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Abstract. Banach spaces which are Grothendieck spaces with the Dunford–
Pettis property (briefly, GDP) are classical. A systematic treatment of GDP–
Fréchet spaces occurs in [12]. This investigation is continued here for locally
convex Hausdorff spaces. The product and (most) inductive limits of GDP–
space are again GDP–spaces. Also, every complete injective space is a GDP–
space. For p ∈ {0} ∪ [1,∞) it is shown that the classical co–echelon spaces
kp(V ) and Kp(V ) are GDP–spaces if and only if they are Montel. On the other
hand, K∞(V ) is always a GDP–space and k∞(V ) is a GDP–space whenever
its (Fréchet) predual, i.e., the Köthe echelon space λ1(A), is distinguished.

1. Introduction.

Grothendieck spaces with the Dunford–Pettis property (briefly, GDP) play a
prominent role in the theory of Banach spaces and vector measures; see Ch.VI of
[17], especially the Notes and Remarks, and [18]. Known examples include L∞,
H∞(D), injective Banach spaces (e.g. `∞) and certain C(K) spaces. D. Dean
showed in [14] that a GDP–space does not admit any Schauder decomposition;
see also [26, Corollary 8]. This has serious consequences for spectral measures in
such spaces, [31].

For non–normable spaces the situation changes dramatically. Every Fréchet
Montel space X is a GDP–space, [12, Remark 2.2]. Other than Montel spaces,
the only known non–normable Fréchet space which is a GDP–space is the Köthe
echelon space λ∞(A), for an arbitrary Köthe matrix A, [12, Proposition 3.1].
Moreover, such spaces often admit Schauder decompositions, even unconditional
ones in the presence of the density condition, [12, Proposition 4.4].

Our aim here is to continue and expand on the investigation begun in [12]. We
exhibit large classes of locally convex Hausdorff spaces (briefly, lcHs) which are
GDP–spaces. Many of these admit Schauder decompositions, some even uncondi-
tional ones. The methods also exhibit new classes of Fréchet GDP–spaces which
are neither Montel nor isomorphic to any space of the kind λ∞(A). Consequences
for spectral measures are also presented. In the final section we characterize those
co–echelon spaces kp(V ), for p ∈ {0}∪ [1,∞), which are GDP–spaces. For p 6= ∞,
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this is the case precisely when kp(V ) is Montel but, for p = ∞, the situation is
different.

2. Preliminaries.

If X is a lcHs and ΓX is a system of continuous seminorms determining the
topology of X, then the strong operator topology τs in the space L(X) of all
continuous linear operators from X into itself (from X into another lcHs Y we
write L(X, Y )) is determined by the family of seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX (in which case we write Ls(X)). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is defined in L(X) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX (in which case we write Lb(X)). For X a Banach
space, τb is the operator norm topology in L(X). If ΓX is countable and X is
complete, then X is called a Fréchet space.

By Xσ we denote X equipped with its weak topology σ(X, X ′), where X ′ is
the topological dual space of X. The strong topology in X (resp. X ′) is denoted
by β(X, X ′) (resp. β(X ′, X)) and we write Xβ (resp. X ′

β); see [23, §21.2] for the
definition. The strong dual space (X ′

β)′β of X ′
β is denoted simply by X ′′. By X ′

σ

we denote X ′ equipped with its weak–star topology σ(X ′, X). Given T ∈ L(X),
its dual operator T t : X ′ → X ′ is defined by 〈x, T tx′〉 = 〈Tx, x′〉 for all x ∈ X,
x′ ∈ X ′. It is known that T t ∈ L(X ′

σ) and T t ∈ L(X ′
β), [24, p.134].

The following two known facts are included for ease of reading.

Lemma 2.1. Let X, Y be lcHs’ with Y quasi–barrelled. Then the linear map
Φ: Lb(X, Y ) → Lb(Y ′

β, X ′
β) defined by Φ(T ) := T t, for T ∈ Lb(X, Y ), is continu-

ous.
In particular, if X is quasi–barrelled and a sequence {Tn}∞n=1 ⊆ L(X) satisfies

τb-limn→∞ Tn = T in Lb(X), then also τb-limn→∞ T t
n = T t in Lb(X ′

β).

Proof. A basis of 0–neighbourhoods in Lb(X, Y ) consists of all sets of the form
W (B,U) := {T ∈ L(X, Y ) : T (B) ⊆ U} as B runs through B(X) and U runs
through the collection U0(Y ) of all 0–neighbourhoods in Y .

