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1. Introduction

Motivated by applications to, among other things, linear partial differential equations,
weighted inductive limits of spaces of holomorphic functions, VH and V0H, have been
the object of quite a lot of research at least since the 1960s. It is important that, in good
cases, a basis of the continuous seminorms of the inductive limit topology can again be
given by weighted sup-seminorms. In the seminal paper [7], associated projective hulls
HV and HV 0 were introduced, and it was asked if projective description holds; i.e.,
roughly spoken, if VH = HV and V0H = HV 0 algebraically and topologically. The
main theorem of [7], which was, in fact, the first general result of this type, asserted that
V0H = VH = HV = HV 0 is true if VH is a (DFS)-space; that is, if the linking maps
between the generating Banach spaces are compact. But the methods used showed that
VH = HV is actually true whenever VH is a (semi-)Montel space; that is, whenever
all the bounded subsets are relatively compact. – Let us remark that the projective
description problem often is equivalent to asking if the weighted inductive limit of spaces
of holomorphic functions is a topological subspace of the weighted inductive limit of the
corresponding spaces of continuous functions.

Later on, a different result was obtained in [14]; here the authors worked with radial
weights on the unit disc. No conditions on the topology or on the linking maps of the
inductive limit were imposed, but all the weights had to be of a certain type. Along these
lines, the best projective description results for spaces of functions on the unit disc can
be found in [3]; they are obtained using ideas and methods of Lusky [12] for weighted
Banach spaces on the unit disc. The weights in the inductive limit must satisfy Lusky’s
two conditions in a uniform way.

In Lusky’s recent article [13], his results were carried over to weighted Banach spaces
of entire functions, and we are now profiting from Lusky’s methods to get projective
description for weighted inductive limits of spaces of entire functions. Here the radial
weights must be of a certain rather special form and must again satisfy Lusky’s condition
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in a uniform way. In the case of non-radial weights there are results for weighted (LF)-
spaces of entire functions by Bonet, Meise and Melikhov [8], [9].

The organization of this article is as follows: In Section 2, after recalling the definitions,
we explain the condition on the weights and give some examples. Then we formulate the
technical decomposition theorem for polynomials (Proposition 2.3) which will be used in
the proof of our main projective description theorems in Sections 3 and 4 (Theorem 3.2,
Theorems 4.1 and 4.2). The proof of Proposition 2.3 is only given in Section 5, and it is
here that we apply the methods of Lusky [13] in an essential way. Finally, in Section 6
we point out that our projective description results are not covered by the main theorem
of [7]. In fact, we show this by proving that VH contains a closed subspace isomorphic
to a Köthe co-echelon space k∞ which can be taken to be non-Montel.

2. Definitions, preliminaries, the decomposition result

We first establish some notation. In the sequel, H(C) denotes the space of all entire
functions. A weight v on C is a strictly positive continuous function on C. For such a
weight, the weighted Banach spaces of entire functions are defined by

Hv := {f ∈ H(C); ||f ||v = supz∈C v(z)|f(z)| < +∞},
Hv0 := {f ∈ H(C); vf vanishes at ∞},

endowed with the norm ‖f‖v := sup
z∈C

v(z)|f(z)|.
Let V := (vk)

∞
k=1 be a decreasing sequence of weights on C. Then the weighted inductive

limits of spaces of entire functions are defined by

VH := indkHvk,

V0H := indkH(vk)0;

that is, VH is the increasing union of the Banach spaces Hvk with the strongest locally
convex topology for which all the injections Hvk → VH become continuous, k ∈ N,
and similarly for V0H. These are locally convex inductive limits. It is clear that V0H
is continuously embedded in VH, and it is not clear a priori if it is even a topological
subspace. This is indeed the case in our setting below.

In an effort to describe the inductive limit topologies by a system of weighted sup-semi-
norms, Bierstedt, Meise and Summers [7] defined the associated system

V̄ = V̄ (V) := {v̄ weight on C; ∀k : sup
C

v̄

vk

< +∞};

that is, V̄ consists of all weights on C which are dominated by a function of the form
infk Ckvk with constants Ck > 0 for each k. Then the projective hulls of the weighted
inductive limits are the complete locally convex spaces

HV̄ := {f ∈ H(C); pv̄(f) = supG v̄|f | < +∞ ∀v̄ ∈ V̄ },
HV̄0 := {f ∈ H(C); v̄f vanishes at ∞ ∀v̄ ∈ V̄ },

endowed with the topology given by the system {pv̄; v̄ ∈ V̄ } of seminorms. HV̄0 is a
closed topological subspace of HV̄ . By the very definition we have continuous linear
embeddings VH → HV̄ and V0H → HV̄0. It was proved in [7] that VH = HV̄ always
holds algebraically.

The projective description problem asks: When do we have VH = HV̄ topologically,
and when is V0H a topological subspace of HV̄0? The first counterexamples to projective



WEIGHTED INDUCTIVE LIMITS OF SPACES OF ENTIRE FUNCTIONS 3

description in the case of spaces of holomorphic functions are due to Bonet and Taskinen
[11]; for counterexamples in the context of spaces of entire functions see Bonet and Me-
likhov [10]. All known counterexamples so far are in the case of O-growth conditions. For
more information on projective description see the survey [2].

