
Dynamics of the differentiation operator on weighted
spaces of entire functions
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Abstract

The continuity of the differentiation operator on weighted Banach spaces of entire
functions with sup-norm has been characterized recently by Harutyunyan and Lusky.
We give necessary and sufficient conditions to ensure that the differentiation operator
on these weighted Banach spaces of entire functions is hypercyclic or chaotic, when
it is continuous.

1 Introduction and Notation

Our purpose is to study the dynamics of the differentiation operator Dh = h′ on weighted
Banach spaces of holomorphic functions with sup-norm on which it is well defined and
continuous. More precisely, we characterize when D is hypercyclic, when it has a dense set
of periodic points and when D is topologically mixing. The continuity of the differentiation
operator on weighted Banach spaces of entire functions has been characterized recently by
Harutyunyan and Lusky [24]. A continuous and linear operator T from a Banach space
E into itself is called hypercyclic if there is a vector x (which is called hypercyclic vec-
tor) in E such that its orbit (x, Tx, T 2x, ...) is dense in E. An operator T on a separable
Banach space E is hypercyclic if and only if it is topologically transitive in the sense of
dynamical systems, i.e. for every pair of non-empty open subsets U and V of E there is
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n ∈ N such that T n(U) meets V . A stronger condition is the following: the operator T
on E is called topologically mixing if for every pair of non-empty open subsets U and V
of E there is N ∈ N such that T n(U) meets V for each n ≥ N . According to Devaney
[14], a continuous map on a metric space is called chaotic if it is topologically transitive
and has a dense set of periodic points. For motivation, examples and background about
linear dynamics we refer the reader to the article by Godefroy and Shapiro [16] and to the
surveys of Grosse-Erdmann [19, 22]. MacLane [28] proved that the differentiation operator
D is hypercyclic on the space of entire functions H(C) endowed with the compact open
topology. The behaviour of the differentiation operators on Hörmander radial algebras of
entire functions (which are not metrizable locally convex spaces) was investigated by the
author in [10].

A weight v on C is a strictly positive continuous function on C which is radial, i.e. v(z) =
v(|z|), z ∈ C, such that v(r) is non-increasing on [0,∞[ and satisfies limr→∞ rmv(r) = 0 for
each m ∈ N. For such a weight, the weighted Banach spaces of entire functions are defined
by

Hv := {f ∈ H(C) | ||f ||v = supz∈C v(z)|f(z)| < +∞},
Hv0 := {f ∈ H(C) | lim|z|→∞ v(z)|f(z)| = 0},

endowed with the norm ‖f‖v := supz∈C v(z)|f(z)|. Clearly Hv0 is a closed subspace of
Hv which contains the polynomials. We denote by Bv and Cv the unit balls of Hv and
Hv0 respectively. Spaces of this type appear in the study of growth conditions of analytic
functions and have been investigated in various articles, see e.g. [7, 8, 25, 26, 27] and the
references therein. Composition operators on these type of spaces have been also thor-
oughly studied [12].

Harutyunyan and Lusky [24] characterized the continuity of the differentiation operator
Dh = h′ on the space Hv under the assumption that the space Hv is isomorphic to the
Banach space `∞. Lusky had already characterized when Hv is isomorphic to `∞ in terms
of a condition on the weight v in [27]. According to [24, Theorem 4.1], if Hv is isomor-
phic to `∞, the differentiation operator D : Hv → Hv is continuous if and only if there
are β > 0 and r0 > 0 such that v(r)eβr is increasing on [r0,∞[. By [24, Theorems 4.1
and 4.2], the differentiation operator D is bounded and surjective on Hvα for the weight
vα(r) = e−αr, α > 0, D is bounded but not surjective on Hv for v(r) = exp(− log2 r), and
it is not continuous for v(r) = exp(−er).

If a Banach space E admits a hypercyclic operator, then E must be separable. This is
why we investigate the differentiation operator on the space Hv0, and we need the following
complement to the results of Harutyunyan and Lusky.

Proposition 1.1 Let v be a weight. The differentiation operator D : Hv → Hv is contin-
uous if and only if D : Hv0 → Hv0 is continuous.
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Proof. Assume first that D : Hv → Hv is continuous and fix g ∈ Hv0. By Bierstedt,
Bonet, Galbis [7, Proposition 1.2.(e)] the Cesàro means (pn)n of the partial sums of the
Taylor series of g converge to g in Hv0. By assumption, the sequence of polynomials (p′n)n

converges to g′ in Hv. As each polynomial is contained in Hv0, we conclude g′ ∈ Hv0.
Thus D(Hv0) ⊂ Hv0 and D : Hv0 → Hv0 is continuous.

