖op ≤ ‖a‖∞. The same is
true in the Banach spaces d(s), 1 < s < ∞, that is, ‖Ma

d(s)‖op ≤ ‖a‖∞; see Remark 4.2.
Finally, it is used in [7] that ces(p−) ⊆ CN with a continuous inclusion; the analogous
continuous inclusion d(p−) ⊆ CN is also valid, [11, Lemma 4.2(ii)]. Accordingly, the
proof of parts (i)–(iv) in the following result follow by appropriately modifying the proof
of Proposition 21 in [7]. The proof of the equivalence (iv)⇔ (v) in the following result
is immediate from Theorem 4.17(ii) above.

Theorem 4.21. Let 1 < p ≤ ∞ and a ∈ Md(p−). The following conditions are equivalent.
(i) Ma

d(p−) ∈ L(d(p−)) is power bounded.
(ii) Ma

d(p−) ∈ L(d(p−)) is mean ergodic.
(iii) Ma

d(p−) ∈ L(d(p−)) is uniformly mean ergodic.
(iv) a ∈ `∞ and ‖a‖∞ ≤ 1.

(v) σ(Ma
d(p−)) ⊆ D.

Let X ∈ {d(p+), ces(p+) : p ∈ [1,∞)} ∪ {d(p−); ces(p−) : 1 < p ≤ ∞}, in which case
the notation a ∈ MX with Ma

X ∈ L(X) is clear.

Theorem 4.22. Let a ∈ MX. Then Ma
X ∈ L(X) is not supercyclic.

Proof. Suppose that a ∈ MX is not constant. Then (Ma
X)′ = Ma

X′β
has at least two linearly

independent eigenvectors; see parts (i)(a) and (ii)(a) of Proposition 4.15 and part (i) of
each of Theorem 4.16 and Theorem 4.17. Since supercyclic is the same as being 1-
supercyclic in the sense of [12], it follows from Theorem 2.1 of [12] that Ma

X is not
supercyclic.

If a = α1, for some α ∈ C, then it follows for all choices of X that Ma
X = αIX and so

(Ma
X)n = αnIX for all n ∈ N0. It follows that {λ(Ma

X)n(x) : λ ∈ C, n ∈ N0} ⊆ span({x}) for
each x ∈ X. So, Ma

X is surely not supercyclic. �

5. Inclusion maps and Cesàro operators

Consider any pair 1 ≤ p, q < ∞. Let Xp+ denote any one of the spaces d(p+), ces(p+)
or `p+ and let Yq+ denote any one of the spaces d(q+), ces(q+) or `q+. If 1 ∈ MXp+,Yq+

,

then the multiplication operator M1
Xp+,Yq+

is precisely the natural (identity) inclusion map
of Xp+ into Yq+, which we denote by iXp+,Yq+

. In this case we say that iXp+,Yq+
exists; it is

then necessarily continuous by the closed graph theorem.
For any pair 1 < p, q ≤ ∞, with Xp− denoting any one of the spaces d(p−), ces(p−) or

`p− and Yq− denoting any one of the spaces d(q−), ces(q−) or `q−, the analogous notation
iXp−,Yq− is adopted for M1

Xp−,Yq−
whenever 1 ∈ MXp−,Yq− .

Except for the pairs of spaces d(p+), d(q+) and d(p−), d(q−) it is known precisely
when the maps iXp+,Yq+

and iXp−,Xq− exist, as recorded in the following result.

Proposition 5.1. (i) Let 1 ≤ p, q < ∞ be an arbitrary pair.
(a) The inclusion map i`p+,`q+

: `p+ −→ `q+ exists if and only if p ≤ q.
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(b) The inclusion map i`p+,ces(q+) : `p+ −→ ces(q+) exists if and only if p ≤ q.
(c) The inclusion map ices(p+),ces(q+) : ces(p+) −→ ces(q+) exists if and only if p ≤ q.
(d) ces(p+) * `q+ for all choices of 1 ≤ p, q < ∞.

(ii) Let 1 < p, q ≤ ∞ be an arbitrary pair.
(a) The inclusion map i`p−,`q− : `p− −→ `q− exists if and only if p ≤ q.
(b) The inclusion map i`p−,ces(q−) : `p− −→ ces(q−) exists if and only if p ≤ q.
(c) The inclusion map ices(p−),ces(q−) : ces(p−) −→ ces(q−) exists if and only if p ≤ q.
(d) ces(p−) * `q− for all choices of 1 < p, q ≤ ∞.

For part (i) of Proposition 5.1 we refer to [5, Proposition 27] and for part (ii) of Propo-
sition 5.1 see [7, Proposition 25].

We will require the following facts.