In corollaries to our main theorems below two important conditions on the sequence V
occur. V = (vk)k is said to be regularly decreasing if for each k there exists l ≥ k such
that, for each subset S of C on which infS

vl

vk
> 0, also infS

vm

vk
> 0 for each m ≥ l.

This condition is taken from [7], where it is proved that V0H = HV̄0 holds algebraically
if V is regularly decreasing. On the other hand, V is said to satisfy condition (D) if
there exists an increasing sequence (Sn)n of subsets of C such that for each n there is l
such that infSn

vm

vl
> 0 for each m ≥ l, while for each k, and for each subset S of C with

S∩(C\Sn) 6= ∅ for each n, there is k′ > k with infS
vk′
vk

= 0. This condition was introduced

in [6], and it was proved there that it implies the (algebraic and) topological equality
VC = CV̄ for the corresponding spaces of continuous functions (i.e., one replaces in the
above definitions the space of entire functions by the space of all continuous functions).

Let us now explain the special form of the weights considered here and a condition
which has to be imposed on these weights.

Definition 2.1. Given constants A > 0 and a > 0, we say that a continuous, radial,
strictly positive weight function v : C→ R+ of the form

v(r) := w(r)e−ar, r ∈ [0,∞),(2.1)

belongs to the class (E)A,a if w : R+ → R+ is differentiable, strictly increasing and has
the property

sup
r∈[0,∞)

rw′(r)
aw(r)

≤ A.(2.2)

If a = 1, we denote the class by (E)A.

There are natural examples of functions w(r) that can be taken to construct weights
in the class (E)A.

Given A > 0, the function w(r) := (1 + r)α satisfies (2.2) if 0 ≤ α ≤ A, a = 1.

Given A > 0, the functions w(r) := (log(2 + r))β and w(r) = log(log(e2 + r)) satisfy
(2.2) if 0 ≤ β ≤ A, a = 1.

It is easy to see that if the weights w1(r) and w2(r) satisfy (2.2) for some A > 0, then
w(r) = w1(r)w2(r) also satisfies (2.2) for the same a and 2A instead of A > 0.

Remark 2.2. Assume that (vk)
∞
k=1 is a decreasing sequence of radial weights on C which

belong to the class (E)A,a. So vk(r) := wk(r)e
−ar, where each wk satisfies (2.2). If another

weight w̄ is defined by

w̄ :=
1∑∞

k=1 ckw
−1
k

,(2.3)

where the numbers ck ≥ 0 (at least one of which is not zero) are so small that the sum in
the denominator converges uniformly on the compact sets of C, then also w̄(r) satisfies
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(2.2). Indeed,

1

w̄(r)
rw̄′(r) =

∞∑

k=1

ckw
−1
k

(−1)2

( ∑∞
k=1 ckwk(r)−1

)2

∞∑

k=1

rckw
′
k(r)

wk(r)2

≤ 1∑∞
k=1 ckwk(r)−1

∞∑

k=1

Aack

wk(r)
= Aa.(2.4)

The following structural result about the weighted norms ‖ · ‖v is very important for
our main results about projective description of weighted inductive limits. It provides us,
among other things, with some kind of finite dimensional decomposition of the inductive
limit space V0H. Notice that inside any finite dimensional block, every weight is a constant
times e−ar; the latter factor is independent of the given weight.

Proposition 2.3. Let A, a > 0 be fixed. There exists a sequence (Tn)∞n=1 of finite rank
operators on the space of all polynomials with the following properties:

(a) The operators Tn satisfy TnTm = 0 if |n−m| ≥ 2, and TnTn+1 = Tn+1Tn.

(b) For every polynomial f we have
∑
n

Tnf = f , and the sum is finite.

(c) There is a constant D ≥ 1 such that for every r > 0 and every polynomial f we have

sup
|z|=r

|Tnf(z)| ≤ D sup
|z|=r

|f(z)|.(2.5)

(d) There exist increasing positive sequences (%n)∞n=1 and (σn)∞n=1, %n < σn, such that for
each weight v ∈ (E)A,a, v(r) = w(r)e−ar, there exists a constant C(v) > 0 such that for
every polynomial f ,

1

D
sup
n∈N

sup
%n≤|z|≤σn

w(%n)e−ar|Tnf(z)| ≤ ‖f‖v ≤ C(v) sup
n∈N

sup
%n≤|z|≤σn

w(%n)e−ar|Tnf(z)|;

here D is the constant of statement (c), which does not depend on the weight v.

The proof of this proposition is presented in Section 5. We will use it to prove our main
results concerning projective description.

3. Main results in the case of o–growth conditions

We assume in the next two sections that V := (vk)
∞
k=1 is a decreasing sequence of weights

on C belonging to the class (E)A,a for some A, a > 0. We start with the following technical
lemma, which shows how to use Proposition 2.3 to decompose polynomials keeping certain
estimates. In the next two sections we will use the notation

Uk := {f ∈ Hvk | ‖f‖vk
≤ 1},

and Γ will indicate the absolutely convex hull of a set.

