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Abstract. Aspects of the theory of mean ergodic operators and bases in Fréchet
spaces were recently developed in [1]. This investigation is extended here to
the class of barrelled locally convex spaces. Duality theory, also for operators,
plays a prominent role.
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1. Introduction

Certain aspects of the theory of mean ergodic operators in Banach spaces (see,
e.g., [14] and the references therein) are related to the theory of bases. This is
well documented in [10] (see also the references) where it is shown, amongst other
results, that a Banach space with a basis is reflexive if and only if every power
bounded operator is mean ergodic. The proof is based on classical results of A.A.
Pelczynski and of M. Zippin, connecting bases with reflexivity. In order to extend
the results of [10] to the Fréchet space setting, it is necessary to have available
the corresponding results of Pelczynski and of Zippin. These were established,
and then applied to mean ergodic operators, in the recent article [1]. Since much
of modern analysis also occurs in locally convex Hausdorff spaces (briefly, lcHs)
which are not metrizable, there is some interest in extending the recent results of
[1] beyond the Fréchet space setting. This is our aim here.
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teo/2008/101 (Spain) and of the Alexander von Humboldt Foundation are gratefully
acknowledged.
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A continuous linear operator T in a lcHs X (the space of all such operators
is denoted by L(X)) is called mean ergodic if the limits

Px := lim
n→∞

1
n

n∑
m=1

Tmx, x ∈ X, (1.1)

exist in X. An operator T ∈ L(X) is said to be power bounded if {Tm}∞m=1 is an
equicontinuous subset of L(X). Of course, for X a Banach space, this means that
supm≥0 ‖Tm‖ < ∞. A power bounded operator T is mean ergodic precisely when

X = Ker(I − T )⊕ Im(I − T ), (1.2)

where I is the identity operator, Im(I − T) denotes the range of (I − T ) and the
bar denotes the “closure in X”. In general, the right–hand side of (1.2) is the set
of all x ∈ X for which the sequence { 1

n

∑n
m=1 Tmx}∞m=1 converges to 0 in X. Let

us indicate some of our main results.
Technical terms concerning lcHs’ X and certain aspects of L(X) will be

defined in later sections. Let us recall at this stage that if ΓX is a system of
continuous seminorms determining the topology of X, then the strong operator
topology τs in L(X) is determined by the family of seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX (in which case we write Ls(X)). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence on
bounded sets is defined in L(X) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX (in which case we write Lb(X)). For X a Banach
space, τb is the operator norm topology in L(X). If ΓX is countable and X is
complete, then X is called a Fréchet space.

Given T ∈ L(X), let

T[n] :=
1
n

n∑
m=1

Tm, n ∈ N, (1.3)

denote the Cesàro means of T (see also (1.1)). Then T is mean ergodic precisely
when {T[n]}∞n=1 is a convergent sequence in Ls(X). If {T[n]}∞n=1 happens to be
convergent in Lb(X), then T is called uniformly mean ergodic. The space X itself
is called mean ergodic (resp. uniformly mean ergodic) if every power bounded
operator on X is mean ergodic (resp. uniformly mean ergodic).

The natural setting for mean ergodic operators seems to be the class of bar-
relled lcHs’. We show in Section 3 that most of the results on mean ergodicity
that were established in [1] for operators on Fréchet spaces carry over to barrelled
spaces; see also [21, Ch. VIII, §3]. The same is also true of Propositions 2.3 and
2.4 below. Since the strong dual of a distinguished Fréchet space is barrelled, the
current results can be combined with those of [1] via duality theory.
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An important class of Fréchet spaces consists of the Köthe echelon spaces
λp(A), whose mean ergodicity properties were thoroughly investigated in [1]. Just
as important is the class of Köthe co–echelon spaces kp(V ), for p ∈ {0}∪ [1,∞], all
barrelled, but, typically not Fréchet spaces except for very special cases. In Section
4 the general results of Sections 2 and 3 are applied to give a complete description
of the ergodicity properties of these co–echelon spaces. For instance, if 1 < p < ∞,
then the reflexive space kp(V ), necessarily mean ergodic, is uniformly mean ergodic
iff it is Montel. The non–reflexive co–echelon spaces k1(V ) and k∞(V ) are mean
ergodic iff they are uniformly mean ergodic iff they are Montel. Provided it is
complete, k0(V ) is mean ergodic iff it is uniformly mean ergodic iff it is a Schwartz
space.

2. Preliminary results

Given a lcHs X and T ∈ L(X) we have

(I − T )T[n] = T[n](I − T ) =
1
n

(T − Tn+1), n ∈ N, (2.1)

and also, with T[0] := I, that

1
n

Tn = T[n] −
(n− 1)

n
T[n−1], n ∈ N. (2.2)

If T ∈ L(X) is power bounded, then

Im(I − T ) = {x ∈ X : lim
n→∞

T[n]x = 0} (2.3)

and hence, in particular,

Im(I − T ) ∩Ker(I − T ) = {0}, (2.4)

[21, Ch. VIII, §3]. Moreover, such a T clearly satisfies

lim
n→∞

1
n

Tn = 0, in Ls(X). (2.5)

The following fact, without a proof, occurs in [1, Proposition 2.3].

Proposition 2.1. Let X be a barrelled lcHs. If T ∈ L(X) satisfies (2.5) and

{T[n]x}∞n=1 is bounded in X, for each x ∈ X, (2.6)

then T satisfies both (2.3) and (2.4).

Proof. It follows from (2.1) and (2.5) that limn→∞ T[n]w = 0 for w ∈ Im(I − T).
Since X is barrelled, condition (2.6) implies that {T[n]}∞n=1 is an equicontinuous
subset of L(X), [13, p.137]. So, given any q ∈ ΓX there exists p ∈ ΓX such that

q(T[n]x) ≤ p(x), x ∈ X, n ∈ N.

Fix z ∈ Im(I − T ). Given ε > 0 there exists wε ∈ Im(I−T) satisfying p(z−wε) < ε.
Then we have

q(T[n]z) ≤ ε + q(T[n]wε), n ∈ N,
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which implies that lim supn q(T[n]z) ≤ ε. Since ε > 0 is arbitrary, we can conclude
that T[n]z → 0 in X. This establishes one containment in (2.3).

Conversely, let x ∈ X satisfy limn→∞ T[n]x = 0. It follows from (1.3) that

x− T[n]x = (I − T )
n∑

m=1

1
n

(I + T + . . . + Tm−1)x ∈ Im(I − T ),

for each n ∈ N. Combined with T[n]x → 0 in X, it is immediate that x ∈ Im(I − T ).
This establishes equality in (2.3).