Now suppose that D : Hv0 → Hv0 is continuous. There is C > 0 such that ||g′||v ≤
C||g||v for each g ∈ Hv0. Fix f ∈ Hv, ||f ||v ≤ 1. We apply [7, Proposition 1.2.(b)] to find
a sequence of polynomials (qn)n converging to f for the compact open topology and such
that ||qn||v ≤ 1 for each n ∈ N. Since the differentiation operator is continuous for the
compact open topology, the sequence of derivatives (q′n)n converges to f ′ for the compact
open topology and

||q′n||v ≤ C||qn||v ≤ C, n ∈ N.

Therefore the sequence (C−1q′n)n is contained in the unit ball Bv of Hv, which is closed in
H(C) for the compact open topology. Hence f ′ ∈ CBv ⊂ Hv, and D(Bv) ⊂ CBv, which
implies that D : Hv → Hv is continuous. 2

Our results below are related to the study of the rate of growth of entire functions
which are hypercyclic for the differentiation operator. This question has been investigated
by several authors since the paper of Grosse-Erdmann [18]. See for example [5, 18, 20]
and the historical remarks in the introduction of [9]. As we show below, the differentiation
operator behaves very similarly to a weighted backward shift. However, it is important to
point out that Lusky [26, Theorem 2.3] proved that the monomials are not a basis of the
space Hv0 for v(r) = exp(−r). Therefore our theorems cannot be directly deduced from the
results on weighted backward shifts due to Grosse-Erdmann [21] and to Mart́ınez-Giménez
and Peris [29].

2 Main Results

Theorem 2.1 Assume that the differentiation operator D : Hv0 → Hv0 is continuous.
The following conditions are equivalent:

(1) D has a dense set of periodic points.

(2) D has a periodic point different from 0.

(3) limr→∞ v(r)er = 0.

Proof. Clearly condition (1) implies condition (2). Assume that (2) holds. There is
g ∈ Hv0, g 6= 0, and there is n ∈ N with g(n) = g. We can find c1, ...cn ∈ C, not all equal
to 0, and θ1, ..., θn ∈ C, with |θj| = 1, θn

j = 1, such that g(z) = c1e
θ1z + ... + cne

θnz ∈ Hv0.
We assume c1 6= 0 and |c1| ≥ |cj|, j = 2, ..., n. The function

f(z) := eθ1z
(
1 +

c2

c1

e(θ2−θ1)z + ... +
cn

c1

e(θn−θ1)z
)
, z ∈ C,
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belongs to Hv0. Therefore limr→∞ ϕ(r) = 0 for ϕ(r) := v(r) max|z|=r |f(z)|.
Fix z ∈ C, z 6= 0, and find θz ∈ C with |θz| = 1 and θzz = |z|. Since e|z| = eθ1θ1θzz, we

get
ϕ(|z|) ≥ v(θ1θzz)|f(θ1θzz)| =

v(|z|)
∣∣∣e|z|

(
1 +

c2

c1

e(θ2−θ1)θ1θzz + ... +
cn

c1

e(θn−θ1)θ1θzz
)∣∣ ≥

v(|z|)e|z|
(
1−

∣∣∣e(θ2θ1−1)|z|
∣∣∣− ...−

∣∣∣e(θnθ1−1)|z|
∣∣∣
)
.

However, for each j = 2, ..., n,
∣∣∣e(θjθ1−1)|z|

∣∣∣ = exp((Re(θjθ1 − 1)|z|)),

and, since |θjθ1| = 1 and θj 6= θ1, we have Re(θjθ1 − 1) < 0, and we can find R0 > 0 such
that exp(((Re(θjθ1 − 1)|z|) < 1/(2n) for each j = 2, ..., n and each |z| > R0. This implies,
for each |z| > R0, v(z)e|z| ≤ 2ϕ(|z|), and limr→∞ v(r)er = 0, which proves condition (3).