Lemma 3.1. Let a decreasing sequence (εk)
∞
k=1, with εk > 0 for all k, be given. Define

v̄ :=
2∑∞

k=1 4−kαkv
−1
k

=
2e−ar

∑∞
k=1 4−kαkw

−1
k

=: w̄(r)e−ar,(3.1)

where we assume that the numbers αk ≥ 0 are so small that the sum in the denominator
converges uniformly on the compact subsets of C, and moreover satisfy the inequality
αk ≤ εk(3DC(vk))

−1 and α1 > 0, αk ≥ αk+1 for every k.
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Then every polynomial f with ‖f‖v̄ ≤ 1 belongs to the set

U := Γ (∪∞k=1εkUk)

= {f =
∑

k

λkfk ∈ V0H;
∑

k

|λk| ≤ 1 , ‖f‖k ≤ εk} ⊂ V0H.(3.2)

If αk = 0 for k > m for some m ∈ N, then

f ∈ Γ(∪m
k=1εkUk).(3.3)

We remark that for the proof of Theorem 3.2 we need the case αk 6= 0 for every k,
whereas for the proof of Theorems 4.1 and 4.2 we use the case αk = 0 for k > m for some
m > 0.

Proof of Lemma 3.1. For each n ∈ N choose k(n) ∈ N such that

v̄(%n) ≥ 2k(n)α−1
k(n)vk(n)(%n) and αk(n) 6= 0.

Such a k(n) must exist, since otherwise

v̄(%n) ≤ inf
k∈N

αk 6=0

2kα−1
k vk(%n) =

1

sup
k∈N

2−kαkvk(%n)−1

<
2

∞∑
k=1

4−kαkvk(%n)−1

= v̄(%n),(3.4)

a contradiction. Denote, for every k ∈ N,

Nk := {n ∈ N | k(n) = k}.(3.5)

Some of the sets Nk may be empty, but nevertheless N is the disjoint union of the sets
Nk. We remark that if αk = 0 for k > m, then

Nk = ∅ for k > m.(3.6)

Let now f be a polynomial such that ‖f‖v̄ ≤ 1. For every k we define

fk := 2k
∑

n∈Nk

Tnf.(3.7)

The sum has in fact only finitely many terms, since f is a polynomial. We claim that
‖fk‖k ≤ εk for every k. We aim to use (2.3). First notice that by (a) of Proposition 2.3

Tnfk = 2k
∑

m∈Nk

TnTmf

= 2k(χ(k, n− 1)TnTn−1 + χ(k, n)T 2
n + χ(k, n + 1)TnTn+1)f

= 2k(χ(k, n− 1)Tn−1Tn + χ(k, n)T 2
n + χ(k, n + 1)Tn+1Tn)f,(3.8)

where χ(k, n) := 1, if n ∈ Nk, and χ(k, n) := 0 otherwise. Hence, d) and c) of Proposition
2.3 imply

‖fk‖vk
≤ C(vk)2

k sup
n∈N

sup
%n≤|z|≤σn

wk(%n)e−ar|(χ(k, n− 1)Tn−1Tn

+ χ(k, n)T 2
n + χ(k, n + 1)Tn+1Tn)f(z)|

≤ C(vk)2
k sup

n∈Nk

sup
%n≤r≤σn

wk(%n)e−ar sup
θ∈[0,2π]

(|(Tn−1Tnf)(reiθ)|
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+ |(T 2
nf)(reiθ)|+ |(Tn+1Tnf)(reiθ)|)

≤ C(vk)2
k sup

n∈Nk

sup
%n≤r≤σn

wk(%n)e−ar3 sup
θ∈[0,2π]

|(Tnf)(reiθ)|

= C(vk)3 · 2k sup
n∈Nk

sup
%n≤|z|≤σn

wk(%n)e−ar|(Tnf)(z)|.(3.9)

By the choice of the set Nk we have 2kα−1
k wk(%n) ≤ w̄(%n), hence (3.9) is bounded by

3C(vk)αk sup
n∈Nk

sup
%n≤|z|≤σn

w̄(%n)e−ar|(Tnf)(z)|

≤ 3C(vk)Dαk‖f‖v̄ ≤ εk.(3.10)

In the second inequality of (3.10) we have used the first inequality of part (d) of Proposition
2.3.

Since f =
∑

k 2−kfk, we have proved f ∈ Γ(∪∞k=1εkUk). Now, the statement (3.3)
follows from (3.6). ¤

Theorem 3.2. Under our general assumptions on the sequence V of weights, the space
V0H is a topological subspace of its projective hull HV̄0, and hence also of VH.