Finally, observe if x ∈ Im(I − T ) ∩Ker(I − T ), then x = Tx and hence, via
(1.3), we have x = T[n]x for all n ∈ N. It then follows from (2.3) that x = 0. So,
(2.4) is also valid. �

Given T ∈ L(X), its dual operator T t : X ′ → X ′, where X ′ is the continuous
dual space of X, is defined by 〈Tx, x′〉 = 〈x, T tx′〉 for all x ∈ X, x′ ∈ X ′. By
Xσ we denote X equipped with its weak topology σ(X, X ′). A subset A ⊆ X is
called relatively sequentially σ(X, X ′)–compact if every sequence in A contains a
subsequence which is convergent in Xσ. Such sets belong to B(X), [12, §24;(1)],
after recalling that every sequentially compact set in any lcHs is also relatively
countably compact, [12, p.310]. The following version of the Mean Ergodic Theo-
rem for Banach spaces occurs in [8, Ch.VIII, 5.1–5.3], [16, p.214], and for lcHs’ in
[1, Theorem 2.4].

Proposition 2.2. Let X be a barrelled lcHs and T ∈ L(X). Then T is mean ergodic
if and only if it satisfies (2.5) and

{T[n]x}∞n=1 is relatively sequentially σ(X, X ′)–compact, ∀x ∈ X. (2.7)

Setting P := τs-limn→∞ T[n], the operator P is a projection which commutes with
T and satisfies Im(P ) = Ker(I −T ) and Ker(P ) = Im(I − T ). Moreover, X has a
direct sum decomposition as given by (1.2).

Many lcHs’ X have the property that all relatively σ(X, X ′)–compact sets
are also relatively sequentially σ(X, X ′)–compact. This includes all Fréchet spaces
(actually, all (LF)–spaces), all (DF)–spaces, and many more, [6, Theorem 11, Ex-
amples 1.2]. The following fact is an extension of [1, Corollary 2.7].

Proposition 2.3. Let X be a reflexive lcHs in which every relatively σ(X, X ′)–
compact set is relatively sequentially σ(X, X ′)–compact. Then X is mean ergodic.

Proof. Let T ∈ L(X) be power bounded. Then clearly (2.5) holds as does (2.6); see
[1, Remark 2.6(i)]. By definition, all reflexive spaces are barrelled and all bounded
sets in a reflexive lcHs X are relatively σ(X, X ′)–compact, [12, p.299]. By the hy-
potheses on X, all bounded sets are then relatively sequentially σ(X, X ′)–compact.
This, together with (2.6), implies that (2.7) holds. The mean ergodicity of T then
follows from Proposition 2.2. �

A special case of the following fact occurs in [1, Proposition 2.8].
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Proposition 2.4. Let X be a Montel space in which every relatively σ(X, X ′)–
compact set is relatively sequentially σ(X, X ′)–compact. Then X is uniformly mean
ergodic.

Proof. Let T ∈ L(X) be power bounded. Since X is reflexive, [12, p.369], it follows
from Proposition 2.3 that T is mean ergodic. The proof can now be completed as
in that of Proposition 2.8 of [1]. �

For Banach spaces the following result is due to M. Lin [15] and for general
Fréchet spaces it occurs in [1, Proposition 2.16]. An examination of the proof
given in [1] shows that the Fréchet space condition is only used to conclude that
the inverse of a certain linear bijection is again continuous. So, we can replace this
requirement with the property that every continuous linear surjection is an open
map (i.e., the open mapping theorem is valid). Of course, (ii) ⇒ (i) is immediate
from the identities

I − T[n] =

[
n∑

m=1

1
n

(I + T + . . . Tm−1)

]
(I − T ), n ∈ N.

So, we have the following result.

Proposition 2.5. Let X be a lcHs with the property that every continuous linear
surjection from X onto itself is an open map. Let T ∈ L(X) satisfy Ker(I − T ) =
{0} and 1

nTn → 0 in Lb(X) as n →∞. Consider the following statements.
(i) I − T[n] is surjective for some n ∈ N.
(ii) I − T is surjective.
(iii) T[n] → 0 in Lb(X) as n →∞.
Then (i) ⇔ (ii) ⇒ (iii). If, in addition, X is a Banach space, then also (iii) ⇒ (i).

The class of all lcHs’ which satisfy the hypothesis of Proposition 2.5 includes
all ultrabornological spaces which possess a web, [17, Theorem 24.30], and in par-
ticular, includes all (LF)–spaces, the space of distributions D′, and many more.

It is shown in Example 2.17 of [1], that the implication (iii)⇒(i) of Theorem
2.5 fails for Fréchet spaces in general. It might be hoped that (iii)⇒(i) holds at
least for (LB)–spaces. We will see in Section 4 that this is not the case.

The strong topology in a lcHs X (resp. in X ′) is denoted by β(X, X ′) (resp.
β(X ′, X)) and we write Xβ (resp. X ′

β); see [12, §21.2] for the definition. The final
three results are concerned with duality. The first one occurs in [2, Lemma 2.1].

Lemma 2.6. Let X, Y be lcHs’ with Y quasi–barrelled. Then the linear map
Φ: Lb(X, Y ) → Lb(Y ′

β , X ′
β) defined by Φ(T ) := T t, for T ∈ L(X, Y ), is con-

tinuous.
In particular, if X is quasi–barrelled and {Tn}∞n=1 ⊆ L(X) is a sequence

which satisfies τb-limn→∞ Tn = T in Lb(X), then also τb-limn→∞ T t
n = T t in

Lb(X ′
β).

A useful consequence is the following observation.
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Corollary 2.7. Let X be a lcHs and T ∈ L(X).

(i) If T is uniformly mean ergodic, then T t ∈ L(X ′
β) is mean ergodic.

(ii) Suppose that X is quasi–barrelled. If T is uniformly mean ergodic, then T t ∈
L(X ′

β) is uniformly mean ergodic.
(iii) Suppose that X is sequentially complete and that both X and X ′

β are quasi–
barrelled. If T t ∈ L(X ′

β) is uniformly mean ergodic, then T itself is uniformly
mean ergodic.

Proof. (i) By assumption there is P ∈ L(X) such that limn→∞ T[n] = P in Lb(X).
Fix x′ ∈ X ′ and B ∈ B(X). Since

WB := {S ∈ L(X) : |〈Sx, x′〉| ≤ 1 for all x ∈ B}

is a 0–neighbourhood in Lb(X) there is n(0) ∈ N such that (T[n] − P ) ∈ WB for
all n ≥ n(0), that is,

|〈x, (T t
[n] − P t)x′〉| = |〈(T[n] − P )x, x′〉| ≤ 1, x ∈ B.

