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Abstract. In the introductory Section 0. some of the most important points in the profes-
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0. Introduction: Curriculum Vitae of Jean Schmets

a) Some data

Jean François Hubert Schmets was born in Rocourt, Belgium on September 22, 1940.
After getting the “Diplôme d’humanités latines-mathématiques” at the “Athénée Royal
de Liège” in 1958 and after spending one year at the Jefferson High School in Cedar
Rapids, Iowa, USA, he studied mathematics at the Université de Liège. He received the
“Deuxième Licence en Sciences Mathématiques” and the “Agrégation de l’Enseignement
Secondaire Supérieur en Sciences Mathematiques” in 1963 and the “Doctorat en Sciences,
groupe des Sciences Mathématiques” in 1965, adviser: Professor H.G. Garnir. The title
of the dissertation was “Sur quelques points d’analyse fonctionnelle”. In 1976, he was
admitted to the “Agrégation de l’Enseignement Supérieur”; the title of the dissertation
(or of the “Habilitationsschrift”, as one would say in Germany) was “Espaces de fonctions
continues”.

From 1963 to 1973 Schmets was assistant in the group of Garnir. He became “chef
de travaux” in 1973, “agrégé à l’Université” in 1976, professor in 1978 and “Professeur
ordinaire” in October 1988. Since 1986, Jean Schmets was “Directeur de l’Unité de
Documentation Mathématique” and since 1987 “Représentant de la Faculté des Sciences”
at the “Conseil Scientifique des Bibliothèques”. At the Université de Liège, he was “Vice-
doyen de la Faculté des Sciences” from October 1, 2000 until the end of September 2002
and President of the mathematical department from 2001 to 2005. He retired at the end
of September 2005.

Schmets had six Ph.D. students: J. Zafarani (1975), J.-L. Lieutenant (1982), J.-P.
Schneiders (1986), F. Bastin (1989), E. Ngimbi Ngembo (1994) and M. Mauer (2000).
The authors and Susanne Dierolf were members of the committee during the oral exam
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of Françoise Bastin, which took place on a very historic day: In the late evening of this
day, the Berlin wall was opened.

b) Honors, services

Schmets was a visiting professor at, among other places, the Universities of Bonn,
Düsseldorf, Jena, Kiel, Mainz, Oldenburg, Paderborn, Saarbrücken, Trier and Tübingen
(Germany), at the Technical University and the University of Valencia (Spain), Krakow
(Poland), Paris XIII (France), Napoli (Italy), Budapest (Hungary), Bujumbura (Bu-
rundi), and the University of Maryland at College Park (USA).

Among the honors with which Schmets was decorated, let us only mention that he
received the “Prix des Amis de l’Université de Liège” in 1976 and twice the “Prix Jacques
Deruyts” (1980–84 and 1996–2000) of the Royal Belgian Academy. He became a foreign
corresponding member of the “Real Academia de Ciencias Exactas, F́ısicas y Naturales”
of Madrid, Spain in 1998.

Jean served as President of the Belgian Mathematical Society, was a member, vice-
secretary, secretary, vice-president and now is President of the “Belgian National Com-
mittee for Mathematics”. He has served as member of the mathematical commission of
the “Fonds voor Wetenschappelijk Onderzoek Vlanderen”, Belgium and as Treasurer of
the “Société Royale des Sciences de Liège”.

Schmets was member of the Editorial Board of the journal “Simon Stevin”, later
“Bulletin of the Belgian Math. Soc. – Simon Stevin”, until he became President of the
Belgian Math. Soc. He is still member of the Editorial Board of the journal “Results in
Mathematics”

c) Talks, organization

Jean Schmets gave over 170 colloquium lectures and invited lectures at various confer-
ences all over the world. His talks were always very interesting and very well organized.
In particular, the authors remember Schmets’ excellent talk on the recent work of Manuel
Valdivia during the “International Functional Analysis Meeting on the Occasion of the
70th Birthday of Professor Valdivia” in Valencia in 2000.