Proof. Since the polynomials are dense in V0H by [4], it is enough to show that
both spaces induce the same topology on the space of polynomials. An arbitrary 0-
neighborhood of the space V0H contains a set of the form Γ(∪∞k=1εkUk) for some sequence
(εk)

∞
k=1. We simply apply Lemma 3.1 choosing all the numbers αk strictly positive. Then

the norm ‖ · ‖v̄ is continuous on HV̄0, and the result follows from the lemma. ¤

Corollary 3.3. If, in addition, the sequence V is regularly decreasing, then we obtain
V0H = HV̄0 algebraically and topologically.

4. Main results in the case of O–growth conditions

Analogously to the paper [3] we first solve the topological subspace problem for our
weight families in the case of spaces defined with O–growth conditions. As we did in
section 3, we assume that V := (vk)

∞
k=1 is a decreasing sequence of weights on C belonging

to the class (E)A,a for some A, a > 0.

Theorem 4.1. Let V := (vk)
∞
k=1 be a decreasing sequence of weights as in Section 2. Then

VH is a topological subspace of the space VC.

Proof. We follow the ideas of the proof of Theorem 4.1 of [3]. Fix a neighborhood of
zero U ⊂ VH of the form U = Γ(∪∞k=1εkUk), where again

Uk := {f ∈ Hvk | ‖f‖vk
≤ 1}(4.1)

and the sequence (εk)
∞
k=1 is assumed strictly decreasing. Set βk := εk(3DC(vk))

−1 for
each k, and define for each m ∈ N,

wm :=
2∑m

k=1 4−kβkv
−1
k

.(4.2)

Remark 2.2 implies that every weight wm also belongs to the class (E)A,a. Moreover, the
sequence (wm)∞m=1 is decreasing and hence, denoting

Wm := {f ∈ Cvm | ‖f‖wm ≤ 1},
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the set ∪mWm is an absolutely convex neighborhood of 0 in VC. Let us prove that
W0 := W ∩ VH ⊂ U .

Let f ∈ W0. By the definition of W , there exists an m such that wm(z)|f(z)| ≤ 1 for
all z ∈ C. Using the Cesàro means of (the partial sums of) the Taylor series of f about 0
as in [4, Prop. 1.2 and its proof], one obtains a sequence (Vnf)n of polynomials, Vnf → f
for the compact open topology of H(C), and

sup wm(z)|(Vnf)(z)| ≤ sup wm(z)|f(z)| ≤ 1(4.3)

for all n. Fix n and apply Lemma 3.1 to the polynomial Vnf with the numbers αk = βk

if k ≤ m and αk := 0 for k > m. Compare with (4.2). Lemma 3.1 implies

Vnf ∈ Γ(∪m
k=1εkUk).(4.4)

This set is compact in the compact open topology, by Montel’s theorem, and moreover,
Vnf → f in the compact open topology as n →∞. Since n is arbitrary, (4.4) is true also
for f replacing Vnf , and we get that W ∩ VH ⊂ U . ¤

In our next result we use the associated weights ṽ which were defined and studied in
[5].

Theorem 4.2. Let V := (vk)
∞
k=1 be a decreasing sequence of weights as in Section 2. Then

the topological equality VH = HV̄ holds if and only if

∀(λk)
∞
k=1, λk > 0, ∃v̄ ∈ V̄ ∀n ∈ N ∀M > 0 ∃m > n :

min
(M

vn

,
1

v̄

)∼
≤

m∑

k=1

λk

vk

. (+)(4.5)

Proof. From Proposition 1 of [3] we know that the condition (+) is necessary. The con-
verse can be proved using Lemma 3.1 as follows. We again fix an arbitrary neighborhood
of 0,

U := Γ(∪∞k=1εkUk) ⊂ VH,(4.6)

where the εk > 0 form a decreasing sequence and where we set βk := εk(3DC(vk))
−1 for

each k. We find a weight v̄ as in (+) with the numbers λk := 4−kβk, and we claim that

W := {f ∈ HV̄ | ‖f‖v̄ ≤ 1} ⊂ U.(4.7)

Fix f ∈ W . Then there exist M > 0 and n ∈ N such that |f | ≤ min(M/vn, 1/v̄). By
the condition (+) this means that ‖f‖wm ≤ 1 for some m, where

wm :=
1∑m

k=1 4−kβkv
−1
k

.(4.8)

As in the proof of Theorem 4.1 we consider the Cesàro sums Vnf instead of f . We
apply Lemma 3.1 to wm and Vnf , choosing αk := βk, if k ≤ m, and αk := 0 otherwise to
conclude

Vnf ∈ Γ(∪m
k=1εkUk),(4.9)

for every n. Using the compact open topology and Montel’s theorem we infer also that
(4.9) holds for f instead of Vnf . ¤

Bastin [1] showed that condition (D) of [6] is equivalent to the condition (+) without
the associated weight in the left hand side of the inequality. Accordingly, we obtain the
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following consequence, which could also have been deduced from Theorem 4.1 and from
the main theorem of [6].

Corollary 4.3. Let V := (vk)
∞
k=1 be a decreasing sequence of weights as in Section 2 which

satisfies condition (D). Then the topological equality VH = HV̄ holds.