Lemma 5.2. (i) `1+ * d(t) for each 1 < t < ∞.
(ii) `1+ * d(q+) for each q ∈ [1,∞).

(iii) `1 * d(∞−).
(iv) `p− * d(∞−) for each 1 < p ≤ ∞.

Proof. (i) Fix t > 1. By the proof of Remark 2.8(i) in [10] there exists 0 ≤ x ∈ `1 such
that x < d(t). Since `1 ⊆ `1+, it follows that x ∈ `1+ but x < d(t).

(ii) Given q ∈ [1,∞) select any t > q. By part (i) there exists x ∈ `1+ such that x < d(t).
Since d(q+) ⊆ d(t), also x < d(q+).

(iii) Recall that d(∞−) =
⋃∞

n=1 d(n). For each n ∈ N, it follows from the proof of part
(i) that there exists 0 ≤ x[n] ∈ `1 such that x[n] < d(n). Dividing by ‖x[n]‖1, if necessary,
we can assume that ‖x[n]‖1 = 1 for each n ∈ N. Define x :=

∑∞
n=1 2−nx[n], in which case

0 ≤ x ∈ `1.Moreover, x < d(n) for every n ∈ N. Indeed, if x ∈ d(n0) for some n0 ∈ N, then
0 ≤ x[n0]2−n0 ≤ x implies that x[n0]2−n0 ∈ d(n0) as d(n0) is solid. Then also x[n0] ∈ d(n0)
which is a contradiction. So, x < d(∞−).

(iv) Fix 1 < p ≤ ∞. By part (iii) there exists x ∈ `1 such that x < d(∞−). Since
`1 ⊆ `p− =

⋃
1<r<p `r, it follows that x ∈ `p−. �

As in the previous section, duality is again relevant. Due to the reflexivity of all the
spaces involved we note that iXp+,Yq+

: Xp+ −→ Yq+ exists if and only if its dual operator
(iXp+,Yq+

)′ exists, that is, if and only if iYq′−,Xp′− : Yq′− −→ Xp′− exists. The following result
consists of the cases not covered by Proposition 5.1.

Theorem 5.3. (i) Let 1 ≤ p, q < ∞ be an arbitrary pair.
(a) The inclusion map id(p+),d(q+) : d(p+) −→ d(q+) exists if and only if p ≤ q.
(b) The inclusion map id(p+),`q+

: d(p+) −→ `q+ exists if and only if p ≤ q.
(c) The inclusion map id(p+),ces(q+) : d(p+) −→ ces(q+) exists if and only if p ≤ q.
(d) `p+ * d(q+) and ces(p+) * d(q+) for all choices of 1 ≤ p, q < ∞.

(ii) Let 1 < p, q ≤ ∞ be an arbitrary pair.
(a) The inclusion map id(p−),d(q−) : d(p−) −→ d(q−) exists if and only if p ≤ q.
(b) The inclusion map id(p−),`q− : d(p−) −→ `q− exists if and only if p ≤ q.
(c) The inclusion map id(p−),ces(q−) : d(p−) −→ ces(q−) exists if and only if p ≤ q.
(d) `p− * d(q−) and ces(p−) * d(q−) for all choices of 1 < p, q,≤ ∞.



OPERATORS IN SEQUENCE SPACES 19

Proof. (i) (a) By the discussion prior to Theorem 5.3 and the fact that d(p+) = (ces(p′−))′β
and d(q+) = (ces(q′−))′β, it follows that id(p+),d(q+) exists if and only if ices(q′−),ces(p′−) exists
which, by Proposition 5.1(ii)(c) is the case if and only if q′ ≤ p′, that is, if and only if
p ≤ q.

(b) Since d(p+) = (ces(p′−))′β and `q+ = (`q′−)′β, an analogous argument as in (a), but
now using Proposition 5.1(ii)(b), establishes that id(p+),`q+

exists if and only if p ≤ q.
(c) Suppose that p ≤ q. By part (b) the inclusion map id(p+),`q+

exists and by Propo-
sition 5.1(i)(b) the inclusion map i`q+,ces(q+) exists. Hence, the composition id(p+),ces(q+) =

i`q+,ces(q+) ◦ id(p+),`q+
exists.

If p > q, select any r ∈ (p, q). Then Proposition 2.1(ii)(f) of [11] implies that d(p) *
ces(r). Since d(p) ⊆ d(p+) and ces(q+) ⊆ ces(r), it follows that d(p+) * ces(q+), that is,
d(p+) is not contained in ces(q+).