But Schmets has also been very well known as organizer or co-organizer of more than
30 international meetings. A whole series of meetings on functional analysis and par-
tial differential equations was organized in Esneux and Han-sur-Lesse, since 1979. In
2000 the authors, Maestre and Schmets co-organized the international functional analysis
meeting at the Technical University of Valencia and edited the Proceedings volume [FA]
of this conference. In 2001 Jean and the first named author were co-organizers of the
joint meeting of the Belgian and German math. societies in Liège. During this meeting,
Bastin, Bierstedt, Laubin, Meise, and Schmets co-organized the Special Session “Func-
tional Analysis and Functional Analytic Methods in Partial Differential Equations” (24
talks).

d) Publications

According to his list of publications in mid-2006, Schmets now has 68 articles published
in scientific journals, among them exactly one joint article with the authors. This article
[47] appeared in Note Mat. in the special volume dedicated to the memory of Professor
Köthe.
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Schmets is, together with H.G. Garnir and M. De Wilde, co-author of the three volumes
“Analyse Fonctionnelle – Théorie constructive des espaces linéaires à semi-normes” ([AF1]
1968, [AF2] 1972, and [AF3] 1973) of Birkhäuser. In these books the authors do not make
use of the uncountable axiom of choice or of Zorn’s lemma. The books were reviewed for
Math. Reviews by W.A.J. Luxemburg who wrote concerning volume I: “All in all the book
seems to be well suited for those who want to acquaint themselves with the topological
theory of functional analysis. A number of useful problems are scattered through the
text.” For volume II he wrote: “The book contains a number of exercises with hints
which makes it more suitable for a textbook. This volume is written in the same clear
style of volume I and the printing is excellent.” And finally, concerning volume III it is
said: “As with the previous volumes, this one is also well written. The reviewer can see
its main function as a useful reference text.”

Schmets published two Springer Lecture Notes in Mathematics volumes, “Espaces
de fonctions continues” ([FC] 1976) and “Spaces of vector-valued continuous functions”
([VCF] 1983). More will be said about the contents of these lecture notes in Chapter I
below. All in all, Schmets is the (co-) author of 14 books and co-editor of one Proccedings
volume.

e) Disclaimer, organization of the paper

Of course, it will not be possible here to mention all the books and articles published by
Schmets, and for the purposes of this article we decided to review in Chapter I the results
for which Schmets has primarily been known for a long time: on spaces of continuous
and vector valued continuous functions, and we will mainly treat the scalar case here in
more detail. This covers most of Jean’s work up to 1990, but it should be mentioned that
during this time Schmets also contributed to measure and integration theory ([2], [4], [8])
as well as to distribution theory ([10]), derived a generalization of Lyapunov’s theorem
([5]), and a version of the bang-bang principle ([9]).

A second chapter will be devoted to one of most successful scientific cooperations of the
last 15 years; viz., the joint work of Schmets with Manuel Valdivia, starting around 1990.
From 1994 on Schmets and Valdivia received support by “Actions concertées CGRI-MEC”
(Belgium/Spain) and FEDER for their joint research and for the visits at each other’s
universities.

Note for the reader: In this article, references are given to items in three different lists.
For n ∈ IN , clearly [n] refers to article n in the list of articles of Jean Schmets, while e.g.
[AF1] (only capital letters) refers to an item in the list of his books. On the other hand,
abbreviations like [La0] (containing at least one small letter) always refer to items in the
list of references to other people’s work.

I. Spaces of continuous functions

a) Notation, some definitions

In the sequel, X will always denote a completely regular Hausdorff space, and C(X)
will be the algebra of all real or complex valued continuous functions on X. Cs(X)
denotes C(X) with the topology of pointwise convergence on X, and Cc(X) stands for
C(X) endowed with the topology of uniform convergence on the compact subsets of X.
In the vector valued case we use the similar abbreviations Cs(X, E) and Cc(X, E).
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A character on C(X) is a multiplicative linear functional 6= 0 on C(X). The set υX
of all characters on C(X) is endowed with the weak topology and the uniform structure
induced by the algebraic dual of C(X), and X is identified canonically with a dense
subspace of υX. υX has the weakest uniform structure which makes all f ∈ C(X)
uniformly continuous; it will be called the repletion of X – in the literature one sometimes
also finds the term “realcompactification”. υX is a topological subspace of the Stone-
Čech compactification βX of X. As a uniform space, υX is complete, and each function
f ∈ C(X) has a unique continuous extension τf to υX, defined by (τf)(u) = u(f) for
each u ∈ υX. The mapping τ , defined in this way, is an algebra isomorphism of C(X)
onto C(υX). The space X is said to be replete if X = υX. Each Lindelöf space is replete.
The notations Cs(υX), Cc(υX) etc. should be self explanatory by now.