5. Proof of Proposition 2.3

This section is strongly influenced by Lusky [13]. For the applications already given
above some of the estimates have to be repeated carefully in the present case, since it
is not enough to show that each individual weight satisfies condition (B) of Lusky [13].
In fact all the weights in the sequence defining the inductive limits and a fundamental
system of the associated weights must share certain characteristics. See the proofs in the
two sections before.

The following numbers play an important role in the definition of the finite rank oper-
ators Tn below; cf. [13]. Here [x] is the largest integer not larger than x.

Definition 5.1. We define inductively the numbers mn ∈ R+, n ∈ N, by m1 = 1 and
mn+1 := mn +

√
mn.

The operators Tn are defined as in [13] by

Tn : f =
∞∑

k=0

fkz
k 7→

∑

mn−1<k≤mn

k − [mn−1]

[mn]− [mn−1]
fkz

k

+
∑

mn<k≤mn+1

[mn+1]− k

[mn+1]− [mn]
fkz

k.(5.1)

In the notation of Section 3 of [13], we have Tn = Vmn+1,mn − Vmn,mn−1 .
Observe first that the operators Tn are multipliers with respect to Taylor series: If

f :=
∑∞

k=0 fkz
k, then

Tn : f 7→
∑

mn−1≤k≤mn+1

tnkfkz
k(5.2)

for some numbers tnk, 0 ≤ tnk ≤ 1. Statements a) and b) of Proposition 2.3 are clear from
the definition; see the proof of [13, Proposition 6.4].

To show that c) holds we proceed as follows. First of all it is easy to see that it is
enough to show the estimate for r = 1. The estimate for r = 1 follows from the uniform
boundedness of the operators Tn with respect to the maximum on the unit circle: by
Lemma 3.3 (c) in [13], we have the following estimate of the corresponding operator norm

‖Tn‖ ≤ 4

(
[mn+1]− [mn−1]

[mn]− [mn−1]

)(
3 + 4

[mn+1]− [mn−1]

[mn+1]− [mn]

)
.

Using the recursive definition of the sequence (mn) it is easy to see that this sequence is
bounded by some constant D ≥ 1.

We now concentrate on the proof of d). For the rest of this section we fix a weight
v = we−ar ∈ (E)A,a.

Definition 5.2. Given a number m > 0 we denote by rm a global maximum point of the
function

rmv(r).(5.3)
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Lemma 5.3. The function w (which satisfies (2.2)) is bounded by a polynomial of degree
A, and moreover

w(2r) ≤ 2Aaw(r) for all r ∈ R+.(5.4)

For every m we have
m

a
≤ rm ≤ m

a
+ A.(5.5)

The proof is postponed a bit.
The following lemma can be directly proved by looking carefully at Proposition 5.2

of [13]. It looks already much like Proposition 2.3. However, the difference is that the
numbers rm etc. in general depend on the weight. For the application to inductive limits
this does not yet suffice. Nevertheless, Proposition 2.3 can be derived from Lemma 5.4.
We denote sn := rmn , where mn+1 := mn +

√
mn.

Lemma 5.4. We have

c sup
n∈N

sup
sn−1≤|z|≤sn+1

|Tnf(z)|v(z) ≤ ‖f‖v ≤ C sup
n∈N

sup
sn−1≤|z|≤sn+1

|Tnf(z)|v(z).

Proof of Proposition 2.3. We define the numbers %n and σn by

%n :=
1

a
mn−1 , σn :=

1

a
mn+1 + A(5.6)

for every n. Clearly (5.4) implies that, for some constant C̃ > 0,

w(a−1mn−1) ≥ C̃w(a−1mn+1 + A)(5.7)

for each n. So v(r) can be replaced by w(%n)e−ar for our r = |z|. So, we have obtained

sup
sn−1≤|z|≤sn+1

|Tnf(z)|v(z) ≤ C sup
%n≤|z|≤σn

|Tnf(z)|w(%n)e−ar.(5.8)

Moreover, since the degree of the polynomial Tnf is at most mn+1 ≤ cmn−1 (where
c := c(a) > 1), Lemma 3.1.a) of [13], (5.5) and (5.6) imply for every %n ≤ r ≤ sn−1,

sup
|z|=r

|Tnf(z)| ≤
(sn−1

%n

)cmn−1

sup
|z|=sn−1

|Tnf(z)|

≤
(a−1mn−1 + A

a−1mn−1

)cmn−1

sup
|z|=sn−1

|Tnf(z)|

≤ ecA sup
|z|=sn−1

|Tnf(z)|.(5.9)

Also e−ar ≥ e−asn−1 for %n ≤ r ≤ sn−1.
Similarly we obtain for sn+1 ≤ r ≤ σn,

sup
|z|=r

|Tnf(z)| ≤ ecA sup
|z|=sn+1

|Tnf(z)|(5.10)

and e−ar ≥ Ce−asn+1 (see (5.6) for the latter).
Combining (5.9), (5.10) and (5.7) we get

sup
%n≤|z|≤σn

|Tnf(z)|w(%n)e−ar ≤ c sup
sn−1≤|z|≤sn+1

|Tnf(z)|v(z).(5.11)

Proposition 2.3 follows. ¤



10 KLAUS D. BIERSTEDT, JOSÉ BONET AND JARI TASKINEN

Proof of Lemma 5.3. Since w satisfies (2.2), we have rw′(r) − Aaw(r) ≤ 0 for all
r. This implies the first statement, since the function r−Aaw(r) becomes decreasing; its
derivative is r−Aa−1(rw′(r)− Aaw(r)).