Equivalently, (T t
[n]x

′−P tx′) ∈ B◦ (the polar of B). Since B ∈ B(X) is arbitrary, we
conclude that limn→∞ T t

[n]x
′ = P tx′ in X ′

β for each x′ ∈ X ′, i.e., limn→∞ T t
[n] = P t

in Ls(X ′
β).

(ii) Since (T t)[n] = T t
[n] for all n ∈ N (see (1.3)), it follows from Lemma 2.6

that T t is uniformly mean ergodic in X ′
β .

(iii) Let T t
[n] → Q in Lb(X ′

β). By Lemma 2.6 applied to T t in X ′
β we have that

(T tt)[n] → Qt in Lb(X ′′
β ) as n →∞. Observe that the restriction (T tt)[n]|X = T[n],

for n ∈ N. Interpreting any given element x ∈ X (and then also T[n]x) as an element
of X ′′

β we have that Qtx = limn→∞ T[n]x in X ′′
β . Since X is quasi–barrelled, X ′′

β

induces the original topology on X, [12, p.301], that is, {T[n]x}∞n=1 is Cauchy in
X and hence, by sequential completeness, converges in X. It follows that the limit
must be Qtx, that is, Qtx ∈ X. Hence, Qt(X) ⊆ X and, since the topology of
X is that induced by X ′′

β , it follows that P := Qt|X belongs to L(X). Moreover,
(T tt)[n] → Qt in Lb(X ′′

β ) implies that T[n] → P in Lb(X) as n →∞. �

Remark 2.8. Every reflexive lcHs X satisfies the hypotheses of (iii) in Corollary
2.7. So does every distinguished Fréchet space (such spaces are not necessarily
reflexive). Also, every sequentially complete, quasi–barrelled (DF)–space X has
the required properties (as X ′

β , being a Fréchet space, is surely quasi–barrelled).
Of course, every sequentially complete, quasi–barrelled space is actually barrelled,
[12, p.368].

If X is a quasi–barrelled lcHs, then the general theory of such spaces ensures
that T ∈ L(X) is power bounded if and only if T t ∈ L(X ′

β) is power bounded,
[13, (6), p.138]. Combining this with Corollary 2.7(iii) gives the following result;
see also Proposition 2.4.
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Corollary 2.9. Let X be a sequentially complete, barrelled lcHs with X ′
β quasi–

barrelled. Then X is uniformly mean ergodic if and only if X ′
β is uniformly mean

ergodic.

We mention that if T ∈ L(X) is mean ergodic, then so is T t ∈ L(X ′
σ), where

X ′
σ denotes X ′ equipped with its weak–star topology σ(X ′, X). Actually, it suffices

for T to be mean ergodic in Xσ.
As an application of Corollary 2.9 we have some examples.

Example. (i) The separable (LB)–spaces Lp+ := ∪r>pL
r([0, 1]), for 1 < p < ∞, are

all reflexive. The corresponding strong duals (Lp+)′β = ∩1≤r<p′L
r([0, 1]) =: Lp′− ,

with p′ the conjugate exponent of p, are reflexive Fréchet spaces, equipped with
the seminorms

qp′,β(m)(f) :=
(∫ 1

0

|f(t)|β(m)dt

)1/β(m)

, f ∈ Lp′− ,

for any increasing sequence 1 ≤ β(m) ↑ p′ as m → ∞. These Fréchet spaces
have been studied in [5]. By [1, Proposition 2.11] each Fréchet space Lp′− , for
1 < p′ < ∞, fails to be uniformly mean ergodic. So, each (LB)–space Lp+ , for
1 < p < ∞, fails to be uniformly mean ergodic; see Corollary 2.9.

(ii) For each 1 < p < ∞, the sequence space `p− := ∪1≤r<p`
r is a separable,

reflexive (LB)–space. The corresponding strong dual (`p−)′β = ∩r>p′`
r =: `p′+ ,

with p′ the conjugate exponent of p, is a reflexive Fréchet space, equipped with
the seminorms

qp′,n(x) :=

( ∞∑
i=1

|xi|β(n)

)1/β(n)

, x ∈ `p′+ ,

where β(n) := p′ + 1
n for n ∈ N. This family of Fréchet spaces was studied in [18].

By [1, Proposition 2.15] the Fréchet space `p′+ , for 1 < p′ < ∞, is not uniformly
mean ergodic. So, again by Corollary 2.9, the (LB)–space `p− , for 1 < p < ∞, is
not uniformly mean ergodic.

3. Mean ergodic results

A sequence (Pn)∞n=1 ⊆ L(X) is a Schauder decomposition of X if it satisfies:
(S1) PnPm = Pmin{m,n} for all m,n ∈ N,
(S2) Pn → I in Ls(X) as n →∞, and
(S3) Pn 6= Pm whenever n 6= m.

By setting Q1 := P1 and Qn := Pn − Pn−1 for n ≥ 2 we arrive at a sequence of
pairwise orthogonal projections (i.e. QnQm = 0 if n 6= m) satisfying

∑∞
n=1 Qn = I,

with the series converging in Ls(X). If the series is unconditionally convergent in
Ls(X), then {Pn}∞n=1 is called an unconditional Schauder decomposition, [19]. Such
decompositions are intimately associated with (non–trivial) spectral measures; see
(the proof of) [4, Proposition 4.3] and [19, Lemma 5 and Theorem 6]. If X is
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barrelled, then (S2) implies that {Pn}∞n=1 is an equicontinuous subset of L(X).
According to (S1) each Pn and Qn, for n ∈ N, is a projection and Qn → 0 in
Ls(X) as n →∞. Condition (S3) ensures that Qn 6= 0 for each n ∈ N.

Let {Pn}∞n=1 ⊆ L(X) be a Schauder decomposition of X. Then the dual
projections {P t

n}∞n=1 ⊆ L(X ′
σ) always form a Schauder decomposition of X ′

σ, [11,
p.378]. If, in addition, {P t

n}∞n=1 ⊆ L(X ′
β) is a Schauder decomposition of X ′

β , then
the original sequence {Pn}∞n=1 is called shrinking, [11, p.379]. Since (S1) and (S3)
clearly hold for {P t

n}∞n=1, this means precisely that P t
n → I in Ls(X ′

β); see (S2).
In dealing with the uniform mean ergodicity of operators the following no-

tion, due to J.C. Dı́az and M.A. Miñarro, [7, p.194], is rather useful. A Schauder
decomposition {Pn}∞n=1 in a lcHs X is said to have property (M) if Pn → I in
Lb(X) as n → ∞. Since every non-zero projection P in a Banach space satisfies
‖P‖ ≥ 1, it is clear that no Schauder decomposition in any Banach space can have
property (M). For non-normable spaces the situation is quite different. For in-
stance, if X is a Fréchet Montel space (resp. Fréchet GDP–space, which is a larger
class of spaces; see [4]), then every Schauder decomposition in X has property
(M); see [7] (resp. [4, Proposition 4.2]). The following two technical results will be
needed latter.