A subset B of X is said to be bounding if f(B) is bounded for each f ∈ C(X). Recall
that X is said to be a pseudocompact space if and only if X is a bounding subset of itself.
Each bounding subset of υX, hence also of X, is relatively compact in υX. The µ-space
µX associated with a completely regular Hausdorff space X is the smallest subspace of
υX which contains X and in which each bounding subset is relatively compact. X is said
to be a µ-space if X = µX. Of course, each replete space is a µ-space, but also each
paracompact space is a µ-space.

b) Prehistory and an open problem
In the beginning of the theory of locally convex spaces, there were obvious reasons

(viz., the generalization of classical results to a setting more general than Banach and
Fréchet spaces) to introduce the classes of bornological spaces and of barrelled spaces.
While it was easy to find examples of bornological spaces which were not barrelled, the
first example of a barrelled space which was not bornological was given by use of the
famous Nachbin-Shirota theorems and of an example due to Gillman and Henriksen of a
µ-space which is not replete.

Theorem (L. Nachbin, T. Shirota 1954, [Nach0], [Shir]). For a completely
regular Hausdorff space X, Cc(X) is bornological if and only if X is replete, and this
space is barrelled if and only if X is a µ-space.

On the other hand, it follows from the Nachbin-Shirota theorems that each bornolog-
ical Cc(X) must be barrelled.

In his work [Nach] in approximation theory (concerning Stone-Weierstrass type the-
orems for spaces of continuous functions on completely regular Hausdorff spaces X),
Leopoldo Nachbin developed a framework of spaces of continuous functions with 0- or
o-weight conditions with respect to a system V of weights on X; viz., he introduced
the weighted spaces CV (X) and CV0(X). In this context, however, no general Nachbin-
Shirota type theorems have been proved so far. – Incidentally, an example of a space
CV0(X) is the space of all continuous and bounded functions on X, equipped with the
strict topology of R.C. Buck, a space on properties of which Jean Schmets has also done
some interesting research, see [18], [26].

Some years later than Nachbin and Shirota, a fairly complete study of the locally
convex properties of the space Cc(X) was given in a seminal paper by Seth Warner.
Among other things he proved:

Theorem (S. Warner 1958, [War]). Cc(X) is quasibarrelled if and only if each set
B ⊂ X on which each positive lower semicontinuous function on X which is bounded on
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each compact subset of X is also bounded, must already be relatively compact.

c) The first contributions of Jean Schmets, scalar case
In 1971, De Wilde and Schmets [12] showed that in the Nachbin-Shirota theorem

“bornological” can be replaced by “ultrabornological”. In the next two years, H. Buch-
walter and J. Schmets were led to study the space Cs(X). Here is one of their results.

Theorem (H. Buchwalter, J. Schmets 1972/73, [17], [20]). The space Cs(X) is
always quasibarrelled, and it is barrelled if and only if each bounding subset of X is finite.

Instead of “only” characterizing when Cs(X) resp. Cc(X) is (ultra)bornological resp.
(quasi)barrelled, it is also interesting to characterize the associated spaces.

Let R be a property which a locally convex space can have and which is stable under
separated inductive limits and satisfied by each linear space equipped with the system of
all seminorms. Ultrabornological, bornological, barrelled and quasibarrelled are examples
of such properties. Then the associated R-space to a locally convex space E is E, equipped
with the weakest locally convex topology which is stronger than the original topology of
E and satisfies property R.

For example, the bornological space Eb associated with a locally convex space E is
the inductive limit of the spaces EB where B runs through all absolutely convex bounded
sets and EB is the normed space associated with E and B; i.e., the linear span of B in
E with the Minkowski functional of B as norm. A similar construction works for the
associated ultrabornological space by replacing the absolutely convex and bounded sets
by the Banach discs.

In the case of the associated (quasi)barrelled space, however, one must use a transfinite
construction. For a locally convex topology τ , let τ1 be the stronger topology which one
gets by taking all τ -barrels as neighborhoods of 0. τ1 need not be barrelled, but one can
continue this procedure by transfinite induction: For an ordinal number α, let τα = (τα−1)1

if α has a predecessor, and let τα be the union of all 0-neighborhoods of τβ for β < α if this
not the case. There must be an ordinal d for which τd = τd+1, and this is the associated
barrelled topology. The associated quasibarrelled topology is obtained in the same way
by replacing barrels by bornivorous barrels.