(d) Suppose there exists a pair 1 ≤ p, q < ∞ such that `p+ ⊆ d(q+). Since `1+ ⊆ `p+,
it follows that `1+ ⊆ d(q+) which contradicts Lemma 5.2(ii). So, `p+ * d(q+) for all
1 ≤ p, q < ∞. Moreover, as `p+ ⊆ ces(p+) for all 1 ≤ p < ∞ ( cf. Proposition 5.1(b)), it
follows that also ces(p+) * d(q+) for all 1 ≤ p, q < ∞.

(ii) (a) By the discussion prior to Theorem 5.3 and the fact that d(p−) = (ces(p′+))′β
and d(q−) = (ces(q′+))′β, it follows that id(p−),d(q−) exists if and only if ices(q′+),ces(p′+) exists.
By Proposition 5.1(i)(c) this is the case if and only if q′ ≤ p′, that is, if and only if p ≤ q.

(b) Since d(p−) = (ces(p′+))′β and `q− = (`q′+)′β, a similar argument as in (a), but now
using Proposition 5.1(i)(b), implies that id(p−),`q− exists if and only if p ≤ q.

(c) Since d(p−) = (ces(p′+))′β and ces(q−) = (d(q′+))′β, a similar duality argument as
in (a), but now using part (i)(c) of this theorem, shows that id(p−),ces(q−) exists if and only
if p ≤ q.

(d) Fix any pair 1 < p, q ≤ ∞. According to Lemma 5.2(iv) there exists x ∈ `p− such
that x < d(∞−). Since d(q−) ⊆ d(∞−), it follows that x < d(q−). �

We now turn our attention to the boundedness/compactness of various inclusion maps.
For part (i) of the following result see [5, Proposition 27] and for part (ii) see [7, Proposi-
tion 26]. Recall that the spaces ces(p+), ces(p−) are Montel whereas the spaces `p+, `p−

are not Montel.

Proposition 5.4. (i) Let 1 ≤ p ≤ q < ∞ be an arbitrary pair.
(a) The inclusion map i`p+,`q+

: `p+ −→ `q+ is bounded if and only if p < q. However,
i`p+,`q+

is never compact.
(b) The inclusion map i`p+,ces(q+) : `p+ −→ ces(q+) is bounded (equivalently compact)

if and only if p < q.
(c) The inclusion map ices(p+),ces(q+) : ces(p+) −→ ces(q+) is bounded (equivalently

compact) if and only if p < q.
(d) The inclusion map i`p+,ces(p+) : `p+ −→ ces(p+) is not bounded.

(ii) Let 1 < p ≤ q ≤ ∞ be an arbitrary pair.
(a) The inclusion map i`p−,`q− : `p− −→ `q− is bounded if and only if p < q. However,

i`p−,`q− is never compact.
(b) The inclusion map i`p−,ces(q−) : `p− −→ ces(q−) is bounded (equivalently compact)

if and only if p < q.
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(c) The inclusion map ices(p−),ces(q−) : ces(p−) −→ ces(q−) is bounded (equivalently
compact) if and only if p < q.

Remark 5.5. Concerning part (i)(b) of Proposition 5.4, it only follows from Proposition
27(iii) of [5] that i`p+,ces(q+) is bounded whenever p < q. However, for p > q there is
no inclusion of `p+ into ces(q+); see Proposition 5.1(i)(b). For the case of p = q, the
inclusion map i`p+,ces(p+) is not bounded. If so, by Lemma 2.1(ii), for T := i`p+,ces(p+) with
Xk := `p+(1/k), k ∈ N, and Ym := ces(p + 1

m ),m ∈ N, there exists k0 ∈ N such that the
natural inclusion `p+(1/k0) ⊆ ces(p + 1

m ) is continuous for all m ∈ N. But, for m := 1 + k0

we have that (p+ 1
k0

) > (p+ 1
m ) which yields a contradiction to [11, Proposition 2.1(ii)(d)].

Accordingly, the inclusion `p+ ⊆ ces(p+) is not bounded and hence, also not compact. �

We now present an analogue of Proposition 5.4 which admits the Montel spaces
d(p+), p ∈ [1,∞), and d(p−), 1 < p ≤ ∞.

Theorem 5.6. (i) Let 1 ≤ p ≤ q < ∞ be an arbitrary pair.
(a) The inclusion map id(p+),d(q+) : d(p+) −→ d(q+) is bounded (equivalently com-

pact) if and only if p < q.
(b) The inclusion map id(p+),`q+

: d(p+) −→ `q+ is compact if and only if p < q.
Moreover, id(p+),`q+

is bounded if and only if p < q.
(c) The inclusion map id(p+),ces(q+) : d(p+) −→ ces(q+) is bounded (equivalently

compact) if and only if p < q.
(ii) Let 1 < p ≤ q ≤ ∞ be an arbitrary pair.
(a) The inclusion map id(p−),d(q−) : d(p−) −→ d(q−) is bounded (equivalently com-

pact) if and only if p < q.
(b) The inclusion map id(p−),`q− : d(p−) −→ `q− is compact if and only if p < q.