This fact also implies (5.4), since

(2r)−Aaw(2r)− r−Aaw(r) ≤ 0, or

w(2r) ≤ (2r)Aa

rAa
w(r) = 2Aaw(r).(5.12)

By elementary differential calculus, the number rm is a zero of the derivative of the
function rmw(r)e−ar; i.e.,

rm−1e−ar
(
w(r)(m− ar) + rw′(r)

)
.(5.13)

Hence, rm solves

r =
rw′(r)
aw(r)

+
m

a
≥ m

a
.(5.14)

Since the assumption (2.2) holds, we find that rm ≥ m/a cannot be larger than m/a+A.
¤

To prove Lemma 5.4 we need

Lemma 5.5. There exists an N ∈ N, independent of the weight v, as follows. There exists
γ > 1 such that

(sn+1

sn

)mn+1 v(sn+1)

v(sn)
≥ γ and

( sn

sn+1

)mn v(sn)

v(sn+1)
≥ γ(5.15)

for all n ≥ N .

Proof. We first remark that

sn+1 = sn +
1

a

√
mn + a(n),

sn =
1

a
mn + b(n),(5.16)

where always |a(n)| ≤ A and 0 ≤ b(n) ≤ A. The second identity follows from Lemma 5.3.
As for the first, we have sn+1 = rmn+1 , and by the choice of the numbers mn and Lemma
5.3,

rmn+1 ≤
1

a
mn+1 + A =

1

a
mn +

1

a

√
mn + A ≤ sn +

1

a

√
mn + A,

and on the other hand

rmn+1 ≥
1

a
mn+1 =

1

a
mn +

1

a

√
mn ≥ sn − A +

1

a

√
mn.

Fix δ > 0 so small that

γ := min((1− δ)e1/4, (1− δ)2e1/2) > 1.(5.17)

Let us show that (5.16) implies the lower bound w(sn)/w(sn+1) ≥ 1− δ for n ≥ N , where
N can be chosen independently of v. As in (5.12) we get

w(sn+1) ≤
sAa

n+1

sAa
n

w(sn) ≤
(sn + a−1√mn + A

sn

)Aa

w(sn)
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≤
(a−1mn + a−1√mn + 2A

a−1mn

)Aa

w(sn),(5.18)

and the statement follows from the fact that mn → ∞ as n → ∞. Notice that A does
not depend on v.

The rest of the proof is based on the estimate

eye−
1
2

y2

x ≤
(
1 +

y

x

)x

≤ eye−
1
4

y2

x ,(5.19)

valid, say, for all x > 2y > 1. To prove this, recall that log(1 + t) =
∑∞

n=1(−1)n+1tn/n
for 0 ≤ t < 1. We get

y − 1

2

y2

x
≤ x log

(
1 +

y

x

)
≤ y − 1

4

y2

x
,(5.20)

and (5.19) follows by raising this to the exponent of e.
To prove the second inequality of (5.15) we estimate

( sn

sn+1

)mn v(sn)

v(sn+1)

=
( a−1mn + b(n)

a−1mn + a−1
√

mn + a(n) + b(n)

)mn w(sn)

w(sn+1)
eaa−1√mn+aa(n)

≥ (1− δ)
(a−1mn + a−1√mn + a(n) + b(n)

a−1mn + b(n)

)−mn

e
√

mn+aa(n)

≥ (1− δ)
(
1 +

a−1√mn + a(n)

a−1mn + b(n)

)−mn

e
√

mn+aa(n)

≥ (1− δ)
(
1 +

√
mn + aa(n)

mn

)−mn

e
√

mn+aa(n)

≥ (1− δ)e−
√

mn−aa(n)e
1
4

mn+aa(n)
mn e

√
mn+aa(n)

≥ (1− δ)e1/4.(5.21)

The third but last row was estimated using (5.19)
As for the first inequality of (5.15), we estimate

(sn+1

sn

)mn+1 v(sn+1)

v(sn)

=
(a−1mn + a−1√mn + a(n) + b(n)

a−1mn + b(n)

)mn+1 w(sn+1)

w(sn)
e−aa−1√mn−aa(n)

≥
(a−1mn + a−1√mn + a(n) + b(n)

a−1mn + b(n)

)mn+
√

mn

e−
√

mn−aa(n)

≥
(
1 +

a−1√mn + a(n)

a−1mn + b(n)

)mn+ab(n)+
√

mn−ab(n)

e−
√

mn−aa(n)

≥
(
1 +

√
mn + aa(n)

mn + ab(n)

)mn+b(n)(
1 +

√
mn + aa(n)

mn + ab(n)