Lemma 3.1. Let X be a barrelled lcHs which admits a non–shrinking Schauder
decomposition. Then there exists a Schauder decomposition {Pj}∞j=1 ⊂ L(X) of X,
a functional ξ ∈ X ′ and a bounded sequence {zj}∞j=1 ⊂ X with zj ∈ (Pj+1−Pj)(X)
such that |〈zj , ξ〉| > 1

2 for all j ∈ N.

Proof. Adapt the proof of Lemma 4.4 in [1]. �

Lemma 3.2. Let X be a barrelled lcHs which admits a Schauder decomposition
without property (M). Then there exists a Schauder decomposition {Pj}∞j=1 ⊆
L((X) of X, a seminorm q ∈ ΓX and a bounded sequence {zj}∞j=1 ⊂ X with
zj ∈ (Pj+1 − Pj)(X) such that q(zj) > 1

2 for all j ∈ N.

Proof. The proof of Lemma 4.5 in [1] also applies here. �

Remark 3.3. Let {Pj}∞j=1 be any Schauder decomposition in the complete barrelled
lcHs X with ΓX a system of continuous seminorms generating the topology of X.
Then {Pj}∞j=1 is an equicontinuous sequence. Hence, for every p ∈ ΓX there exist
q ∈ ΓX and Mp > 0 such that

p(Pjx) ≤ Mpq(x), x ∈ X,

for all j ∈ N. By setting r̃(x) := supj∈N r(Pjx), for every r ∈ ΓX , we obtain

p(x) ≤ p̃(x) ≤ Mpq(x) ≤ Mpq̃(x), x ∈ X.

Accordingly, Γ̃X := {p̃ : p ∈ ΓX} is also a system of continuous seminorms
generating the topology of X and satisfies

p̃(Pjx) ≤ p̃(x), x ∈ X, j ∈ N. (3.1)
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The proof of the next result and Theorems 3.6 and 3.8 below follow those
given in [1] for the corresponding result in Fréchet spaces. We include the essential
parts of these proofs to illustrate certain differences in the current setting and for
the sake of self containment.

Theorem 3.4. Let X be a complete barrelled lcHs which admits a non–shrinking
Schauder decomposition. Then there exists a power bounded operator on X which
is not mean ergodic.

Proof. The proof is similar to that of Theorem 1.5 of [1]. For the sake of complete-
ness, we include the proof.

Let (Pj)j ⊂ L(X) denote a Schauder decomposition as given by Lemma 3.1
and define projections Qj := Pj − Pj−1 (P0 := 0) and closed subspaces Xj :=
Qj(X), j ∈ N.

By Lemma 3.1 there exist a bounded sequence {zj}∞j=1 ⊂ X with zj ∈ Xj+1,
and ξ ∈ X ′ such that |〈zj , ξ〉| > 1

2 for all j ∈ N. Set ej := zj/〈zj , ξ〉 ∈ Xj+1. Then
{ej}∞j=1 is a bounded sequence of X and 〈ej , ξ〉 = 1 for all j ∈ N.

By Remark 3.3 there exists a system ΓX of continuous seminorms generating
the topology of X such that

p(Pjx) ≤ p(x), x ∈ X, (3.2)

for all p ∈ ΓX and j ∈ N. Moreover, since ξ ∈ X ′, there exists p0 ∈ ΓX such that
|〈x, ξ〉| ≤ p0(x) for all x ∈ X.

As in [10, p.150], take a sequence a = {aj}∞j=1 ⊆ R with
∑∞

j=1 aj = 1, aj > 0,
and set An :=

∑n
j=1 aj . For x ∈ X and integers m > n ≥ 2 we have

m∑
k=n

AkQkx =

n−1∑
j=1

aj

( m∑
k=n

Qkx

)
+

m∑
j=n

aj

 m∑
k=j

Qkx

 .

Since
∑∞

k=1 Qkx sums to x in X, we see that {
∑m

k=1 AkQkx}∞m=1 is a Cauchy
sequence and hence, converges in X. Moreover, for each p ∈ ΓX , by (3.2) we have

p

(
m∑

k=1

AkQkx

)
= p

 m∑
j=1

aj(Pm − Pj−1)x


≤

m∑
j=1

aj(p(Pmx) + p(Pj−1x)) ≤ 2p(x), (3.3)

for each m ∈ N. Define a linear map Ta : X → X by

Tax :=
∞∑

k=1

AkQkx +
∞∑

j=2

〈Pj−1x, ξ〉ajej , x ∈ X. (3.4)
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From (3.3) we obtain, for each p ∈ ΓX with p ≥ p0, that

p(Tax) ≤ p(
∞∑

k=1

AkQkx) +
∞∑

j=2

|〈Pj−1x, ξ〉|ajp(ej)

≤ 2p(x) +
∞∑

j=2

ajp0(Pj−1x)p(ej).

Note that Mp := supj∈N p(ej) < ∞, because {ej}∞j=1 is bounded in X. Moreover,
by (3.2) we have p0(Pj−1x) ≤ p0(x) ≤ p(x) for all x ∈ X. Hence,

p(Tax) ≤ (2 + Mp)p(x)

for all x ∈ X, where 2 + Mp depends only on p.
To show that Ta is power bounded, it suffices to show that for arbitrary

sequences a = {aj}∞j=1 and b = {bj}∞j=1 of positive numbers with
∑∞

j=1 aj = 1 =∑∞
j=1 bj we have TaTb = Tc, with c a sequence of the same type. This is the claim

in p. 150 of [10] which is purely algebraic and is proved on p. 151 of [10].
Finally, proceeding as in the final part of the proof of Theorem 1.5 of [1] one

shows that Ker(I − Ta) = {0} and ξ ∈ Ker(I − T t
a), i.e., Ker(I − T t

a) 6= {0}. Thus,
we can apply Theorem 2.12 of [1] to conclude that Ta is not mean ergodic. �

Recall that a sequence {xn}∞n=1 in a lcHs X is a basis if, for every x ∈ X,
there is a unique sequence {αn}∞n=1 ⊆ C such that the series

∑∞
n=1 αnxn converges

to x in X. By setting fn(x) := αn we obtain a linear form fn : X → C which
is called the n-th coefficient functional associated to {xn}∞n=1. The functionals fn,
n ∈ N, are uniquely determined by {xn}∞n=1 and {(xn, fn)}∞n=1 is a biorthogonal
sequence (i.e. 〈xn, fm〉 = δmn for m,n ∈ N). For each n ∈ N, the map Pn : X → X
defined by

Pn : x 7→
n∑

i=1

fi(x)xi =
n∑

i=1

〈x, fi〉xi, x ∈ X, (3.5)

is a linear projection with range equal to the finite dimensional space span(xi)n
i=1.