Moreover, id(p−),`q− is bounded if and only if p < q.
(c) The inclusion map id(p−),ces(q−) : d(p−) −→ ces(q−) is bounded (equivalently

compact) if and only if p < q.

Proof. (i) (a) Since both d(p+), d(q+) are Montel spaces, there is no distinction between
bounded and compact maps. By the discussion prior to Theorem 5.3 and the fact that
d(p+) = (ces(p′−))′β and d(q+) = (ces(q′−))′β, it follows from Lemma 2.3 that id(p+),d(q+) is
compact if and only if its dual operator ices(q′−),ces(p′−) is compact. By Proposition 5.4(ii)(c)
this is the case if and only if q′ < p′, that is, if and only if p < q.

(b) If p < q, then it follows from the continuous factorization id(p+),`q+
= id(q+),`q+

◦

id(p+),d(q+) (cf. parts (a) and (b) of Theorem 5.3(i)) and the compactness of id(p+),d(q+) (see
part (a) above), that id(p+),`q+

is compact.
If p > q, then the inclusion of d(p+) in `q+ does not exist; see Theorem 5.3(i)(b).
Consider now p = q and suppose that the inclusion map id(p+),`p+

is compact. Then it is
also bounded. By an argument analogous to that in Remark 5.5, based on Lemma 2.1(ii),
but now for T := id(p+),`q+

with Xk := d(p + 1
k ), k ∈ N, and Ym := `q+(1/m),m ∈ N, we arrive

at a contradiction via [11, Proposition 2.1(ii)(e)].
So, we have established that id(p+),`q+

is compact if and only if p < q.
Since every compact operator is also bounded, it follows that id(p+),`q+

is bounded when-
ever p < q. Moreover, it was already noted that the inclusion of d(p+) in `q+ does not
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exist if p > q. So, it remains to show that id(p+),`q+
is not bounded if p = q; this was just

established above.
(c) Since both d(p+), ces(q+) are Montel spaces, the boundedness of id(p+),ces(q+) is

equivalent to its compactness.
Suppose that p < q. Then the continuous factorization id(p+),ces(q+) = i`q+,ces(q+) ◦ id(p+),`q+

(cf. Proposition 5.1(i)(b) and Theorem 5.3(i)(b)), with id(p+),`q+
bounded (by part (b)

above), implies that id(p+),ces(q+) is bounded.
If p > q, then the inclusion of d(p+) in ces(q+) does not exist; see Theorem 5.3(i)(c).
Consider now p = q and suppose that id(p+),ces(p+) is bounded. By a similar argument

to that in Remark 5.5, based on Lemma 2.1(ii), but now for T := id(p+),ces(p+) with Xk :=
d(p + 1

k ), k ∈ N, and Ym,m ∈ N, as in Remark 5.5, we arrive at a contradiction via
[11, Proposition 2.1(ii)(f)].

(ii) (a) The argument given in part (i)(a) can be adapted to also apply here. Indeed, the
dual operator of id(p−),d(q−) is precisely ices(q′+),ces(p′+) and so we can invoke here Proposition
5.4(i)(c) (in place of Proposition 5.4(ii)(c) used in part (i)(a)).

(c) We argue as in part (a). Indeed, the dual operator of id(p−),ces(q−) is id(q′+),ces(p′+)

and so we can apply part (i)(c) above to id(q′+),ces(p′+) to conclude that id(p−),ces(q−) is com-
pact (equivalently bounded) if and only if id(q′+),ces(p′+) is compact (equivalently bounded)
which is the case if and only if q′ < p′ (i.e., p < q).

(b) If p < q, then it follows from the continuous factorization id(p−),`q− = id(q−),`q− ◦

id(p−),d(q−) (see parts (a), (b) of Theorem 5.3(ii)) and the compactness of id(p−),d(q−) (cf.
part (a) above) that id(p−),`q− is compact.

For p > q the inclusion of d(p−) in `q− does not exist; see Theorem 5.3(ii)(b).
Let p = q and suppose that id(p−),`p− is compact, in which case it is also bounded. By

Lemma 2.2(ii) there exists m ∈ N such that for all k ≥ m we have d(p + 1
k ) ⊆ `p+(1/m) with

a continuous inclusion. Since k := m + 1 satisfies (p + 1
k ) > (p + 1

m ), this is impossible
by [11, Proposition 2.1(ii)(e)]. So, id(p−),`p− is not bounded and, in particular, also not
compact.