)√mn−ab(n)

e−
√

mn−aa(n)

≥ e
√

mn+aa(n)e−
1
2

(
√

mn+aa(n))2

mn

(
1 +

√
mn + aa(n)

mn + ab(n)

)√mn−ab(n)

e−
√

mn−aa(n).(5.22)
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Again we used (5.19) at the end. Since the numbers |a(n)| and b(n) ≥ 0 have the v–
independent bound A, one can find a v–independent number N ′ ∈ N such that, for all
n ≥ N ′, both

e−
1
2

(
√

mn+a(n))2

mn ≥ (1− δ)e−
1
2(5.23)

and
(
1 +

√
mn + aa(n)

mn + ab(n)

)√mn−ab(n)

≥ (1− δ)e(5.24)

hold. As a consequence, (5.22) has the lower bound (1− δ)2e1/2. ¤
Proof of Lemma 5.4, repeated from Lemma 5.2 of [13]. We define the operators

Tn := Vmn+1,mn − Vmn,mn−1 , where

Vp,qf(z) :=
∑

0≤k≤q

fkz
k +

∑

q<k≤p

[p]− [k]

[p]− [q]
fkz

k(5.25)

for f(z) :=
∑∞

k=0 fkz
k.

The inequality on the left side of (5.4) follows easily from statement (c) which was
shown before.

As for the other side, we assume that f is only a polynomial. Write f as f =
∑

p Tpf ,

where Tpf ∈ span{zj; [mp−1] + 1 ≤ j ≤ [mp+1]}. Consider an arbitrary fixed r with
r ≥ mN+4 (N as in Lemma 5.5), and choose n > N + 2 such that sn−1 ≤ r ≤ sn. We
estimate using Lemma 3.1 of [13]

sup
|z|=r

|f(z)|v(z) ≤
∞∑

p=0

sup
|z|=r

|Tpf(z)|v(z)

≤
∑
p≤N

sup
|z|=r

|Tpf(z)|v(z) +
∑

N<p≤n−2

( r

sp+1

)mp+1

sup
|z|=sp+1

|Tpf(z)|v(r)

+
n+1∑

p=n−1

sup
|z|=r

|Tpf(z)|v(z) + 2
∑

p≥n+2

( r

sp−1

)mp−1

sup
|z|=sp−1

|Tpf(z)|v(r)

≤
∑
p≤N

sup
|z|=r

|Tpf(z)|v(z) +
∑

N<p≤n−2

( r

sp+1

)mp+1 v(r)

v(sp+1)
sup

|z|=sp+1

|Tpf(z)|v(z)

+
n+1∑

p=n−1

sup
|z|=r

|Tpf(z)|v(z) + 2
∑

p≥n+2

( r

sp−1

)mp−1 v(r)

v(sp−1)
sup

|z|=sp−1

|Tpf(z)|v(z).(5.26)

Since the functions Tpf , p ≤ N , belong to a fixed [nN+1]–dimensional subspace, we can
find, by the equivalence of all norms in a finite dimensional space, a positive constant
C := C(v) such that

∑
p≤N

sup
|z|=r

|Tpf(z)|v(z) ≤ C sup
p≤N

sup
%p≤|z|≤σp

|Tpf(z)|w(%n)e−ar.(5.27)

In the case N < p ≤ n− 2 we have by Lemma 5.5,
( r

sp+1

)mp+1 v(r)

v(sp+1)
≤

(sp+2

sp+1

)mp+1 v(sp+2)

v(sp+1)
·
(sp+3

sp+2

)mp+2 v(sp+3)

v(sp+2)
·
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. . . ·
(sn−1

sn−2

)mn−2 v(sn−1)

v(sn−2)
·
( r

sn−1

)mn−1 v(r)

v(sn−1)

≤
(1

γ

)n−p−2

.(5.28)

For p ≥ n + 2 we obtain in the same way
( r

sp−1

)mp−1 v(r)

v(sp−1)
≤

( r

sn+1

)mn+1 v(r)

v(sn+1)
·
(sn+1

sn+2

)mn+2 v(sn+1)

v(sn+2)
·

. . . ·
(sp−2

sp−1

)mp−1 v(sp−2)

v(sp−1)

≤
(1

γ

)p−1−n

.(5.29)

Since γ > 1, the lemma follows from (5.26)–(5.29). ¤

6. Our results apply to certain spaces VH which are not Montel

The next result shows that it is possible to construct spaces of type VH in our setting
which are not (semi-) Montel spaces; hence the projective description does not follow from
the general result of Bierstedt, Meise and Summers [7] for Montel spaces VH.

Proposition 6.1. Given a Köthe coechelon space k∞(A) such that the decreasing sequence
A = (ak)

∞
k=1 of weights on N satisfies, for some constant B ≥ 1,

1 ≤ B−1ak(n + 1) ≤ ak(n) ≤ ak(n + 1) ≤ n10(6.1)

for all k and n, there exists a weight sequence V as in Section 2 such that VH contains a
closed subspace isomorphic to k∞(A).