If, in addition, {fn}∞n=1 ⊆ X ′, then the basis {xn}∞n=1 is called a Schauder basis
for X. In this case, {Pn}∞n=1 ⊆ L(X) is clearly a Schauder decomposition of X
and each dual operator

P t
n : x′ 7→

n∑
i=1

〈xi, x
′〉fi, x′ ∈ X ′, (3.6)

for n ∈ N, is a projection with range equal to span(fi)n
i=1. Moreover, for every

x′ ∈ X ′ the series
∑∞

i=1〈xi, x
′〉fi converges to f in X ′

σ. For this reason, {fn}∞n=1 is
also referred to as the dual basis of the Schauder basis {xn}∞n=1. The terminology
“X has a Schauder basis” will also be abbreviated simply to “X has a basis”.

Theorem 3.5. Let X be a complete barrelled lcHs with a Schauder basis and
in which every relatively σ(X, X ′)–compact subset of X is relatively sequentially
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σ(X, X ′)–compact. Then X is reflexive if and only if every power bounded operator
on X is mean ergodic.

Proof. If X is reflexive, then X is mean ergodic by Proposition 2.3. Conversely, if
X is not reflexive, then Theorem 1.2 of [1] shows that X admits a non–shrinking
Schauder basis. By Theorem 3.4, X is not mean ergodic. �

Theorem 3.6. Let X be a complete barrelled lcHs which admits a Schauder decom-
position without property (M). Then there exists a power bounded, mean ergodic
operator T ∈ L(X) which is not uniformly mean ergodic.

Proof. Let {Pj}∞j=1 ⊆ L(X) denote a Schauder decomposition as given by Lemma
3.2 and define projections Qj := Pj − Pj−1 (P0 := 0) and closed subspaces Xj :=
Qj(X) for all j ∈ N. By Lemma 3.2 there exist a bounded sequence {zj}∞j=1 ⊆ X
and a continuous seminorm q on X with zj ∈ Xj+1 and q(zj) > 1/2 for all j ∈ N.

Since {Pj}∞j=1 is an equicontinuous sequence (because X is barrelled), we can
apply Remark 3.3 to choose a system ΓX of continuous seminorms generating the
topology of X such that

p(Pjx) ≤ p(x), x ∈ X, (3.7)

for all p ∈ ΓX and j ∈ N. Clearly, there also exists p0 ∈ ΓX such that p0 ≥ q on
X. Hence, p0(zj) > 1/2 for all j ∈ N.

For any sequence a = {aj}∞j=1 of positive numbers with
∑∞

j=1 aj = 1 we set
An :=

∑n
j=1 aj and define a linear map Ta : X → X by

Tax :=
∞∑

k=1

AkQkx, x ∈ X.

As in the proof of Theorem 3.4 one shows that Ta is well defined, satisfies

p(Tax) ≤ 2p(x), x ∈ X, (3.8)

for all p ∈ ΓX , and is power bounded.
Proceeding as in the proof of Theorem 5.2 of [1], one shows that Ker(I−Ta) =

{0} and Ker(I−T t
a) = {0} and hence, by Theorem 2.12 of [1], Ta is mean ergodic.

It remains to show that T := Ta is not uniformly mean ergodic for the choice
aj := 2−j . In this case, Ak = 1 − 2−k for all k ∈ N. Moreover, from QjQk = 0
whenever j 6= k and Q2

k = Qk it follows that

Tmx =
∞∑

k=1

Am
k Qkx, x ∈ X,

for all m ∈ N. Hence,

T[n]x =
1
n

∞∑
k=1

Ak

1−Ak
· (1−An

k )Qkx, x ∈ X, n ∈ N. (3.9)

Since T is mean ergodic, there exists P ∈ L(X) with T[n] → P in Ls(X).
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Next, if x ∈ Xj for a fixed j ∈ N, by (3.9) we have that

T[n]x =
1
n

Aj

1−Aj
· (1−An

j )x,

for all n ∈ N, as QjQk = 0 whenever j 6= k and Q2
j = Qj . Since 0 < (1−An

j ) < 1,
it follows that

p(T[n]x) ≤ 1
n

Aj

1−Aj
p(x)

for all p ∈ ΓX and n ∈ N. Therefore, p(T[n]x) → 0 as n →∞ for all p ∈ ΓX . Since
T[n]x → Px as n → ∞, we see that Px = 0. That is, Py = 0 for all y ∈ ∪∞j=1Xj .
Since ∪∞j=1Xj is dense in X and P ∈ L(X), we obtain that P = 0 on X, that is,
T[n] → 0 in Ls(X).

Suppose that T is uniformly mean ergodic. Then T[n] → 0 in Lb(X). In
particular, since {zj}∞j=1 is a bounded sequence in X, we have

lim
n→∞

sup
j∈N

p(T[n]zj) = 0 (3.10)

for all p ∈ ΓX . But, for all j ∈ N,

p0(T[2j ]zj) >
1
4
[1− (1− 2−j)2

j

],

with limj→∞(1− 2−j)2
j

= e−1. This is in contradiction with (3.10). �

For Fréchet spaces, the following result occurs in [1, Theorem 1.3].

Theorem 3.7. Let X be a complete barrelled lcHs with a Schauder basis and
in which every relatively σ(X, X ′)–compact subset of X is relatively sequentially
σ(X, X ′)–compact. Then X is Montel if and only if every power bounded opera-
tor on X is uniformly mean ergodic, that is, if and only if X is uniformly mean
ergodic.

Proof. Suppose that X is Montel. Then Proposition 2.4 implies that X is uni-
formly mean ergodic. Conversely, suppose that X is not Montel. Observe that
the Schauder decomposition {Pn}∞n=1 ⊂ L(X) induced by the basis of X has the
property that each space Qn(X) := (Pn − Pn−1)(X), n ∈ N, is Montel because
dim Qn(X) = 1 for all n ∈ N. By [2, Proposition 3.8(iii)], the Schauder decompo-
sition {Pn}∞n=1 does not satisfy property (M) and hence, Theorem 3.6 guarantees
the existence of a power bounded, mean ergodic operator in L(X) which fails to
be uniformly mean ergodic. �

Theorem 3.8. Let X be a sequentially complete lcHs which contains an isomorphic
copy of the Banach space c0. Then there exists a power bounded operator on X
which is not mean ergodic.