Now suppose that condition (3) holds and denote by P the linear span of the functions
hθ(z) := eθz, θ ∈ C, θn = 1 for some n ∈ N. Clearly every element of P is a periodic point
of the operator D and condition (3) implies that P ⊂ Hv0. It remains to show that P is
dense in Hv0. To do this, we define H : D→ Hv0 by H(ζ)(z) := eζz, z ∈ D. The function
H is well defined and bounded, since ||H(ζ)||v ≤ supr≥0 v(r)er =: M for each ζ ∈ D. We
claim that H is holomorphic on D. Since H is locally bounded (even bounded), by a result
due to Grosse-Erdmann [23, Theorem 1], it is enough to find a σ((Hv0)

′, Hv0)-dense subset
G of (Hv0)

′ such that u◦H : D→ C is holomorphic for each u ∈ G. Denote by G the set of
all elements in u ∈ (Hv0)

′ which are continuous for the compact open topology. Since Hv0

contains the polynomials, it is dense in the space H(C) for the compact open topology.
Therefore 〈(Hv0)

′, H(C)〉 is a dual pair; consequently H(C)′, hence G, is σ((Hv0)
′, Hv0)-

dense in (Hv0)
′. Now, the map C → H(C), ζ → eζz, is holomorphic, hence its restriction

to D is also holomorphic. This implies that u ◦H : D→ C is holomorphic for each u ∈ G,
and H : D→ Hv0 is holomorphic as we claimed.

We show that H : D → Hv0 is continuous. To do this, it is enough to prove the
continuity at each ζ0 in the boundary of D. Fix a sequence (ζj)j in D converging to ζ0. We
have

||H(ζj)−H(ζ0)||v = sup
z∈C

v(z)
∣∣∣eζjz − eζ0z

∣∣∣.

Fix ε > 0. Apply condition (3) to find r0 > 0 such that v(r)er < ε/4 if r ≥ r0. Hence, if
|z| ≥ r0, we have v(z)|eζjz − eζ0z| < ε/2. Since the map C→ H(C), ζ → eζz, is continuous,
we find δ > 0 such that |ζ − ζ0| < δ implies

sup
|z|≤r0

|eζz − eζ0z| < ε

2 max0≤r≤r0 v(r)
.

Find j0 ∈ N with |ζj − ζ0| < δ for j ≥ j0. Therefore, for |z| ≤ r0 and j ≥ j0, we get
v(z)|eζjz − eζ0z| < ε/2. This implies ||H(ζj)−H(ζ0)||v < ε, and H is continuous.
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Assume that u ∈ (Hv0)
′ vanishes on P . We show u = 0 and Hahn Banach theorem

permits us to conclude that P is dense in Hv0. According to what we have proved above,
the function u ◦H : D→ C belongs to the disc algebra and, since u ◦H vanishes on all the
roots of the unity and is continuous on D, it vanishes on the boundary of D, consequently
on the whole unit disc D. In particular (u◦H)(n)(0) = u(H(n)(0)) = 0 for each n ∈ N∪{0}.
But (H(n)(0))(z) = zn for each n ∈ N ∪ {0}, since (H(n)(ζ))(z) = zneζz. Accordingly u
vanishes on all the polynomials. As the polynomials are dense in Hv0, we conclude u = 0.
2

The first simple criterion to ensure that an operator T on a separable Banach space E
is hypercyclic was presented by Kitai in her Thesis. It was discovered independently by
Gethner and Shapiro and was improved by several authors. The following form is due to
Bès and Peris [6]; see also [4, 17].

HYPERCYCLICITY CRITERION. Suppose that the continuous operator T on a sep-
arable Banach space E satisfies that there exist an incresing sequence (nk)k of positive
integers, two dense subsets V and W of E and a sequence (Snk

)k of maps, not necessarily
linear nor continuous, Snk

: W → E, such that:

(i) (T nkv)k converges to 0 for each v ∈ V .

(ii) (Snk
w)k converges to 0 for each w ∈ W .

(iii) (T nkSnk
w)k converges to w for each w ∈ W .

Then T is hypercyclic.

Bès and Peris proved that an operator T satisfies (the assumptions of) the hypercyclicity
criterion if and only if T ⊕ T is hypercyclic on E ⊕E. Only very recently De La Rosa and
Read [15] were able to exhibit hypercyclic operators which do not satisfy the hypercyclicity
criterion, thus solving a long standing problem. Their example was improved later by
Bayart and Matheron [3], who presented examples defined on classical Banach sequence
spaces. For the differentiation operator on Hv0 the two conditions coincide as we show
below.

The first part of our next lemma is well-known. The transpose of an operator T is
denoted by T t.

Lemma 2.2 Let T be an operator on a separable Banach space E.

(1) If T is hypercyclic, then the sequence ((T t)n(v))n is unbounded in E ′ for each v ∈
E ′, v 6= 0.

(2) If T is topologically mixing, then limn→∞ ||(T t)n(v)|| = ∞ for each v ∈ E ′, v 6= 0.