In the same two papers as above, the following results were also proved:
Theorem (H. Buchwalter, J. Schmets 1972/73, [17], [20]). Let X be a com-

pletely regular Hausdorff space.
1. The space Cs(υX) is always bornological; it is the bornological space associated with

Cs(X). Cs(X) is bornological if and only if X is replete.
2. The space Cc(υX) is always ultrabornological; it is the ultrabornological space asso-

ciated with Cs(X). Cs(X) is ultrabornological if and only if X is replete and each compact
subset of X is finite.

3. The space Cc(µX) is the barrelled space associated with Cs(X).
Incidentally, the reviewer (which happens to be the first named author of the present

article) for Zbl. MATH of the 1973 article of Buchwalter and Schmets wrote: “The problem
of characterizing the bornological space associated with Cc(X)... had been left open and
is solved in the last part of the present well and carefully written paper”.

d) Still scalar case, but a more general setting
From this point on, a general setting to treat spaces of continuous functions with the
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topology of uniform convergence on a system of relatively compact subsets of υX emerged,
which we will now report on, following the first Springer Lecture Notes volume [FC] of
Schmets.

Let X be a completely regular Hausdorff space and P a system of bounding subsets
of υX such that YP = ∪{B; B ∈ P} is dense in υX and such that for B1, B2 ∈ P there is
B ∈ P with B1∪B2 contained in the closure of B in υX. Then the topology τP of uniform
convergence on the system P of subsets of υX is given by the seminorms ||.||B, B ∈ P ,
where ||f ||B = supB |τf | for f ∈ C(X). Without loss of generality one can assume that
the system P contains the closure in YP of each of its elements as well as each subset of
its elements.

Let Y be a dense subspace of υX. Then υY X denotes the subspace of υX of all
elements x ∈ υX on which each Banach disc of C(X) equipped with the topology of
pointwise convergence on Y is bounded. That is, υY X consists of all characters on C(X)
which are continuous on the ultrabornological space associated with C(X) equipped with
pointwise convergence on Y . One has υXX = υX, and if X is metrizable, then υY X = υX
holds for each dense subspace Y of X. In fact, υY X = υX also holds for each dense
subspace Y of X if X is locally compact or pseudocompact.

Theorem (J. Schmets 1975, [27]). Let Y be a dense subspace of υX with the prop-
erty that υY X = υX. Then Cc(υX) is the ultrabornological space associated with C(X),
endowed with any locally convex topology between the topology of pointwise convergence
on Y and the topology of uniform convergence on the compact subsets of υX.

Buchwalter wrote as a reviewer of [27]: “L’originalité du papier, par rapport aux
articles antérieurs sur la question, réside précisément dans le fait que des différences
substantielles apparaissent lorsqu’on a Y 6= X; par exemple la topologie sur C(X) de la
convergence simple sur Y peut être tonnelée sans que celle de la convergence simple sur
X le soit.”

For a dense subspace Y of υX Schmets [27] defined another subspace µY X of υX by
transfinite induction, as follows. Let X0

Y = Y , and for an ordinal α, let Xα+1
Y be the

union of all bounding subsets of υX which are contained in Xα
Y , and let Xα

Y be the union
of all Xβ

Y for β < α if α is a limit ordinal. Then there must be an ordinal d for which
Xd+1

Y = Xd
Y , and this is the space µY X. Note that µXX = µX holds and that if Y is a

dense subspace of υX which is contained in µX, then µY X is a subspace of µX.
Theorem (H. Buchwalter, J. Schmets 1970–75, see [27]). Let Y be a dense

subspace of υX. Then Cc(µY X) is the barrelled space associated with C(X), endowed with
any locally convex topology between pointwise convergence on Y and uniform convergence
on the compact subsets of µY X.

In the first Lecture Notes volume [FC] of Schmets one can also find characterizations
of the associated bornological and quasibarrelled spaces to (C(X), τP), P as above, but
since this is a bit more technical and requires additional constructions, we will not give
details here.

Furthermore, the book [FC] contains a chapter on separability conditions and on weak
compactness in C(X). In fact, everything is also done for the space of all continuous and
bounded functions, and besides barrelledness and quasibarrelledness also “d-tonnelé, σ-
tonnelé, d-évaluable, σ-évaluable” are considered.