Proof. Suppose that J is a topological isomorphism from c0 into X. Let {en}∞n=1

be the canonical basis of c0. Then the elements yn := Jen form a Schauder basis
of Y := J(c0).
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Denote by || ||c0 the norm in c0 and by ΓX a system of continuous seminorms
generating the topology of X. Then, for all p ∈ ΓX , there exists Mp > 0 such that

p(Jx) ≤ Mp||x||c0 , x ∈ c0.

There also exist p0 ∈ ΓX and K > 0 such that

||x||c0 ≤ Kp0(Jx), x ∈ c0.

Therefore, we have that

sup
j∈N

|xj | ≤ Kp0(
∞∑

j=1

xjyj) and p(
∞∑

j=1

xjyj) ≤ Mp sup
j∈N

|xj | (3.11)

for all x = (xj)∞j=1 ∈ c0 and p ∈ ΓX .
Let {e′n}∞n=1 ⊂ `1 denote the dual basis of {en}∞n=1. For each n ∈ N, define

y′n ∈ Y ′ by y′n := e′n ◦J−1, in which case {y′n}∞n=1 is the dual basis of {yn}∞n=1 and

|〈y, y′n〉| ≤ Kp0(y), y ∈ Y,

as y = Jx for some x ∈ c0. By the Hahn–Banach theorem, for each n ∈ N we can
find fn ∈ X ′ such that fn|Y = y′n and

|〈x, fn〉| ≤ Kp0(x), x ∈ X. (3.12)

Define xn :=
∑n

i=1 yi and gn := fn − fn+1, for each n ∈ N, and observe that

〈xk, gn〉 = 〈xk, fn〉 − 〈xk, fn+1〉 = δkn

for all k, n ∈ N. We can then define projections Pn : X → X via

Pnx :=
n∑

k=1

〈x, gk〉xk, x ∈ X,

so that Pn(X) = span {xj}n
j=1 = span {yj}n

j=1 and PnPm = Pmin{n,m}.
Set h := f1 and observe that

〈xn, h〉 = 〈
n∑

j=1

yj , f1〉 = 1, n ∈ N.

On the other hand, xn ∈ (Pn − Pn−1)(X) (with P0 := 0) for all n ∈ N, and
{xn}∞n=1 is a bounded sequence in X because xn = J(

∑n
j=1 ej), n ∈ N. Since

‖
∑n

j=1 ej‖c0 = 1, we have

p(xn) ≤ Mp, n ∈ N, (3.13)

for all p ∈ ΓX . In particular,

p0(xn) ≥ 1
K
‖

n∑
j=1

ej‖c0 =
1
K

, n ∈ N.

Moreover, the identities

Pnx =
n∑

k=1

(〈x, fk〉 − 〈x, fn+1〉)yk, x ∈ X, n ∈ N,
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together with (3.11) and (3.12) imply that

p(Pnx) ≤ Mp sup
1≤k≤n

|〈x, fk〉 − 〈x, fn+1〉| ≤ 2MpKp0(x) (3.14)

for all p ∈ ΓX , n ∈ N and x ∈ X. Accordingly, {Pn}∞n=1 ⊂ L(X) is equicontinuous.
Let a = {aj}∞j=1 be any sequence of positive numbers with

∑∞
j=1 aj = 1 and

set An :=
∑n

j=1 aj for n ∈ N. As in the statement of Theorem 3 of [10], we define

Sax := x−
∞∑

n=2

anPn−1x +
∞∑

n=2

〈Pn−1x, h〉xn, x ∈ X.

Then by (3.13), (3.12) and (3.11) we have, for each x ∈ X, that

p(Sax) ≤ p(x) + 2MpKp0(x) + Mp sup
n≥2

|〈Pn−1x, h〉|

≤ p(x) + 2MpKp0(x) + MpKp0(Pn−1x)

≤ p(x) + 2MpKp0(x) + MpK
2Mp0p0(x)

= (1 + 2MpK + MpK
2Mp0)p(x)

for all p ∈ ΓX with p ≥ p0. So, Sa ∈ L(X).
The fact that Sa is power bounded follows from the Claim on p. 156 of [10],

stating that SaSb = Sc for an appropriate c.
It remains to show that Sa is not mean ergodic. For this, we can now proceed

exactly as in the final part of the proof of Theorem 1.6 of [1]. �

4. Mean ergodicity of co-echelon spaces

We wish to give an application of the previous results to Köthe co-echelon spaces.
Let I be a countable index set. A Köthe matrix A = (an)∞n=1 is an increasing

sequence of strictly positive functions on I. Let V = (vn)∞n=1 denote the associated
decreasing sequence of functions vn := 1/an, n ∈ N. Define the inductive limits

kp(V ) = kp(I, V ) = ind
n

`p(vn), 1 ≤ p ≤ ∞, and k0(V ) = k0(I, V ) = ind
n

c0(vn) ,

generated by the (weighted) Banach spaces

`p(vn) = {x = (xi)i∈I ∈ CI : qp,n(x) =

(∑
i∈I

(vn(i)|xi|)p

)1/p

< ∞}, if 1 ≤ p < ∞ ,

and
`∞(vn) = {x = (xi)i∈I ∈ CI : q∞,n(x) = sup

i∈I
vn(i)|xi| < ∞} ,

c0(vn) = {x = (xi)i∈I ∈ CI : (vn(i)|xi|)i∈I converges uniformly to 0 in I} .

That is, kp(V ) is the increasing union of the Banach spaces `p(vn), respectively
c0(vn), for n ∈ N, endowed with the strongest locally convex topology under
which the inclusion of each of these Banach spaces is continuous, i.e., kp(V ) is an



On Mean Ergodic Operators 15

(LB)–space and so a barrelled, ultrabornological (DF)–space. The spaces kp(V )
are called co–echelon spaces of order p.

Given a decreasing sequence V = (vn)∞n=1 of strictly positive functions on I,
set

V̄ = {v̄ = (v̄(i))i∈I ∈ RI
+ : ∀n ∈ N sup

i∈I

v̄(i)
vn(i)

< ∞}

and associate to V̄ the following projective limit spaces

Kp(V̄ ) = Kp(I, V̄ ) = proj
v̄∈V̄

`p(v̄), if 1 ≤ p ≤ ∞; K0(V̄ ) = K0(I, V̄ ) = proj
v̄∈V̄

c0(v̄) .