So, we have verified that id(p−),`q− is compact if and only p < q.
That id(p−),`q− is bounded if and only if p < q can be argued as in the last paragraph of

the proof of part (i)(b) above. �

Adopting the notation introduced prior to Proposition 5.1 for the Cesàro operator it is
clear what is meant by the operators CXp+,Yq+

: Xp+ −→ Yq+ and CXp−,Yq− : Xp− −→ Yq−,
whenever they exist. Their continuity is then a consequence of the closed graph theorem.
We begin by recalling the following result; for part (i) see [5, Proposition 28] and for part
(ii) see [7, Proposition 27].

Proposition 5.7. (i) Let 1 ≤ p, q < ∞ be an arbitrary pair.
(a) The operator C`p+,`q+

: `p+ −→ `q+ exists if and only if p ≤ q.
(b) The operator C`p+,ces(q+) : `p+ −→ ces(q+) exists if and only if p ≤ q.
(c) The operator Cces(p+),ces(q+) : ces(p+) −→ ces(q+) exists if and only if p ≤ q.
(d) The operator Cces(p+),`q+

: ces(p+) −→ `q+ exists if and only if p ≤ q.
(ii) Let 1 < p, q ≤ ∞ be an arbitrary pair.
(a) The operator C`p−,`q− : `p− −→ `q− exists if and only if p ≤ q.



22 J. BONET AND W.J. RICKER

(b) The operator C`p−,ces(q−) : `p− −→ ces(q−) exists if and only if p ≤ q.
(c) The operator Cces(p−),ces(q−) : ces(p−) −→ ces(q−) exists if and only if p ≤ q.
(d) The operator Cces(p−),`q− : ces(p−) −→ `q− exists if and only if p ≤ q.

The following result, an analogue of Proposition 5.7(i), admits the Montel spaces
d(p+), for p ∈ [1,∞).

Theorem 5.8. Let 1 ≤ p, q < ∞ be an arbitrary pair.
(i) The operator Cd(p+),d(q+) : d(p+) −→ d(q+) exists if and only if p ≤ q.

(ii) The operator Cd(p+),`q+
: d(p+) −→ `q+ exists if and only if p ≤ q.

(iii) The operator Cd(p+),ces(q+) : d(p+) −→ ces(q+) exists if and only if p ≤ q.
(iv) The operator C`p+,d(q+) : `p+ −→ d(q+) exists if and only if p ≤ q.
(v) The operator Cces(p+),d(q+) : ces(p+) −→ d(q+) exists if and only if p ≤ q.

Proof. (i) If p ≤ q, then pk ≤ qk for all k ∈ N, where pk := p + 1
k and qk := q + 1

k .
According to [10, Proposition 5.3(iii)] the Banach space operator Cd(pk),d(qk) : d(pk) −→
d(qk) is continuous for each k ∈ N. Hence, the continuity of Cd(p+),d(q+) follows from
Lemma 2.1(i).

Suppose that p > q. Choose m ∈ N such that qm < p. If Cd(p+),d(q+) exists (in which case
it is necessarily continuous), then Lemma 2.1(i) ensures the existence of k0 ∈ N such that
Cd(pk0 ),d(qm) : d(pk0) −→ d(qm) is continuous. Noting that pk0 > qm yields a contradiction
to [10, Proposition 5.3(iii)].

(ii) An analogous argument applies as in part (i) by replacing the use of Proposition
5.3(iii) in [10] with Proposition 5.3(ii) in [10].

(iii) Again argue as in part (i) by replacing the use of Proposition 5.3(iii) in [10] with
Proposition 5.3(i) in [10].

(iv) Adapt the proof of part (i) by now using Proposition 5.3(iv) of [10] in place of
Proposition 5.3(iii) in [10].

(v) Again argue as in part (i) by replacing the use of Proposition 5.3(iii) in [10] with
Proposition 5.3(v) in [10]. �

The analogue of Proposition 5.7(ii) above, now involving the Montel spaces d(p−),
for 1 < p ≤ ∞, is as follows.

Theorem 5.9. Let 1 < p, q ≤ ∞ be an arbitrary pair.
(i) The operator Cd(p−),d(q−) : d(p−) −→ d(q−) exists if and only if p ≤ q.

(ii) The operator Cd(p−),`q− : d(p−) −→ `q− exists if and only if p ≤ q.
(iii) The operator Cd(p−),ces(q−) : d(p−) −→ ces(q−) exists if and only if p ≤ q.
(iv) The operator C`p−,d(q−) : `p− −→ d(q−) exists if and only if p ≤ q.
(v) The operator Cces(p−),d(q−) : ces(p−) −→ d(q−) exists if and only if p ≤ q.