This is perhaps the right place to point out that there is some recent work [KaST1],
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[KaST2] of Ka̧kol, Saxon and Todd on weak barrelledness properties of Cc(X) and Cp(X).
In particular, a question of Buchwalter and Schmets [20] from 1973 is finally solved in
[KaST1].

e) Some remarks on the vector valued case

The first Springer Lecture Notes book [FC] of Schmets closes with a chapter on the
vector valued case. The following results give a flavor of what is done here:

Theorem (J. Schmets 1976, see [FC]). Let X be a completely regular Hausdorff
space and E a locally convex space.

1. The space Cs(X,E) of all continuous E-valued functions on X is quasibarrelled
if and only if E is quasibarrelled. The quasibarrelled space associated with this space is
Cs(X, Eqb), where Eqb is the quasibarrelled space associated with E.

2. Cs(X, E) is barrelled if and only if both Cs(X) and E are barrelled. If Cs(X)
is barrelled, then the barrelled space associated with Cs(X, E) is Cs(X, Eba), where Eba

denotes the barrelled space associated with E.

3. If Cs(X, E) is bornological, then both Cs(X) and E must be bornological. The
converse holds if each point in X has a countable basis of neighborhoods. If Cs(X) is
bornological and if each point in X has a countable basis of neighborhoods, then Cs(X,Eb)
is the bornological space associated with Cs(X, E), where Eb is the bornological space
associated with E.

The last chapter of the first Lecture Notes volume of Schmets set the stage for the
second Lecture Notes volume [VCF] in which the space C(X, E) is treated with the
topology τP of uniform convergence on a system P of (relatively) compact subsets of υX
as before (so that, in particular, YP is a dense subspace of υX). In the proofs the main
ingredients are the properties of the support of an absolutely convex nonvoid subset of
C(X, E) and Singer’s [Sin] representation theorem of the dual of Cc(X, E) as space of
E ′-valued measures, which allows to define a support for elements of C(X,E)′.

During the first visit of the second named author in Paderborn, in the summer term
of 1983, Jean Schmets was also visiting Paderborn and gave lectures on the contents of
[VCF]. In the copy of [VCF] which the first named author got from Jean at that time,
one can find the following dedication: “En souvenir d’un séjour formidable à Paderborn.
Bien amicalement, Jean”.

Clearly, if (C(X, E), τP) is (ultra)bornological or (quasi)barrelled, then (C(X), τP)
must be of the same type, as well as E if the union of the closures of the sets in P
contains a point of X. In the other direction, however, there are counterexamples due
to S. Dierolf (see [37]) and A. Marquina, J.M. Sanz Serna [MarS]. The case of C(X,E)
with the topology of uniform convergence on the compact subsets of X was treated in
1980–83 by J. Mendoza (Casas), see [Men1], [Men2]. By use of a theorem of J. Mujica
[Muj], some of his results could be generalized (see part 2. of the next theorem). Also, by
tensor product methods certain results for this case were obtained by A. Defant and W.
Govaerts in 1984–86, see [DeGo1], [DeGo2]. Here is a sample of results in Jean Schmets’
second Lecture Notes volume:

Theorem. 1. (J. Schmets 1977, see [31], [32]) If the space Cc(υX, E) is bornolog-
ical – which is the case whenever E is metrizable, then (C(X,E), τP) is bornological if
and only if (C(X), τP) is bornological.
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2. Let X be replete and locally compact and let E = indn En be a compactly regular
(countable) locally convex inductive limit such that Cc(βX, En) is (ultra)bornological for
each n. Then Cc(X, E) is (ultra)bornological. Also, in the bornological case, (C(X,E), τP)
is then bornological if and only if (C(X), τP) is bornological.

3. (A. Defant, W. Govaerts 1986, [DeGo2]) Let K be compact and (Fα)α be an
inductive spectrum of locally convex spaces such that Cc(K,Fα) is bornological for each α
and such that each f ∈ C(K, indα Fα) canonically comes from an element of C(K, Fα).
Then Cc(K, indα Fα) is bornological if and only if the strong dual of indα Fα has property
(B) of Pietsch.

4. (J. Schmets 1977, [31]) If X is replete and if E is a Fréchet space, then Cc(X,E)
is ultrabornological.

5. (J. Mendoza Casas 1980, [Men1]) If X is replete and locally compact and if
Cc(βX, E) is ultrabornological, then Cc(X,E) is ultrabornological.

Note that every metrizable locally convex space and each strong dual of a metrizable
space has property (B).