Let C ∈ B(Y ′
β) and V ∈ U0(X ′

β) be given. Since Y is quasi–barrelled, C

is equicontinuous, [23, p.368]. So, there exist U ∈ U0(Y ) with C ⊆ U◦ (the
polar of U) and, by definition of the topology of X ′

β , a set D ∈ B(X) such that
D◦ ⊆ V . To complete the proof, we check that Φ(W (D,U)) ⊆ W (C, V ). Fix
T ∈ W (D,U) ⊆ L(X, Y ), in which case T (D) ⊆ U . It suffices to show that
T t(U◦) ⊆ D◦ since this implies that T t(C) ⊆ V . So, fix y′ ∈ U◦ and d ∈ D.
Then |〈d, T ty′〉| = |〈Td, y′〉| ≤ 1 as Td ∈ U and y′ ∈ U◦. Accordingly, T ty′ ∈ D◦

for all y′ ∈ U◦. �

Lemma 2.2. Let A be a subset of a lcHs X such that, for every U ∈ U0(X),
there exists a precompact set B ⊆ X (depending on U) with A ⊆ B + U . Then A
is precompact.
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Proof. Fix U and B as in the statement of the lemma with A ⊆ B + 1
2U . Since B

is precompact, select x1, . . . , xk from B such that B ⊆ ∪k
j=1(xj + 1

2U). It follows
that A ⊆ ∪k

j=1(xj + U). Hence, A is precompact. �

A sequence (Pn)∞n=1 ⊆ L(X) is a Schauder decomposition of X if it satisfies:
(S1) PnPm = Pmin{m,n} for all m,n ∈ N,
(S2) Pn → I in Ls(X) as n →∞, and
(S3) Pn 6= Pm whenever n 6= m.

By setting Q1 := P1 and Qn := Pn−Pn−1 for n ≥ 2 we arrive at a sequence of pair-
wise orthogonal projections (i.e. QnQm = 0 if n 6= m) satisfying

∑∞
n=1 Qn = I,

with the series converging in Ls(X). If the series is unconditionally convergent
in Ls(X), then {Pn}∞n=1 is called an unconditional Schauder decomposition, [28].
Such decompositions are intimately associated with (non–trivial) spectral mea-
sures; see (the proof of) [12, Proposition 4.3] and [28, Lemma 5 and Theorem 6].
If X is barrelled, then (S2) implies that {Pn}∞n=1 is an equicontinuous subset of
L(X). According to (S1) each Pn and Qn, for n ∈ N, is a projection and Qn → 0
in Ls(X) as n →∞. Condition (S3) ensures that Qn 6= 0 for each n ∈ N.

Let {Pn}∞n=1 ⊆ L(X) be a Schauder decomposition of X. Then the dual
projections {P t

n}∞n=1 ⊆ L(X ′
σ) always form a Schauder decomposition of X ′

σ, [22,
p.378]. If, in addition, {P t

n}∞n=1 ⊆ L(X ′
β) is a Schauder decomposition of X ′

β ,
then the original sequence {Pn}∞n=1 is called shrinking, [22, p.379]. Since (S1)
and (S3) clearly hold for {P t

n}∞n=1, this means precisely that P t
n → I in Ls(X ′

β);
see (S2).

3. GDP–spaces.

A lcHs X is called a Grothendieck space if every sequence in X ′ which is
convergent in X ′

σ is also convergent for σ(X ′, X ′′). Clearly every reflexive lcHs
is a Grothendieck space. A lcHs X is said to have the Dunford–Pettis property
(briefly, DP) if every element of L(X, Y ), for Y any quasicomplete lcHs, which
transforms elements of B(X) into relatively σ(Y, Y ′)–compact subsets of Y , also
transforms σ(X, X ′)–compact subsets of X into relatively compact subsets of Y ,
[21, p.633–634]. Actually, it suffices if Y runs through the class of all Banach
spaces, [12, p.79]. A reflexive lcHs satisfies the DP–property if and only if it is
Montel, [21, p.634]. According to [21, pp.633–634], a lcHs X has the DP–property
if and only if every absolutely convex, σ(X, X ′)–compact subset of X (denote all
such sets by Σ) is precompact for the topology τΣ′ of uniform convergence on the
absolutely convex, equicontinuous, σ(X ′, X ′′)–compact subsets of X ′ (denote all
such sets by Σ′). Clearly the topology τΣ′ is finer than σ(X, X ′).

Examples of GDP–spaces, beyond those given in [12] for certain kinds of non–
normable Fréchet spaces, are given via the next result.

Proposition 3.1. (i) Every complemented subspace of a GDP–space is a GDP–
space.

(ii) An arbitrary product of lcHs’ is a GDP–space if and only if each factor is
a GDP–space.