In the proof below we actually assume that B has some upper bound like e100. It is
obvious that the bound n10 in (6.1) is artificial. It might be possible to prove the result
with an arbitrarily large (fixed) bound instead of n10.

Proof. To define the weights wk we first denote

tn := e100n

and τn := n10tn < tn+1.(6.2)

For every k we define the function Fk : [0,∞[→ [0, 1[ by

Fk(r) :=
∞∑

n=1

t−1
n χkn(r),(6.3)

where χkn is the characteristic function of the interval [tn, tn + tn(ak(n)− ak(n− 1))]. We
set

wk(r) :=

r∫

0

Fk(x)dx.(6.4)

Then it follows from the definitions that wk is increasing (since Fk is positive) and that
wk(r) = ak(n), if r ∈ [tn + tn(ak(n) − ak(n − 1)), tn+1], in particular if r ∈ [τn, tn+1].
(Notice that the latter interval does not depend on k.)

We show that every wk does belong to the class (E)A. Take k, n ∈ N and then let
r ∈ [tn, tn + tn(ak(n)− ak(n− 1))]. (Otherwise w′

k(r) = 0 and there is nothing to prove.)
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We have w′
k(r) = t−1

n and of course r ≤ tn+tnak(n). On the other hand wk(r) ≥ ak(n−1),
by the remarks on the properties of wk above. This suffices, in view of (6.1).

For all n ∈ N we now consider the monomials en(z) := zsn , where sn := [tn+1/3] + 1.
We claim that for some C,

1

C
sup
n∈N

|bn|aknssn
n e−sn ≤ ‖

∞∑
n=1

bnen‖k ≤ C sup
n∈N

|bn|akns
sn
n e−sn ,

where the complex numbers bn satisfy that the suprema are finite. Note: sn ∈ [τn, tn+1]
does not depend on k, hence (6) implies that the mapping which associates en with the
nth canonical coordinate vector of k∞(A) is the desired isomorphism. Observe that we
prove in fact that a diagonal transform of k∞(A) is isomorphic to a closed subspace of
VH.

Given m ∈ N, we evaluate the value of

max
r∈[tm,tm+1]

en(r)vk(r) = max
r∈[tm,tm+1]

rsnwk(r)e
−r =: Jknm.(6.5)

We actually claim that

Jknm ≤ 10−|n−m|Jknn.(6.6)

We remark that the maximum point of the function rαe−r, r > 0, is at the point r = α,
as shown by elementary differentiation, and that

d

dr
rαe−r > 0 for r < α and

d

dr
rαe−r < 0 for r > α.(6.7)

If m = n, the value of (6.5), or Jknn, is thus

Jknn = ak(n)ssn
n e−sn ≥

(
1

3

) 1
3
e100n+1

ak(n)e
1
3
100n+1e100n+1

e−
1
3
e100n+1

≥ ak(n)e10·100ne100n+1

(6.8)

since wk(sn) happens to be equal to ak(n), and this is the maximum of wk on the interval
[tn, tn+1] under consideration.

If m < n, then

Jknm ≤ ak(m)tsn
m+1 ≤ ak(m)e

1
3
100m+1e100n+1

≤ ak(n)10−|m−n|e10·100ne100n+1

≤ 10−|m−n|Jknn.(6.9)

If m > n, then, by (6.7),

Jknm ≤ ak(m)tsn
m e−tm ≤ ak(m)e

1
3
100me100n+1

e−e100m

.(6.10)

To see that this is also bounded by 10−|m−n|Jknn, in the case m = n + 1, (6.10) has to
be compared with the second but last expression of (6.8), and in the case m > n + 1 the
estimate follows from the bound (see (6.1))

ak(n)Bm−ne−100m−ne100m−1

(6.11)

of (6.10).
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Finally, (6) follows from (6.6): First (6.6) implies, with r = |z|, that

‖
∞∑

n=1

bnen‖k ≤ sup
m∈N

sup
r∈[tm,tm+1]

|
∞∑

n=1

bnen(z)|vk(r)

≤ sup
m∈N

∞∑
n=1

|bn|Jknm

≤ C sup
m∈N

∞∑
n=1

10−|n−m||bm|Jkmm

≤ C sup
m∈N

|bm|Jkmm ≤ C sup
m∈N

|bm|ak(m)ssm
m e−sm .(6.12)

Hence, the second inequality of (6) follows from the first identity of (6.8). Now choose N
such that

bNak(N)ssN
N e−sN ≥ 9

10
sup
n∈N

|bn|ak(n)ssn
n e−sn .(6.13)

For the first inequality we estimate

‖
∞∑

n=1

bnen‖k ≥ sup
r∈[tN ,tN+1]

|
∞∑

n=1

bnen|vk(r)

≥ |bN |JkNN −
∑

n 6=N

|bn|JknN

≥ |bN |JkNN −
∑

n 6=N

10−|n−N ||bn|Jknn

≥ |bN |JkNN − 10

9

∑

n 6=N

10−|n−N ||bN |JkNN ≥ C|bN |JkNN .(6.14)

¤
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