Theorem (J. Mendoza 1983, [Men2]). 1. If P consists of compact subsets of X,
if (C(X), τP) and Cc(βX, E) are (quasi)barrelled, then (C(X, E), τP) is (quasi)barrelled.

2. E is (quasi)barrelled and its strong dual has property (B) if and only if each
Cc(K,E), K compact, is (quasi)barrelled.

3. If every compact subset of X is finite, then Cc(X, E) is quasibarrelled if and only
if E is quasibarrelled. If every compact subset of X is finite, then Cc(X,E) is barrelled
if and only if both Cc(X) and E are barrelled. If X does not have this property, then
Cc(X,E) is (quasi)barrelled if and only if both Cc(X) and E are (quasi)barrelled and the
strong dual of E has property (B).

f) Another open problem

While in the setting explained in subsection d) all results are final and nearly all
questions are solved, this definitively does not apply to the vector valued case. The
following is only one example for a problem which has remained open for quite a while.

In 1977, Schmets and Bierstedt (see [32]) asked if for a compact space K and an
(LB)-space E = indn En the space Cc(K, E) must be bornological. This problem remains
open. But S. Dierolf and P. Domański (1993-95) (see [DiD1], [DiD2]) made some inter-
esting studies in this direction and, among other things, proved that the space c0(E) is
bornological if E is the strong dual of an (FM)-space or if E is the inductive dual of
a Köthe echelon space. They also showed that the problem is related to the last open
problem of Grothendieck in functional analysis; viz., to the question whether a regular
(LF)- (here even (LB)-) space must be complete.

II. The cooperation of Schmets and Valdivia

a) Introduction, acknowledgment

At some point, Jean Schmets finished his research on spaces of continuous vector
valued functions. Most of the papers from number [48] in the list of publications of Jean
Schmets until the last number [68] (as of mid-2006) are joint articles with Valdivia.

Many of these articles were surveyed in Section 4 of Jean’s article [60] on the mathe-
matical works of Manuel Valdivia in the Proceedings volume of the 2000 Valencia meeting
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(in which Jean never mentioned his own name when joint research of Schmets and Valdivia
was concerned), and in what follows we owe much to this survey.

The first joint article [48] of Schmets and Valdivia dealt with the extent of the (non)
quasi analytic classes on the real line. But from this point on the first main field of interest
of both authors together were domains of real analytic existence ([50], [51]).

b) Domains of real analytic existence

Let X be a real normed space. A domain Ω in X is a real analytic domain if, for every
domain Ω1 of X verifying Ω1 6⊂ Ω 6⊂ X \Ω1 and every connected component Ω0 of Ω∩Ω1,
there is a real analytic function f on Ω such that the restriction f |Ω0 has no real analytic
extension to Ω1. And Ω is a domain of real analytic existence if there is a real analytic
function f on Ω such that, for every domain Ω1 of X with Ω1 6⊂ Ω 6⊂ X \ Ω1 and every
connected component Ω0 of Ω ∩ Ω1, f |Ω0 has no real analytic extension to Ω1. Of course
each domain of real analytic existence is a real analytic domain.

Theorem (J. Schmets, M. Valdivia 1993, [50], [51]). 1. Every nonvoid domain
Ω of a separable real normed space is a domain of real analytic existence.

2. If A is an uncountable set, then the open unit ball of c0(A,R) is a real analytic
domain, but not a domain of real analytic existence.

The research on domains of real analytic existence was continued in the Ph.D. thesis
of M. Mauer, which was supervised by Jean.

c) The Borel theorem, Whitney jets, and continuous linear right inverses for C∞-functions

In 1895, E. Borel proved that for every sequence (cn)n of complex numbers there
is a C∞-function f on R such that f (n)(0) = cn for all n ∈ N0. There were several
improvements of this result due to Bernstein, Ritt and others, in particular concerning
the real analyticity of the function f outside the origin. In 1934, H. Whitney generalized
these results from the origin to an arbitrary closed set F ⊂ RN . He characterized the jets
ϕ = (ϕα)α∈NN

0
on such a set F which come from a function f ∈ C∞(RN); i.e., such that

ϕα = Dαf |F for every α. For these jets Whitney proved that the function f can be taken
real analytic on RN \ F , and indeed holomorphic on some open subset of CN containing
RN \ F . Whitney introduced the space E(F ) of Whitney jets on F , endowed it with a
Fréchet topology and asked the following question: When does the continuous linear and
surjective restriction map R : C∞(RN) → E(F ) have a continuous linear right inverse;
i.e., when is there a continuous linear extension map from F to RN in the C∞-setting?