Proof. Suppose first that 1 < p ≤ q ≤ ∞. When forming the inductive limits d(p−) =

indk d(pk), and `p− = indk `pk and ces(p−) = indk ces(pk) with 1 < pk ↑ p and the
inductive limits d(q−) = indk d(qk), and `q− = indk `qk and ces(q−) = indk ces(qk) with
1 < qk ↑ q, we can select pk ≤ qk for each k ∈ N. For this choice of {pk}

∞
k=1 and {qk}

∞
k=1

the continuity of the Cesàro operator in each of parts (i) - (v) follows from Lemma 2.2(i)
above and [10, Proposition 5.3].
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Suppose now that p > q. For case (i) choose k ∈ N such that pk ∈ (q, p). If Cd(p−),d(q−)

is continuous, then Lemma 2.2(i) ensures the existence of m ∈ N such that the Banach
space operator Cd(pk),d(qm) is continuous. But, pk > qm and so we have a contradiction to
Proposition 5.3(iii) of [10].

The remaining cases (ii)-(v) can be established in a similar way. In each case, k ∈ N is
chosen to satisfy pk ∈ (q, p). The contradiction, for each of (ii)-(v), is then a consequence
of the relevant part of Proposition 5.3 in [10]. �

Concerning the boundedness/compactness of the Cesàro operator we will require the
following result. For part (i) see Proposition 29 in [5] and for part (ii) see Proposition 28
in [7]. Unlike for ces(p+), ces(q−), the spaces `p+, `q− are not Montel.

Proposition 5.10. (i) Let 1 ≤ p ≤ q < ∞ be an arbitrary pair.
(a) The operator C`p+,`q+

: `p+ −→ `q+ is bounded if and only if it is compact if and
only if p < q.

(b) The operator C`p+,ces(q+) : `p+ −→ ces(q+) is bounded (equivalently compact) if
and only if p < q.

(c) The operator Cces(p+),ces(q+) : ces(p+) −→ ces(q+) is bounded (equivalently com-
pact) if and only if p < q.

(d) The operator Cces(p+),`q+
: ces(p+) −→ `q+ is bounded if and only if it is compact

if and only if p < q.
(ii) Let 1 < p ≤ q ≤ ∞ be an arbitrary pair.
(a) The operator C`p−,`q− : `p− −→ `q− is bounded if and only if it is compact if and

only if p < q.
(b) The operator C`p−,ces(q−) : `p− −→ ces(q−) is bounded (equivalently compact) if

and only if p < q.
(c) The operator Cces(p−),ces(q−) : ces(p−) −→ ces(q−) is bounded (equivalently com-

pact) if and only if p < q.
(d) The operator Cces(p−),`q− : ces(p−) −→ `q− is bounded if and only if p < q.

The following result is a version of Proposition 5.10(i) which involves the Montel
spaces d(p+), for p ∈ [1,∞).

Theorem 5.11. Let 1 ≤ p ≤ q < ∞ be an arbitrary pair.
(i) The operator Cd(p+),d(q+) : d(p+) −→ d(q+) is bounded (equivalently compact) if

and only if p < q.
(ii) The operator Cd(p+),`q+

: d(p+) −→ `q+ is bounded if and only if it is compact if
and only if p < q.

(iii) The operator Cd(p+),ces(q+) : d(p+) −→ ces(q+) is bounded (equivalently compact)
if and only if p < q.

(iv) The operator C`p+,d(q+) : `p+ −→ d(q+) is bounded (equivalently compact) if and
only if p < q.

(v) The operator Cces(p+),d(q+) : ces(p+) −→ d(q+) is bounded (equivalently compact)
if and only if p < q.

Proof. For the case p > q, none of the operators in (i)-(v) exist (cf. Theorem 5.8) and so
p ≤ q is a necessary condition.
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(i) Consider first p = q and suppose that Cd(p+),d(p+) : d(p+) −→ d(p+) is bounded. By
Lemma 2.1(ii), for T := Cd(p+),d(p+) with Xk := d(p+ 1

k ), k ∈ N, and Ym := d(p+ 1
m ),m ∈ N,

there exists k0 ∈ N such that the Banach space operator Cd(p+(1/k0)),d(p+(1/m)) : d(p+ 1
k0

) −→
d(p+ 1

m ) is continuous for all m ∈ N. Choose m := k0 +1, in which case (p+ 1
k0

) > (p+ 1
m )

with Cd(p+(1/k0)),d(p+(1/m)) continuous; this contradicts [10, Proposition 5.3(iii)].
Suppose now that p < q. Fix any r ∈ (p, q). Then the operator Cd(p+),d(q+) : d(p+) −→

d(q+) is compact because it factorizes continuously as Cd(p+),d(q+) = Cd(r+),d(q+) ◦ id(p+),d(r+)

(cf. Theorem 5.3(i)(a) and Theorem 5.8(i)) with id(p+),d(r+) compact; see Theorem 5.6(i)(a).
(ii) For compactness, which implies boundedness, the case p = q follows by a con-

trapositive argument analogous to that in part (i), now with Ym := `p+(1/m),m ∈ N, but the
same spaces Xk, k ∈ N. The contradiction is now achieved via [10, Proposition 5.3(ii)].