These spaces are equipped with the complete locally convex topology given by the
seminorms (qp,v̄)v̄∈V̄ , where

qp,v̄(x) =

(∑
i∈I

(v̄(i)|xi|)p

)1/p

, 1 ≤ p < ∞, and q∞,v̄(x) = sup
i∈I

v̄(i)|xi| .

Then kp(V ) is continuously embedded in Kp(V̄ ) for 1 ≤ p ≤ ∞ or p = 0, with
kp(V ) = Kp(V̄ ) for 1 ≤ p ≤ ∞. More precisely, kp(V ) = Kp(V̄ ) algebraically and
topologically for 1 ≤ p < ∞ and k∞(V ) = K∞(V̄ ) algebraically. Moreover, k0(V )
is, in general, a proper topological subspace of the barrelled (DF)-space K0(V̄ )
such that its completion is equal to K0(V̄ ). The (LB)–space kp(V ) is complete for
1 ≤ p ≤ ∞, and reflexive for 1 < p < ∞. In particular, the vectors ej = (δij)i∈I

form a Schauder basis for kp(V ) if 1 ≤ p < ∞ or p = 0. For all these facts we refer
to [3].

Proposition 4.1. Let V = (vn)∞n=1 be a decreasing sequence of strictly positive
functions on I and 1 < p < ∞. Then the reflexive (LB)–space kp(V ) (= Kp(V̄ )
algebraically and topologically) is uniformly mean ergodic if and only if it is a
Montel space (hence, a (DFM)–space).

Proof. Since the complete barrelled space kp(V ) admits a Schauder basis and its
bounded sets are relatively sequentially σ(kp(V ), (kp(V ))′)–compact, [6, Theorem
11, Examples 1,2], the result follows from Theorem 3.7. �

Proposition 4.2. Let V = (vn)∞n=1 be a decreasing sequence of strictly positive
functions on I. Then the following assertions are equivalent.

(i) k1(V ) is mean ergodic.
(ii) k1(V ) is uniformly mean ergodic.
(iii) k1(V ) is a Montel space (hence, a (DFM)–space).
(iv) k1(V ) does not contain an isomorphic copy of `1.

Proof. The complete barrelled (LB)-space k1(V ) admits a Schauder basis and ev-
ery relatively σ(k1(V ), (k1(V ))′)–compact subset of k1(V ) is relatively sequentially
σ(k1(V ), (k1(V ))′)–compact, [6, Theorem 11, Examples 1, 2]. So, by Theorem 3.7
we have (ii) ⇔ (iii), and by [3, Theorem 4.7] we have (iii) ⇔ k1(V ) is reflexive.
On the other hand, k1(V ) is reflexive ⇔ (i); see Theorem 3.5.
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Next, (iii) ⇒ (iv) is obvious, because a Montel space cannot contain an iso-
morphic copy of any infinite dimensional Banach space.

(iv) ⇒ (iii): Suppose that k1(V ) is not a Montel space. Then there exist an
infinite set I0 ⊂ I and n ∈ N such that

inf
i∈I0

vm(i)
vn(i)

= cm > 0 , ∀m ≥ n,

[3, Theorem 4.7]. Then, in the sectional subspace E0 of k1(V ) defined by

E0 := {x ∈ k1(V ) : xj = 0 for all j ∈ I \ I0},
the topology of `1(vm) coincides with that of `1(vn) for all m ≥ n. Indeed, for
every x ∈ E0 and m ≥ n we have

q1,m(x) ≤ q1,n(x) =
∑
i∈I0

vn(i)|xi| ≤ c−1
m

∑
i∈I0

vm(i)|xi| = c−1
m q1,m(x) .

Consequently, the topology of k1(V ) also coincides with that of `1(vn) in E0.
Hence, k1(V ) contains an isomorphic copy of `1, which is a contradiction. �

Proposition 4.3. Let V = (vn)∞n=1 be a decreasing sequence of strictly positive
functions on I. Then the following assertions are equivalent.

(i) k∞(V ) is mean ergodic.
(ii) k∞(V ) is uniformly mean ergodic.
(iii) k∞(V ) is a Montel space (hence, a (DFM)-space).
(iv) k∞(V ) does not contain an isomorphic copy of `∞.
(v) K0(V̄ ) = K∞(V̄ ) = k∞(V ) algebraically and topologically.

Proof. By the discussion just prior to Proposition 2.3, together with Proposition
2.4, it is clear that (iii) ⇒ (ii). That (ii) ⇒ (i) is obvious. Since `∞ is an infinite
dimensional Banach space (i.e., its closed unit ball is not compact), it is clear that
(iii) ⇒ (iv). Moreover, (iii) ⇔ (v) by [3, Theorem 4.7].

(iv) ⇒ (iii): Suppose that k∞(V ) is not a Montel space. Then there exist an
infinite set I0 ⊂ I and n ∈ N such that

inf
i∈I0

vm(i)
vn(i)

= cm > 0 , ∀m ≥ n,

[3, Theorem 4.7]. Then, in the sectional subspace E0 of k∞(V ) defined by

E0 := {x ∈ k∞(V ) : xj = 0 for all j ∈ I \ I0},
the topology of `∞(vm) coincides with that of `∞(vn) for all m ≥ n. Indeed, for
every x ∈ E0 and m ≥ n we have

q∞,m(x) ≤ q∞,n(x) = sup
i∈I0

vn(i)|xi| ≤ c−1
m sup

i∈I0

vm(i)|xi| = c−1
m q∞,m(x) .

Consequently, the topology of k∞(V ) also coincides with that of `∞(vn) in E0.
Hence, k∞(V ) contains an isomorphic copy of `∞. This is a contradiction.

(i) ⇔ (iv): Suppose that k∞(V ) contains an isomorphic copy of `∞. This
implies that k∞(V ) is not mean ergodic by [1, Remark 2.14(i)] . �
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Proposition 4.4. Let V = (vn)∞n=1 be a decreasing sequence of strictly positive
functions on I. Suppose that the (LB)–space k0(V ) is complete. Then the following
assertions are equivalent.

(i) k0(V ) is mean ergodic.
(ii) k0(V ) is uniformly mean ergodic.
(iii) k0(V ) is a Schwartz space (hence, a (DFS)-space).
(iv) k0(V ) does not contain an isomorphic copy of c0.
(v) k0(V ) = k∞(V ) algebraically and topologically.

Proof. The complete, barrelled (LB)–space k0(V ) admits a Schauder basis and ev-
ery relatively σ(k0(V ), (k0(V ))′)–compact subset of k0(V ) is relatively sequentially
σ(k0(V ), (k0(V ))′)–compact, [6, Theorem 11, Examples 1, 2].