Proof. We prove (2). Assume there are v ∈ E ′, v 6= 0, an increasing sequence (nk)k ⊂ N
and M > 0 such that ||(T t)nk(v)|| ≤ M for each k ∈ N. This implies |v(T nk(x)| ≤ M
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for each k ∈ N and each x ∈ E with ||x|| < 1. Consider the non empty open sets
V := {x ∈ X | |〈v, x〉| > M} and the open unit ball U in E. Since T is topologically
mixing, there is N ∈ N such that T n(U) ∩ V 6= ∅ for each n > N . Therefore, for nk > N ,
there is x ∈ U with T nk(x) ∈ V , hence |v(T nk(x)| > M , a contradiction. 2

Theorem 2.3 Assume that the differentiation operator D : Hv0 → Hv0 is continuous.
The following conditions are equivalent:

(1) D satisfies the hypercyclicity criterion.

(2) D is hypercyclic on Hv0.

(3) lim infn→∞
||zn||v

n!
= 0.

Proof. Condition (1) implies that D is hypercyclic by the hypercyclicity criterion. Assume
now that D is hypercyclic on Hv0. By Lemma 2.2(1), for δ0 : Hv0 → C, δ0(f) = f(0), the
sequence ((Dt)n(δ0))n is unbounded in (Hv0)

′, hence, there is f ∈ Hv0, such that (f (n)(0))n

is unbounded in C. Fix n ∈ N and apply the Cauchy inequalities to obtain, for each r > 0,

v(r)
|f (n)(0)|

n!
rn ≤ v(r) max

|z|=r
|f(z)| ≤ ||f ||v.

This implies
|f (n)(0)|

n!
sup
z∈C

v(z)|zn| ≤ ||f ||v,

which yields |f (n)(0)| ||zn||v
n!

≤ ||f ||v for each n ∈ N. Since (f (n)(0))n is unbounded, we

conclude lim infn→∞
||zn||v

n!
= 0, which is condition (3).

Now we prove that (3) implies (1). First of all, since D is continuous, there is C ≥ 1
such that ||f (j)||v ≤ Cj||f ||v for each f ∈ Hv0 and each j ∈ N. Set n0 = 0 and use (3)
inductively to find nk ∈ N with nk+1 > nk + k + 1 and

||znk+k+1||v
(nk + k + 1)!

≤ 1

kCk
.

This is the increasing sequence of natural numbers required in the hypercyclicity criterion.
Take V = W as the set of all polynomials and define Snk

:= Snk on W , with S the

integration map defined on the monomials by S(zn) := zn+1

n+1
. Since D ◦ S(g) = g for

each polynomial g, conditions (i) and (iii) in the hypercyclicity criterion hold trivially. It
remains to show that limk→∞ Snkw = 0 in Hv0 for each polynomial w. To see this, fix
s ∈ N ∪ {0} and take k ≥ s. Observe that

Snk(zs) =
s!

(nk + s)!
znk+s
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and

Dk+1−s(znk+k+1) =
(nk + k + 1)!

(nk + s)!
znk+s.

This implies

||Snk(zs)||v =
s!

(nk + s)!
||znk+s||v =

s!

(nk + k + 1)!
||Dk+1−s(znk+k+1)||v ≤ s!Ck+1−s ||znk+k+1||v

(nk + k + 1)!
< s!

1

k
,

and the proof is complete. 2

Theorem 2.4 Assume that the differentiation operator D : Hv0 → Hv0 is continuous.
The following conditions are equivalent:

(1) D is topologically mixing.

(2) limn→∞
||zn||v

n!
= 0.

Proof. Assume first that condition (1) holds. By Lemma 2.2(2), limn→∞ ||δ0 ◦Dn|| = ∞.
We can apply the Cauchy inequalities to obtain, for each r > 0, n and f ∈ Hv0 with
||f ||v ≤ 1,

v(r)|δ0 ◦Dn(f)|r
n

n!
= v(r)|f (n)(0)|r

n

n!
≤ v(r) max

|z|=r
|f(z)| ≤ 1.

Therefore, for each n and r > 0,

v(r)
rn

n!
||δ0 ◦Dn|| ≤ 1,

hence ||zn||v
n!

||δ0 ◦Dn|| ≤ 1

for each n, from where it follows limn→∞
||zn||v

n!
= 0, which is condition (2).