For p < q fix any r ∈ (p, q). Then the continuous factorization Cd(p+),`q+
= Cd(r+),`q+

◦

id(p+),d(r+) (cf. Theorem 5.3(i)(a) and Theorem 5.8(ii)) with id(p+),d(r+) compact (by Theo-
rem 5.6(i)(a)) implies that Cd(p+),`q+

is a compact operator. Hence, it is also bounded.
(iii) The case p = q follows via a similar contrapositive argument to that in part (i),

now with Ym := ces(p + 1
m ),m ∈ N, but the same spaces Xk, k ∈ N. The contradiction is

now achieved by [10, Proposition 5.3(i)].
For p < q fix any r ∈ (p, q). Then the continuous factorization Cd(p+),ces(q+) = Cd(r+),ces(q+)◦

id(p+),d(r+) (cf. Theorem 5.3(i)(a) and Theorem 5.8(iii)) with id(p+),d(r+) compact (see part
(ii)) implies that Cd(p+),ces(q+) is a compact operator.

(iv) Suppose that p = q. If C`p+,d(p+) is compact, then the continuous factorization
Cd(p+),d(p+) = C`p+,d(p+) ◦ id(p+),`p+

(cf. Theorem 5.3(i)(b) and Theorem 5.8(iv)) shows that
Cd(p+),d(p+) would be compact. This contradicts part (i).

For p < q fix any r ∈ (p, q). Then the continuous factorization C`p+,d(q+) = C`r+,d(q+) ◦

i`p+,`r+
(cf. Proposition 5.1(i)(a) and Theorem 5.8(iv)) with i`p+,`r+

bounded (by Proposi-
tion 5.4(i)(a)) implies that C`p+,d(q+) is bounded. Since d(q+) is Montel, C`p+,d(q+) is also
compact.

(v) Suppose that p = q and that Cces(p+),d(p+) is compact. Then the continuous factor-
ization Cd(p+),d(q+) = Cces(p+),d(p+) ◦ id(p+),ces(p+) (cf. Theorem 5.3(i)(c) and Theorem 5.8(v))
implies that Cd(p+),d(q+) is compact. This contradicts part (i).

For p < q fix r ∈ (p, q). Then the continuous factorization Cces(p+),d(q+) = Cces(r+),d(q+) ◦

ices(p+),ces(r+) (cf. Proposition 5.1(i)(c) and Theorem 5.8(v)) with ices(p+),ces(r+) compact (by
Proposition 5.4(i)(c)) shows that Cces(p+),d(q+) is compact. �

Our final result, which admits the Montel spaces d(p−), 1 < p ≤ ∞, is akin to Propo-
sition 5.10(ii).

Theorem 5.12. Let 1 < p ≤ q ≤ ∞ be an arbitrary pair.

(i) The operator Cd(p−),d(q−) : d(p−) −→ d(q−) is bounded (equivalently compact) if
and only if p < q.

(ii) The operator Cd(p−),`q− : d(p−) −→ `q− is bounded if and only if it is compact if
and only if p < q.

(iii) The operator Cd(p−),ces(q−) : d(p−) −→ ces(q−) is bounded (equivalently compact)
if and only if p < q.
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(iv) The operator C`p−,d(q−) : `p− −→ d(q−) is bounded (equivalently compact) if and
only if p < q.

(v) The operator Cces(p−),d(q−) : ces(p−) −→ d(q−) is bounded (equivalently compact)
if and only if p < q.

Proof. For the case p > q, none of the Cesàro operators in (i)-(v) exist (cf. Theorem 5.9)
and so p ≤ q is a necessary condition.

(i) Suppose that p = q and that Cd(p−),d(p−) : d(p−) −→ d(p−) is a bounded operator.
By Lemma 2.2(ii), for T := Cd(p−),d(p−) with Xk := d(pk) and 1 < pk ↑ p, for k ∈ N, and
with Ym := d(pm) for m ∈ N, there exists m0 ∈ N such that the Banach space operator
Cd(pk),d(pm0 ) : d(pk) −→ d(pm0) is continuous for all k > m0. Set k := m0 +1 (i.e., pk > pm0)
gives a contradiction to [10, Proposition 5.3(iii)].