Proof. (i) Concerning the DP–property, see [21, p.635]. The proof of the Grothen-
dieck property for Fréchet spaces, as given in [12, Lemma 2.1(iv)], is valid in a
general lcHs.
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(ii) For the DP–property of a product space X =
∏

α∈A Xα, with each Xα

a GDP–space, we refer to [21, p.635]. Concerning the Grothendieck property,
let {u(k)}∞k=1 ⊆ X ′ be a σ(X ′, X)–null sequence. By [23, (2) p.284], X ′ =
⊕α∈AX ′

α in the canonical way. Moreover, [23, (4) p.286], implies (for the re-
spective Mackey topologies) that (X ′, µ(X ′, X)) = ⊕α∈A(X ′

α, µ(X ′
α, Xα)). Now,

{u(k)}∞k=1 is bounded in (X ′, µ(X ′, X)) because the topologies σ(X ′, X) and
µ(X ′, X) have the same bounded sets. We can then apply [23, (4) p.213] to
conclude that there exists a finite sum ⊕n

j=1X
′
α(j) such that {u(k)}∞k=1 is bounded

in ⊕n
j=1(X

′
α(j), µ(X ′

α(j), Xα(j))). In particular, if u(k) = (u(k)
α )α∈A, then the co-

ordinates u
(k)
α = 0 for all α 6∈ {α(j)}n

j=1 and k ∈ N. Since each Xα(j) is a

Grothendieck space, we have u
(k)
α(j) → 0 in (X ′

α(j), σ(X ′
α(j), X

′′
α(j))) as k → ∞. It

is the routine to conclude that u(k) → 0 in (X ′, σ(X ′, X ′′)) as k →∞.
Conversely, since each factor in a product space is a complemented subspace,

it follows from part (i) that each factor is a GDP–space whenever the product is
a GDP–space. �

Let us present an immediate application. Recall that a lcHs X is called injective
if, whenever a lcHs Y contains a closed subspace isomorphic to X, then this
subspace is complemented in Y . For Banach spaces the following fact is known,
[25, p.121]

Corollary 3.2. Every injective complete lcHs X is a GDP–space.

Proof. As a complete lcHs, X is isomorphic to a closed subspace of a product∏
α Yα of Banach spaces {Yα}α, [23, p.208]. On the other hand, each Yα is iso-

morphic to a closed subspace of `∞(Iα) for some index set Iα. So, X is isomorphic
to a closed subspace of

∏
α `∞(Iα) and hence, being injective, X is isomorphic

to a complemented subspace of
∏

α `∞(Iα). But,
∏

α `∞(Iα) is a GDP–space by
Proposition 3.1(ii) and the fact that each Banach space `∞(Iα) is a GDP–space,
[26]. Hence, X is a GDP–space by Proposition 3.1(i). �

For examples of (non–normable) injective lcHs’ we refer to [19], [20], for exam-
ple, and the references therein.

By taking any infinite sequence {Xn}∞n=1 of Banach GDP–spaces (e.g. the
classical ones listed in Section 1) and forming the product

∏∞
n=1 Xn, one can

exhibit many Fréchet GDP–spaces which are neither Montel nor Köthe echelon
spaces. The dual X ′

β of a GDP–space need not be a GDP–space, e.g. (`∞)′

contains a complemented copy of `1, which is not a GDP–space.
We now turn to an extension of the Brace–Grothendieck characterization of

the DP–property. For Banach spaces we refer to [17, p.177], [21, pp.635–636],
and for Fréchet spaces to [7, p.397].

A subset A of a lcHs X is called relatively sequentially σ(X, X ′)–compact if
every sequence in A contains a subsequence which is convergent in Xσ. Such sets
belong to B(X), [23, §24;(1)], after recalling that every sequentially compact set
in any lcHs is also countably compact, [23, p.310].

Proposition 3.3. Let X be a quasicomplete lcHs.
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(i) If X is barrelled and has the DP–property, then for every σ(X, X ′)–null
sequence {xk}∞k=1 ⊆ X and every σ(X ′, X ′′)–null sequence {x′k}∞k=1 ⊆ X ′ we have
limk→∞〈xk, x

′
k〉 = 0.

(ii) Let both X and X ′
β have the property that their relatively weakly compact

subsets are relatively sequentially weakly compact. Suppose that limk→∞〈xk, x
′
k〉 =

0 whenever {xk}∞k=1 ⊆ X is a σ(X, X ′)–null sequence and {x′k}∞k=1 ⊆ X ′ is a
σ(X ′, X ′′)–null sequence. Then X has the DP–property.

It is routine to check (but, in practice quite useful) that the condition xk → 0
for σ(X, X ′) and x′k → 0 for σ(X ′, X ′′) in part (i) can be replaced with xk → 0
for σ(X, X ′) and {x′k}∞k=1 is σ(X ′, X ′′)–convergent in X ′. For Banach spaces this
was noted in [21, (c’) p.636].