Conversely, assume that condition (2) is satisfied. By Costakis, Sambarino [13, Theorem
1.1], to conclude that the differentiation operator D is topologically mixing, it is enough
to show that D satisfies the assumptions of the hypercyclicity criterion for the sequence
(nk) of all positive integers. As in the proof of Theorem 2.3, we take V = W the set
of all polynomials and denote by S the operator of integration in the set of polynomials.
Clearly (Dn)n tends pointwise to 0 in the set V of polynomials, D ◦ S coincides with the
identity on W and it remains only to prove that (Sn(g))n converges to 0 in Hv0. Since
Sn(zk) = k!zk+n/(k + n)! for each k, it is enough to show that (zn/n!)n converges to 0 in
Hv0, but this is condition (2). 2

Corollary 2.5 Let v be a weight such that the differentiation operator D : Hv0 → Hv0 is
continuous. Then
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(1) If there is A > 0 such that 1/v(r) ≤ Ar−1/2er, r > 0, then D is not hypercyclic
on Hv0. In particular D is not hypercyclic for v(r) = exp(− log2 r) or for v(r) =
exp(−αr), 0 < α < 1.

(2) If there are B > 0, α ≥ 1, r0 > 0 such that v(r) ≤ Bexp(−αr) for each r ≥ r0,
then D is topologically mixing on Hv0. In particular, D is topologically mixing for
v(r) = exp(−αr), α ≥ 1.

Proof. (1) In order to apply Theorem 2.3 we estimate the norm of the monomial zn.

||zn||v = sup
r≥0

rnv(r) ≥ A−1 sup
r≥0

rn+ 1
2 e−r = A−1

(
n +

1

2

)n+ 1
2
e−n− 1

2 .

This implies by Stirling’s formula that lim infn→∞
||zn||v

n!
> 0, and D is not hypercyclic by

Theorem 2.3.
(2) Now we wish to apply Theorem 2.4 and, since v(r) is non increasing, we estimate

as follows

||zn||v = sup
r≥0

rnv(r) ≤ rn
0 v(0) + B sup

r≥0
rne−αr = rn

0 v(0) + B
nne−n

αn
.

This implies

lim
n→∞

||zn||v
n!

= 0,

by the Stirling formula. The conclusion follows from Theorem 2.4. 2

Corollary 2.6 Let vα(r) = e−αr, α > 0. Then the differentiation operator D on H(vα)0

satisfies:

(1) If 0 < α < 1, then D is not hypercyclic and has no periodic point different from 0.

(2) If α = 1, then D is topologically mixing but has no periodic point different from 0.

(3) If α > 1, then D is topologically mixing and has a dense set of periodic points; in
particular D is chaotic in the sense of Devaney.

The case α = 1 in Corollary 2.6 already appeared in our proof of Theorem 11 in [10].
We conclude the paper with some remarks about weaker or stronger notions of hy-

percyclicity. An operator T on a separable Banach space E is called supercyclic if there
exists a vector x ∈ E such that the set of scalar multiples of the orbit of x is dense in E.
This concept was introduced by Hilden and Willis. The study of supercyclic operators has
experimented a great development during the last years; see e.g. [4, 30].

Proposition 2.7 Every continuous differentiation operator D : Hv0 → Hv0 is supercyclic.

8



Proof. The generalized kernel
⋃∞

n=0 kerDn of the operator D contains the polynomials,
hence it is dense in the separable Banach space Hv0 by [7, Proposition 1.2]. Moreover, the
range of D is also dense in Hv0, since it contains the polynomials. The conclusion now
follows from Bermúdez, Bonilla, Peris [4, Corollary 3.3]. 2

Bayart and Grivaux [1] introduced the following concept which has attracted much
attention. The operator T on a Banach space E is frequently hypercyclic if there is x ∈ E
such that, for every non-empty open subset U of E, the lower density of the set {n ∈
N ; T nx ∈ U} is strictly greater than 0. The proof of Blasco, Bonilla, Grosse-Erdmann [9,
Theorem 3] yields the following result.

Proposition 2.8 Let v be a weight such that the differentiation operator D : Hv0 → Hv0

is continuous. If limr→∞ v(r)er = 0, then D is frequently hypercyclic on Hv0.

In fact, the proof of [9, Theorem 3] shows that, if limr→∞ v(r)er = 0, then the differen-
tiation operator on Hv0 satisfies the frequent hypercyclicity criterion in [11, Theorem 2.4].
By [11, Remark 2.2.(b)], every operator satisfying the frequent hypercyclicity criterion is
chaotic in the sense of Devaney. Accordingly, the three conditions in Theorem 2.1 are
also equivalent to the fact that D satisfies the frequent hypercyclicity criterion. Note that
Bayart and Grivaux constructed in [2] frequently hypercyclic operators on c0 which are not
chaotic.
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