So, by Theorem 3.7 above and [3, Theorem 4.9] we have (ii) ⇔ k0(V ) is a
Montel space ⇔ (iii) ⇔ (v).

Next, (ii) ⇒ (i) is obvious. Also, (iii) ⇒ (iv) is obvious, because a Schwartz
space cannot contain an isomorphic copy of any infinite dimensional Banach space.

(iv) ⇒ (iii): Suppose that k0(V ) is not a Schwartz space. Since k0(V ) is
complete, there exist an infinite set I0 ⊂ I and n ∈ N such that

inf
i∈I0

vm(i)
vn(i)

= cm > 0 , ∀m ≥ n,

[3, Theorems 3.7, 4.9]. Then, in the sectional subspace E0 of k0(V ) defined by

E0 := {x ∈ k0(V ) : xj = 0 for all j ∈ I \ I0},
the topology of c0(vm) coincides with that of c0(vn) for all m ≥ n. Indeed, for
every x ∈ E0 and m ≥ n we have

q∞,m(x) ≤ q∞,n(x) = sup
i∈I0

vn(i)|xi| ≤ c−1
m sup

i∈I0

vm(i)|xi| = c−1
m q∞,m(x) .

Consequently, the topology of k0(V ) also coincides with that of c0(vn) in E0.
Hence, k0(V ) contains an isomorphic copy of c0. This is a contradiction.

(i) ⇒ (ii): By Theorem 3.5 we have (i) ⇔ k0(V ) is reflexive. Since k0(V ) is
complete, it is then also Montel by [3, Theorems 3.7, 4.7], thereby implying that
(ii) holds via Theorem 3.7. �

Example. Every (LF)–space X (hence, every (LB)–space) satisfies the hypothesis
of Proposition 2.5, because every linear continuous surjective map between two
(LF)–spaces is necessarily open. But, in this setting, condition (iii) of Proposition
2.5 does not imply the condition (ii). Hence, also (iii) does not imply condition (i)
as the following example illustrates.

Let (an)∞n=1 be a sequence of real numbers satisfying 1 < an+1 < an < a for
some a ∈ R and for all n ∈ N. For each n ∈ N set vn := (ai

n)∞i=1 and V := (vn)∞n=1,
where i ∈ I := N. Consider the co–echelon space k1(V ) which is a Montel space
(hence, a (DFM)–space) because, for all n, m ∈ N with m > n, we have vm(i)

vn(i) =(
am

an

)i

→ 0 as i → ∞, [3, Theorem 4.7]. In particular, its (strong) topological
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dual is the Köthe echelon Fréchet space λ∞(A) = λ0(A), with A := (v−1
n )∞n=1, [3,

Theorem 4.7].
Define T ∈ L(k1(V )) by

Tx := ((1− a−i)xi)∞i=1 , x ∈ k1(V ) .

It is easy to verify that Ker(I−T ) = {0} and that y := (a−i)∞i=1 ∈ k1(V ) does not
belong to Im(I − T ), i.e., I − T is not surjective. So, condition (ii) of Theorem 2.5
does not hold.

Since Tmx = ((1−a−i)mxi)∞i=1 for x ∈ k1(V ) and for all m ∈ N, the sequence
{Tmx}∞m=1 is bounded for all x ∈ k1(V ). Indeed, given any x ∈ k1(V ) there is
n ∈ N such that x ∈ `1(vn), thereby implying that

q1,n(Tmx) =
∑
i∈N

|(1− a−i)m| · |xi|vn(i) ≤
∑
i∈N

|xi|vn(i) = q1,n(x)

for all m ∈ N. So, the barrelledness of k1(V ) implies that the sequence {Tm}∞m=1 ⊂
L(k1(V )) is equicontinuous, i.e., for every p ∈ Γk1(V ) the exists q ∈ Γk1(V ) for which

p(Tmx) ≤ q(x)

for all m ∈ N and x ∈ k1(V ). In particular, T is power bounded.
Since k1(V ) is a complete (LB)-space and hence, a regular (LB)–space, given

any bounded set B ⊂ k1(V ) there exist k, n ∈ N such that B ⊂ kBn (Bn denotes
the unit ball of `1(vn)). On the other hand, since the inclusion map `1(vn) ↪→ k1(V )
is continuous, given any p ∈ Γk1(V ) there exists c > 0 such that

p(x) ≤ cq1,n(x), x ∈ `1(vn).

Therefore, for every m ∈ N we have

sup
x∈B

p

(
1
m

Tmx

)
≤ c

1
m

sup
x∈kBn

q1,n(Tmx) ≤ c
1
m

sup
x∈kBn

q1,n(x) ≤ ck
1
m

and hence, supx∈B p( 1
mTmx) → 0 as m → ∞. This shows that 1

mTm → 0 in
Lb(k1(V )).

It remains to establish condition (iii) of Proposition 2.5. For this, we observe
that

T tξ = ((1− a−i)ξi)∞i=1 , ξ ∈ λ∞(A) ,

so that Ker(I − T t) = {0}. Since T is power bounded and both Ker(I − T ) = {0}
and Ker(I−T t) = {0}, we can apply [1, Theorem 2.12] to conclude that T is mean
ergodic. But, k1(V ) is a Montel space whose relatively σ(k1(V ), (k1(V ))′)–compact
subsets are relatively sequentially σ(k1(V ), (k1(V ))′)–compact (see the discussion
prior to Proposition 2.3). So, by Proposition 2.4, T is also uniformly mean ergodic.
Hence, there is P ∈ L(k1(V )) such that T[n] → P in Lb(k1(V )).

For each r ∈ N, let er be the element of k1(V ) with 1 in the r–th coordinate
and 0’s elsewhere (we point out that {er}∞r=1 is a Schauder basis for k1(V )). Then,
for all r ∈ N,

Tmer = (1− a−r)mer → 0 as m →∞ ,
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so that

T[n]er =
µ(1− µ)
n(1− µ)

er → 0 as m →∞ ,

with µ := (1−a−r). This implies that P = 0 and hence, that T[n] → 0 in Lb(k1(V )),
i.e., condition (iii) is satisfied.

We remark that the operator Tx := ((1 − 2−i)xi)∞i=1, for x = (xi)∞i=1 ∈ s′

(here s′ is the strong dual of the Fréchet space s of all rapidly decreasing sequences,
so that s′ is an (LB)–space), also satisfies condition (iii) of Proposition 2.5, but,
fails condition (ii); the proof is similar to the previous one for T in k1(V ).
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