Proof. (i) Fix null sequences {xk}∞k=1 ⊆ Xσ and {x′k}∞k=1 ⊆ X ′ for σ(X ′, X ′′).
Since X is barrelled, the lcHs (X ′, σ(X ′, X ′′)) is quasicomplete, [23, (3) p. 297],
and the closed absolutely convex hull B of {0} ∪ {x′k}∞k=1 is equicontinuous and
σ(X ′, X ′′)–compact by Krein’ Theorem, [23, (4) p. 325]. Since X is quasicom-
plete, the closed absolutely convex hull A of {0} ∪ {xk}∞k=1 is σ(X, X ′)–compact,
again by Krein’s theorem. Via the discussion prior to Proposition 3.1, A is pre-
compact for the topology τΣ′ . By Grothendieck’s Theorem applied to u := I from
X to X, [21, Theorem 9.2.1], the topology σ(X, X ′) is finer on A than τΣ′ . In
particular, xk → 0 for τΣ′ as k →∞ and hence, uniformly on B. This yields that
limk→∞〈xk, x

′
k〉 = 0.

(ii) Under the given hypotheses, to conclude that X has the DP–property
it is enough to show that xk → 0 for τΣ′ as k → ∞ whenever {xk}∞k=1 ⊆ X
is a σ(X, X ′)–null sequence. To this effect, we show that the stated condition
implies that every A ∈ Σ is relatively τΣ′–countably compact and hence, is τΣ′–
precompact. So, take any sequence {xk}∞k=1 ⊆ A. Since A is σ(X, X ′)–compact,
it is sequentially σ(X, X ′)–compact (by hypothesis), and so we can select a subse-
quence {xk(j)}∞j=1 converging to some x0 ∈ X for σ(X, X ′). Then (xk(j)−x0) → 0
for σ(X, X ′) as j →∞ and hence, by the stated condition, also for τΣ′ as j →∞.
So, xk(j) → x0 for τΣ′ as j →∞ and hence, A is τΣ′–countably compact.

To complete the proof we proceed by contradiction, i.e. assume there is a
σ(X, X ′)–null sequence {xk}∞k=1 ⊆ X which does not converge to 0 for τΣ′ . Then
there exist ε > 0, a sequence k(1) < k(2) < . . . and a sequence {x′j}∞j=1 contained
in some set B ∈ Σ′ such that |〈xk(j), x

′
j〉| > ε for each j ∈ N. By hypothesis

(since (X ′
β)′ = X ′′), B is sequentially σ(X ′, X ′′)–compact and hence, there is a

subsequence {x′j(i)}
∞
i=1 of {x′j}∞j=1 and x′ ∈ X ′ such that x′j(i) → x′ for σ(X ′, X ′′)

as i →∞. Since xk(j(i)) → 0 for σ(X, X ′) as i →∞ and x′j(i) → x′ for σ(X ′, X ′′)
as i → ∞, it follows from the assumed hypotheses (in the form of the comment
prior the proof) that 〈xk(j(i)), x

′
j(i)〉 → 0 as i →∞, which is a contradiction. �

Remark 3.4. (i) The following requirements on a lcHs X ensure that X is
quasicomplete and that both X and X ′

β satisfy the hypotheses of part (ii) in
Proposition 3.3.

(a) X is a Fréchet space. The space X ′
β is then a complete (DF)–space and

the claim follows from [13, Theorem 1.1 and Example 1.2].
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(b) X is a complete (DF)–space, in which case X ′
β is a Fréchet space. Again

the claim follows from [13, Theorem 1.1 and Example 1.2].
(c) X = ind n Xn is a complete (LF)–space. According to [23, p.368] the space

is barrelled and [13, Example 1.2(A)] implies that the relatively σ(X, X ′)–
compact sets are relatively sequentially σ(X, X ′)–compact. Concerning
X ′

β , since every bounded set in X is contained and bounded in one of the
component spaces Xn, [23, (5) p.225], it follows that X ′

β = proj n(Xn)′β
and so X ′

β is a subspace of the countable product
∏

n∈N(Xn)′β . The desired
conclusion for X ′

β then follows from Proposition 5, Proposition 6 and
Theorem 11 of [13].