Assume that p < q. Choose any pair r, s such that p < r < s < q. Then we have the
continuous factorization Cd(p−),d(q−) = id(s),d(q−) ◦Cd(r),d(s) ◦ id(p−),d(r). Indeed, the continuity
of id(p−),d(r) follows from [25, Proposition 24.7], the continuity of id(s),d(q−) is clear from
the definition of the inductive limit topology in d(q−), [25, p. 280, Definition], and the
continuity of the Banach space operator Cd(r),d(s) follows from [10, Proposition 5.3(iii)].
Since Cd(r),d(s) is actually compact, [10, Proposition 5.4(iii)], it follows that Cd(p−),d(q−) is
compact.

(ii) Assume that p = q and that Cd(p−),`p− : d(p−) −→ `p− is bounded. Arguing via
Lemma 2.2(ii) as in the proof of part (i), now with T = Cd(p−),`p− and Ym := `pm for m ∈ N
(the spaces Xk, k ∈ N, are as in part (i)), leads to a contradiction of Proposition 5.3(ii) in
[10]. In particular, Cd(p−),`p− also fails to be compact.

Suppose that p < q. Choose any pair r, s satisfying p < r < s < q. Then we have the
continuous factorization Cd(p−),`q− = i`s,`q− ◦ id(s),`s ◦ Cd(r),d(s) ◦ id(p−),d(r). Indeed, id(s),`s) is
continuous by [10, Proposition 5.1(ii)] and the continuity of both Cd(r),d(s) and id(p−),d(r)

were established in part (i). Finally, i`s,`q− is continuous by the definition of the inductive
limit topology in `q−. As noted in the proof of part (i), the operator Cd(r),d(s) is compact
and hence, so is Cd(p−),`q− . In particular, Cd(p−),`q− is also bounded.

(iii) Assume that p = q and that Cd(p−),ces(p−) : d(p−) −→ ces(p−) is bounded. Via
Lemma 2.2(ii) we can argue as in the proof of part (i), now with T := Cd(p−),ces(p−)

and Ym := ces(pm) for m ∈ N (the spaces Xk, k ∈ N, are as in part (i)), to produce a
contradiction to Proposition 5.3(i) in [10].

Suppose that p < q. Choose any pair r, s satisfying p < r < s < q. Then we have
the continuous factorization Cd(p−),ces(q−) = ices(s),ces(q−) ◦ id(s),ces(s) ◦ Cd(r),d(s) ◦ id(p−),d(r).
Indeed, id(s),ces(s) is continuous by [10, Proposition 5.1(i)] and the continuity of Cd(r),d(s)

and id(p−),d(r) were established in the proof of part (i). Finally, ices(s),ces(q−) is continuous by
definition of the inductive limit topology in ces(q−). Since Cd(r),d(s) is a compact operator,
so is Cd(p−),ces(q−).

(iv) Suppose that p = q and that C`p−,d(p−) : `p− −→ d(p−) is bounded. Arguing
via Lemma 2.2(ii) as in the proof of part (i), now for T := C`p−,d(p−) with Xk := `pk and
1 < pk ↑ p, for k ∈ N (the spaces Ym,m ∈ N, are as in part (i)), leads to a contradiction of
Proposition 5.3(iv) in [10].

If p < q choose any r ∈ (p, q). Then we have the continuous factorization C`p−,d(q−) =

C`r−,d(q−) ◦ i`p−,`r− (cf. Proposition 5.1(ii)(a) and Theorem 5.9(iv)) with i`p−,`r− bounded (by
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Proposition 5.4(ii)(a)). So, C`p−,d(q−) is bounded which is equivalent to compactness as
d(q−) is a Montel space.

(v) Suppose that p = q and that Cces(p−),d(p−) : ces(p−) −→ d(p−) is bounded. Arguing
via Lemma 2.2(ii) as in the proof of part (i), now for T := Cces(p−),d(p−) with Xk := ces(pk)
and 1 < pk ↑ p, for k ∈ N (the spaces Ym,m ∈ N, are as in part (i)), yields a contradiction
to Proposition 5.3(v) in [10].

If p < q choose any r ∈ (p, q). Then the continuous factorization Cces(p−),d(q−) =

Cces(r−),d(q−)◦ ices(p−),ces(r−) (cf. Proposition 5.1(ii)(c) and Theorem 5.9(v)) with ices(p−),ces(r−)

compact (by Proposition 5.4(ii)(c)) shows that Cces(p−),d(q−) is a compact operator. �
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