B. Mityagin showed in 1961 that there is no such extension map from 0 to R, but
that there is one from [−1, 1] to R. Several positive and negative examples were given
by Seeley [Seeley], Stein [Stein], Bierstone [Bierstone] and many others. Finally, in 1979,
Tidten [Tidten] gave the first characterization for the existence of an extension operator
in the case of a compact set F in terms of the condition (DN) of D. Vogt.

It was only in a paper of Schmets and Valdivia that the analyticity property appears
again in connection with the existence of continuous linear extension operators.

Theorem (J. Schmets, M. Valdivia 1997, [56]). If there exists a continuous linear
extension operator E(K) → C∞(RN) for K compact, then there exists such an operator
for which the extensions are holomorphic on

(RN \K)∗ := {x + iy ∈ CN ; x ∈ RN , |y| < d(x,K)}.
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Two years later, M. Langenbruch [La1] even gave an explicit formula to obtain this re-
sult. Another three years later, in 2002, L. Frerick, D. Vogt [FrV] characterized the closed
sets F for which there exists a continuous linear extension operator E(F ) → C∞(RN)
such that the extension of each jet is real analytic in RN \F as follows: For each r > 0 the
boundary of the union of the components of RN \ F which have nonempty intersection
with the ball of center 0 and radius r is bounded. Thus they solved an open problem of
Schmets and Valdivia [56].

In the one variable case, M. Langenbruch [La2] proved in 2003 that every Whitney jet
ϕ on a closed set F ⊂ R can be extended to a C∞ function which is analytic in C \ F –
hence the domain where the extensions can be chosen analytic is as large as possible. Note
that such a result in several variables is not possible due to Hartogs’ theorem. The final
step was taken by C. Boonen and L. Frerick [BoFR] in a paper which appeared recently.
They showed that a necessary and sufficient condition for a closed subset F of R such
that if the space E(F ) admits a continuous linear extension operator, then this extension
operator can be chosen with values holomorphic in C \ F , is that the boundary of F is
compact.

d) Whitney extensions for non quasianalytic functions
Among various ways to define ultradifferentiable functions the following two are most

frequently used. The older one goes back to the work of Gevrey and measures the behavior
of the derivatives of these functions in terms of a weight sequence (Mp)p∈N0 , which is
((p!)s)p∈N0 , s ≥ 1, in the Gevrey case, and which satisfies certain technical conditions
in the general case. One speaks of ultradifferentiable functions of Roumieu type in this
case; we refer to Komatsu [Ko] for a systematic treatment. Later Beurling, see Björck
[Bj], pointed out that one can also use weight functions ω to measure the smoothness of
C∞-functions with compact support by the decay properties of their Fourier transform.
This method was modified by Braun, Meise, and Taylor [BrMT] who showed that also
these classes can be defined by the decay behavior of their derivatives if one uses the
Young conjugate of the function t 7→ ω(et). For an open set G in Rn, the spaces of
ultradifferentiable functions of Beurling type are denoted by E(Mp)(G) and E(ω)(G), which
are Fréchet spaces, while the spaces of ultradifferentiable functions of Roumieu type are
denoted by E{Mp}(G) and E{ω}(G); they have a much more complicated structure: they
are countable projective limits of countable inductive limits of Banach spaces. We write
E∗ when we refer to any of these classes.

Several authors, like Carleson, Ehrenpreis or Komatsu investigated conditions to ex-
tend the Borel and Whitney theorems to the ultradifferentiable setting. A systematic
study was initiated in the late 80’s by Meise and Taylor [MeT1]. Bruna [Bruna] presented
an extension of Whitney’s theorem for classes of non quasianalytic functions defined by
Komatsu, with some extra conditions on the sequence (Mp)p. A full extension of Whit-
ney’s theorem was presented by Bonet, Braun, Meise and Taylor in [BoBMT] in the case
of E(ω) and E{ω}, which covered Bruna’s result. Petzsche [PeZ] obtained interesting char-
acterizations for spaces of type E(Mp) and E{Mp}. The extension of Whitney’s extension
theorem in this setting was investigated by Chaumat and Chollet [ChCh].