(ii) Suppose that X is a complete (DF)–space; see [29, p.248] for definition.
Such a space is necessarily ℵ0–barrelled, [29, Observation 8.2.2. (c)]; see [29,
p.236] for the definition of ℵ0–quasibarrelled and ℵ0–barrelled. We claim that X
has the DP–property if and only if limk→∞〈xk, x

′
k〉 = 0 for every σ(X, X ′)–null

sequence {xk}∞k=1 ⊆ X and every σ(X ′, X ′′)–null sequence {x′k}∞k=1 ⊆ X ′. Indeed,
that the validity of the stated condition on pairs of null sequences implies the
DP–property follows from part (i)-(b) above and Proposition 3.3(ii). Conversely,
suppose that X has the DP–property. We cannot apply Proposition 3.3(i) directly
as X need not be barrelled. Nevertheless, suppose that {xk}∞k=1 ⊆ X is σ(X, X ′)–
null and {x′k}∞k=1 ⊆ X ′ is σ(X ′, X ′′)–null. Then the absolutely convex hull of
{0} ∪ {x′k}∞k=1 is both σ(X ′, X ′′)–compact by Krein’s Theorem (applied in the
Fréchet space X ′

β) and equicontinuous because X is ℵ0–barrelled. The proof that
limk→∞〈xk, x

′
k〉 = 0 can then be completed as in the proof of Proposition 3.3(i).

The following technical result will be useful in the sequel.

Lemma 3.5. Let X be a barrelled lcHs which is a Grothendieck space and {Tj}∞j=1

⊆ L(X) be a sequence of pairwise commuting operators satisfying

lim
j→∞

Tj = 0 in Ls(X) (3.1)

and
lim

j→∞
(I − Tk)Tj = 0 in Lb(X), for each k ∈ N. (3.2)

Then the following assertions are valid.
(i) For each bounded sequence {xj}∞j=1 ⊆ X we have

lim
j→∞

Tjxj = 0 in Xσ.

(ii) For each σ(X ′, X)–bounded sequence {x′j}∞j=1 ⊆ X ′ we have

lim
j→∞

T t
j x

′
j = 0 in (X ′, σ(X ′, X ′′)).

Proof. (ii) Let {x′j}∞j=1 ⊆ X ′ be a σ(X ′, X)–bounded sequence. Since X is bar-
relled, the set B := {x′j}∞j=1 ⊆ X ′ is equicontinuous. For fixed x ∈ X, it follows
from (3.1) that supz′∈B |〈Tjx, z′〉| → 0 as j → ∞, that is, |〈x, T t

j x
′
j〉| → 0 as

j → ∞. This shows that limj→∞ T t
j x

′
j = 0 in (X ′, σ(X ′, X)). Since X is a

Grothendieck space, we can conclude that limj→∞ T t
j x

′
j = 0 in (X ′, σ(X ′, X ′′)).
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(i) Set Sj := I − Tj , for j ∈ N, in which case St
j ∈ L(X ′

β). By part (ii) applied
to {Sj}∞j=1 we have (in (X ′, σ(X ′, X ′′))) that

lim
j→∞

St
ju
′ = u′, u′ ∈ X ′.

Define a linear subspace H ⊆ X ′ by

H := {u′ ∈ X ′ : u′ = lim
j→∞

St
ju
′ in X ′

β}.

To show that H is closed in X ′
β , fix a net {x′α}α∈A ⊆ H such that limα∈A x′α = x′

in X ′
β . Fix B ∈ B(X). The barrelledness of X and the fact that {Tj}∞j=1 is

bounded in Ls(X) (see (3.1)) imply that {Sj}∞j=1 is equicontinuous in L(X).
Accordingly, C := B ∪ ∪∞j=1Sj(B) ∈ B(X). Since x′α → x′ in X ′

β , it follows that
there exists α(0) ∈ A such that

sup
x∈C

|〈x, (x′α − x′)〉| ≤ 1
3
, α ≥ α(0). (3.3)

For each α ≥ α(0) and z ∈ B we have, for all j ∈ N, that

|〈z, x′〉 − 〈z, St
jx
′〉|

≤ |〈z, x′〉 − 〈z, x′α〉|+ |〈z, x′α〉 − 〈z, St
jx
′
α〉|+ |〈z, St

j(x
′
α − x′)〉|

= |〈z, (x′ − x′α)〉|+ |〈z, (x′α − St
jx
′
α)〉|+ |〈Sjz, (x′α − x′)〉|

≤ 2
3

+ |〈z, (x′α − St
jx
′
α)〉|,

where (3.3) is applied twice to deduce the final inequality. In particular, for
α := α(0) we have, for all j ∈ N, that

|〈z, x′〉 − 〈z, St
jx
′〉| ≤ 2

3
+ |〈z, (x′α(0) − St

jx
′
α(0))〉|, z ∈ B.

Since x′α(0) ∈ H, there exists j(0) ∈ N such that

sup
z∈B

|〈z, (x′α(0) − St
jx
′
α(0))〉| ≤

1
3
, j ≥ j(0).

This shows that {x′−St
jx
′}∞j=j(0) ⊆ B◦ (the polar of B). It follows that St

jx
′ → x′

in X ′
β as j →∞, i.e., x′ ∈ H.