The existence of continuous linear extension operators for classes of non quasianalytic
functions was first considered by Meise and Taylor [MeT0], see also [MeT2]. The existence
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of continuous linear extension operators in the case of Beurling spaces E(Mp) from the
point and from a closed interval was considered by Petzsche [PeZ] and Langenbruch
[La00]. Meise and Taylor [MeT2] had characterized those weights ω such that there
is a continuous and linear extension operator from the point in the setting of Beurling
classes. This research was completed by Franken [Fr1], [Fr2]. The case of functions of
Roumieu type is more difficult. Langenbruch [La0] showed that there is no continuous
linear extension operator for ultradifferentiable functions of Gevrey type from an interval.
His proof uses the category of tame Fréchet spaces and an appropriate variant of the
property (DN) of Vogt.

As Schmets wrote in his 2000 report on Valdivia’s work: “In this vast literature, the
real analyticity part of the Borel-Ritt theorem or of the Whitney theorem had not been
considered before Valdivia’s work in this direction.” Here is the main result he got.

Theorem (M. Valdivia 1996, [Va1],[Va2]). Let K be a compact subset of RN .
1. If the jet ϕ ∈ E∗(K) comes from an E∗(RN)-function, then it also comes from an

element of the same space which moreover is real analytic on RN \K, indeed holomorphic
on an open subset of CN containing RN \K.

2. If there is a continuous linear extension operator E∗(K) → E∗(RN), then there is
such an extension map E such that E(ϕ) is real analytic on RN \K for each ϕ ∈ E∗(K).

Part 1. of this theorem was extended to closed subsets of RN in articles by Schmets and
Valdivia [55], [57], [58] in 1997-1999 . The method is basically the same, but it requires
quite refined arguments. In 2001 Schmets and Valdivia, using the result of Frerick and
Vogt mentioned in subsection c), obtained results about the existence of continuous linear
extension operators from the space of Whitney jets on a closed set F ⊂ RN into a space
of holomorphic functions on an open set D ⊂ CN which intersects RN in RN \ F , [61],
and in the same year, in another joint paper [62], this was carried over to classes of non
quasianalytic functions.

Schmets and Valdivia continued their detailed study of extension problems for ultra-
differentiable functions. In [59] they obtained an improvement of Ritt’s type of the results
of Petzsche [PeZ], and in [64] they investigated the range of the Borel map when it is not
surjective. This work is closely related to Bonet, Meise, Taylor [BoMTV]. The articles
[65] and [67] extend results of a paper of Chaumat and Chollet [ChCh2] and of the Thesis
of Beaugendre [Beau] about countable intersections of non quasianalytic classes. They use
methods and results of their paper [64]. The theorems in [65] constitute a proper extension
of the Beurling and the Roumieu cases. In the theorems about analytic extension, they
need methods developed in [52].

e) Disclaimer and evaluation
As was the case in Chapter I, also in the present chapter not all the results in the

joint work of Schmets and Valdivia could be mentioned here. The authors also extended
Borel’s theorem to real Banach spaces [53], showed the validity of the Zahorski theorem, in
the form generalized by J. Siciak [54], in Gevrey classes and the existence of holomorphic
functions having prescribed asymptotic expansions [52].

To sum up, the cooperation of Jean Schmets and Manuel Valdivia has been very
fruitful and has produced many nice results. In a review of a joint paper of Schmets
and Valdivia, Plesniak wrote: “This beautiful result is obtained due to subtle and very
ingenious estimates of the derivatives...” In fact, the joint articles of Schmets and Valdivia
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are in places quite subtle or technical, but all of them are written very carefully. We hope
and are convinced that this collaboration will continue in the future.
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1968, x+562 pp. (with H.G. Garnir and M. De Wilde)

[AF2] Analyse fonctionnelle (Théorie constructive des espaces linéaires à semi-normes),
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[AM] Analyse mathématique, Derouaux, Liège, 1987, i+400 pp.; 2-ème édition: 1990,
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M. De Wilde)

[20] Sur quelques propriétés de l’espace Cs(T ), J. Math. Pures Appl. (9) 52 (1973), 337–
352. (with H. Buchwalter) (cf. [17])

[21] Characterization of the barrelled, d-barrelled and σ-barrelled spaces of continuous
functions, Functional analysis and its applications (Internat. Conf., Madras, 1973),
Springer Lecture Notes in Math. 399 (1974), 468–476.
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