Next we show that ∪∞k=1S
t
k(X

′) ⊆ H. So, fix any k ∈ N. By (3.2) we have

lim
j→∞

TjSk = lim
j→∞

SkTj = 0 in Lb(X).

In particular, for each x′ ∈ X ′, we have limj→∞ x′ ◦ (TjSk) = 0 in X ′
β or, equiva-

lently, that limj→∞ St
kT

t
j x

′ = 0 in X ′
β . It follows, for any x′ ∈ X ′, that

lim
j→∞

St
j(S

t
kx

′) = lim
j→∞

St
k(I − T t

j )x
′ = St

kx
′ − lim

j→∞
St

kT
t
j x

′ = St
kx

′

with the limits taken in X ′
β . This shows that St

kx
′ ∈ H, for each x′ ∈ X ′, i.e.

St
k(X

′) ⊆ H.
For each x′ ∈ X ′, it follows from (ii) that

x′ = lim
j→∞

St
jx
′
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in (X ′, σ(X ′, X ′′)), with {St
jx
′}∞j=1 ⊆ H because of ∪∞k=1S

t
k(X

′) ⊆ H. Accord-
ingly, H is dense in (X ′, σ(X ′, X ′′)). On the other hand, H is closed in X ′

β and
both σ(X ′, X ′′) and β(X ′, X) are topologies for the dual pairing (X ′, X ′′), which
implies that H = X ′. In particular, in X ′

β we have x′ = limj→∞ St
jx
′, for each

x′ ∈ X ′, that is, limj→∞ T t
j x

′ = 0, for each x′ ∈ X ′.
To complete the proof, let {xj}∞j=1 be any bounded sequence in X and set

D := {xj}∞j=1 ∈ B(X). Fix x′ ∈ X ′. Since limj→∞ T t
j x

′ = 0 in X ′
β we get

lim
j→∞

sup
z∈D

|〈z, T t
j x

′〉| = 0

and hence, in particular, that 0 = limj→∞ |〈xj , T
t
j x

′〉| = limj→∞ |〈Tjxj , x
′〉|. This

shows that limj→∞ Tjxj = 0 in Xσ, as required. �

Remark 3.6. Lemma 3.5 is an extension of Proposition 4.1 in [12]. Indeed, let
{Pn}∞n=1 ⊆ L(X) be any Schauder decomposition. Set Tj := (I − Pj), for j ∈ N,
in which case Tj → 0 in Ls(X) as j → ∞, i.e., (3.1) holds. Moreover, for k ∈ N
fixed we have

(I − Tk)Tj = Pk(I − Tj) = Pk − PkPj = 0, j ≥ k,

and so (3.2) also holds.
The proof of Lemma 3.5 is based on methods introduced by H.P. Lotz, [25, §3].

The following notion is due to J.C. Díaz and M.A. Miñarro, [15, p.194]. A
Schauder decomposition {Pn}∞n=1 in a lcHs X is said to have property (M) if
Pn → I in Lb(X) as n → ∞. Since every non-zero projection P in a Banach
space satisfies ‖P‖ ≥ 1, it is clear that no Schauder decomposition in any Banach
space can have property (M). For non-normable spaces the situation is quite
different. For instance, if X is a Fréchet Montel space (resp. Fréchet GDP–space,
which is a larger class of spaces; see [12]), then every Schauder decomposition
in X has property (M); see [15] (resp. [12, Proposition 4.2]). The next result
significantly extends these classes of spaces. First a useful observation (see [12,
Remark 2.2] for Fréchet spaces).

Remark 3.7. Every Montel lcHs X is a GDP–space. Indeed, since X is reflexive,
[23, (1) p.369], it is surely a Grothendieck space. That every Montel space has the
DP–property is known, [21, Example 9.4.2]. Actually, it was already noted above,
[21, Example 9.4.2], that a lcHs X is Montel if and only if it is semireflexive and
has the DP–property.

Proposition 3.8. Let X be any quasicomplete, barrelled lcHs and {Pn}∞n=1 ⊆
L(X) be a Schauder decomposition of X.

(i) If X is a GDP–space, then {Pn}∞n=1 has property (M).
(ii) If X is a GDP–space, then {P t

n}∞n=1 ⊆ L(X ′
β) is a Schauder decomposition

of X ′
β with property (M). In particular, {Pn}∞n=1 is a shrinking Schauder

decomposition of X.
(iii) Suppose that {Pn}∞n=1 has property (M) and that each complemented sub-

space Qn(X) of X, where Qn := Pn − Pn−1 with P0 := 0 for n ∈ N, is a
Grothendieck space (resp. has the DP–property, resp. is Montel). Then X
is also a Grothendieck space (resp. has the DP–property, resp. is Montel).
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Proof. (i) We proceed with a contradiction argument as in the proof of Proposition
4.2 in [12]. Setting Tn := I − Pn, for n ∈ N, it follows from that proof that there
exist p ∈ ΓX and B ∈ B(X), an ε > 0, and an increasing sequence n(k) ↗∞ in
N together with sequences {x′k}∞k=1 ⊆ X ′ and {xk}∞k=1 ⊆ B such that |〈x, x′k〉| ≤
p(x), for all x ∈ X, and

|〈Tn(k)xk, T
t
n(k)x

′
k〉| > ε, k ∈ N. (3.4)

We check the hypotheses of Lemma 3.5. Clearly, the sequence {Tn(k)}∞k=1 is
pairwise commuting. Since Pn → I in Ls(X) as n → ∞, it is clear that (3.1)
is satisfied. The condition (3.2) follows from Remark 3.6. So, Lemma 3.5 does
indeed apply and hence, limk→∞ Tn(k)xk = 0 in Xσ (since {xn(k)}∞k=1 ⊆ B is
a bounded sequence). Moreover, the equicontinuity of {x′k}∞k=1 ⊆ X ′ implies
that {x′k}∞k=1 is σ(X ′, X)–bounded and hence, part (ii) of Lemma 3.5 implies
that limk→∞ T t

n(k)x
′
k = 0 in (X ′, σ(X ′, X ′′)). According to Proposition 3.3(i), the

DP–property of X implies that limk→∞〈Tn(k)xk, T
t
n(k)x

′
k〉 = 0 which contradicts

(3.4). So, Pn → I in Lb(X) as n →∞.
(ii) According to [24, p.134] we have {P t

n}∞n=1 ⊆ L(X ′
β). Part (i) ensures that

Pn → I in Lb(X) and hence, by Lemma 2.1, P t
n → I in Lb(X ′

β). So, {P t
n}∞n=1 is

a Schauder decomposition of X ′
β with property (M). In particular, P t

nx′ → x′ in
X ′

β for each x′ ∈ X ′, i.e., {Pn}∞n=1 is a shrinking Schauder decomposition of X.
(iii) Suppose first that each Qn(X), for n ∈ N, is a Grothendieck space. Fix

x′′ ∈ X ′′. We claim that

lim
n→∞

(I − P tt
n )x′′ = 0 in (X ′

β)′β . (3.5)

To see this, fix B ∈ B(X ′
β). Then

W := {S ∈ L(X ′
β) : |〈Sv′, x′′〉| ≤ 1, ∀v′ ∈ B}

is a 0–neighbourhood in Lb(X ′
β). Since (I − P t

n) → 0 in Lb(X ′
β) as n → ∞ (see

Lemma 2.1), there is m ∈ N such that (I − P t
n) ∈ W for all n ≥ m. That is, for

all v′ ∈ B and n ≥ m we have

|〈v′, (I − P tt
n )x′′〉| = |〈(I − P t

n)v′, x′′〉| ≤ 1.

This shows that (I − P tt
n )x′′ ∈ B◦ for n ≥ m, i.e., limn→∞(I − P tt

n )x′′ = 0 in
(X ′

β)′β , as claimed.
Let {x′k}∞k=1 ⊆ X ′ be any sequence such that x′k → 0 in (X ′, σ(X ′, X)) as

k →∞. Since X is barrelled, the sequence {x′k}∞k=1 is bounded in X ′
β . So, (3.5)

implies that for every ε > 0 there is m ∈ N with

|〈x′k, (I − P tt
n )x′′〉| < ε, k ∈ N, n ≥ m.

It follows, for each k ∈ N, that

|〈x′k, x′′〉| ≤ |〈x′k, (I − P tt
m)x′′〉|+ |〈x′k, P tt

mx′′〉| ≤ ε + |〈x′k, P tt
mx′′〉|.

Setting Em := Pm(X), we have that the restriction P t
m : (Em)′β → X ′

β is con-
tinuous and hence, x′′ ◦ P t

m : (Em)′β → C is continuous, i.e., P tt
mx′′ ∈ ((Em)′β)′β .

But, Em is a Grothendieck space (c.f. proof of (i) of Proposition 3.1) and the
restrictions x′k|Em → 0 in (E′

m, σ(E′
m, Em)) as k → ∞. Accordingly, x′k|Em → 0

in (E′
m, σ(E′

m, E′′
m)) as k → ∞. This implies that lim supk |〈x′k, x′′〉| ≤ ε. Since
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ε > 0 is arbitrary, we have 〈x′k, x′′〉 → 0 as k →∞. Hence, X is a Grothendieck
space.

Next assume that Qn(X) has the DP–property for each n ∈ N. Fix any
operator T ∈ L(X, Y ), with Y a Banach space, which maps bounded sets in
X into σ(Y, Y ′)–compact sets in Y . Let B ⊆ X be any σ(X, X ′)–compact set.
Given ε > 0 there exists a 0–neighbourhood U ⊆ X with T (U) ⊆ εBY , where
BY is the closed unit ball of Y . Since limn→∞(I − Pn) = 0 in Lb(X), there is
n(0) ∈ N such that (I − Pn(0))(B) ⊆ U . Then

T (B) ⊆ T (Pn(0)(B)) + T ((I − Pn(0))(B)) ⊆ T (Pn(0)(B)) + εBY . (3.6)

Clearly Pn(0)(B) is weakly compact in En(0) := Pn(0)(X). Moreover, En(0) has
the DP–property since it is the direct sum (hence, also product) of finitely many
spaces Qn(X), for 1 ≤ n ≤ n(0), each one with the DP–property, [21, p.635].
Hence, T (Pn(0)(B)) is relatively compact in Y and it follows from (3.6) and
Lemma 2.2 that T (B) is precompact (hence, relatively compact) in Y . It fol-
lows that X has the DP–property.

Finally, assume that each Qn(X), for n ∈ N, is Montel. Fix B ∈ B(X).
Since X is quasicomplete, it suffices to show that B is precompact. Let U be
a 0–neighbourhood in X. Since Pn → I in Lb(X), there is m ∈ N such that
(I − Pm)(B) ⊆ U . On the other hand, Pm(B) ⊆

∑m
j=1 Qj(B). Since Qj(B) is

bounded in the Montel space Qj(X), it follows that Qj(B) is relatively compact
in Qj(X), for each 1 ≤ j ≤ m and hence, also in X. It follows that Pm(B) is
relatively compact. Since B ⊆ Pm(B) + U , it follows from Lemma 2.2 that B is
precompact. �

Remark 3.9. (i) For X a Fréchet space, that part of (iii) in Proposition 3.8
which states if each Qn(X), n ∈ N, is Montel, then X is Montel, is known, [15,
Proposition 4].

(ii) Suppose that X is quasicomplete, barrelled GDP–space which admits a
Schauder decomposition {Pn}∞n=1 (necessarily with property (M) by Proposition
3.8(i)) such that each space Qn(X), with Qn := Pn − Pn−1 for n ≥ 1, is finite
dimensional. Then X is a Montel space; see Proposition 3.8(iii). In particular,
every quasicomplete barrelled GDP–space with a Schauder basis is Montel.

Let X = ind n Xn be a countable inductive limit of lcHs’ with canonical inclu-
sions jn : Xn → X, for each n ∈ N. Recall that X is quasi–regular if for every
B ∈ B(X) there exist m ∈ N and C ∈ B(Xm) such that B ⊆ C, where the
closure C of C is taken in X, [16]. If every bounded subset of X is contained
and bounded in a step Xm, for some m ∈ N, then X is called regular, [29]. Ev-
ery (LB)–space X = ind n Xn is quasi–regular; this follows from [29, Corollary
8.3.19]. If X is quasi–regular, then X ′

β = proj n(Xn)′β , where the projective limit
is formed with respect to the linking maps jt

n : X ′ → X ′
n; see, for example, [23,

§22.6 and 22.7], [16]. In particular, if X is a quasi–regular (LF)–space, then every
relatively weakly compact subset of X ′

β is relatively sequentially weakly compact,
[13, Propositions 5 and 6, Theorem 11]. The following result is a reformulation
of [8, Proposition 22].

Lemma 3.10. Let X be a ℵ0–barrelled lcHs such that every relatively weakly
compact subset of X ′

β is relatively sequentially weakly compact. Then X is a
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Grothendieck space if and only if every operator T ∈ L(X, c0) maps bounded
subsets of X to relatively weakly compact subsets of c0.

We can now establish a useful fact concerning inductive limits.

Proposition 3.11. Let X = ind n Xn be a quasi–regular (LF)–space such that
each Fréchet space Xn, for n ∈ N, is a Grothendieck space. Then X is also a
Grothendieck space.

Proof. Let T ∈ L(X, c0) and B ∈ B(X). Since X is quasi–regular, there exist
m ∈ N and C ∈ B(Xm) such that B ⊆ C, with the closure of C formed in X.
The restriction S := T |Xm belongs to L(Xm, c0). Since Xm is a Grothendieck
space, the set T (C) = S(C) is relatively weakly compact in c0. Moreover, T (B) ⊆
T (C) ⊆ T (C) and so T (B) is also relatively weakly compact in c0. Observing
that Lemma 3.10 can be applied to the (barrelled) quasi–regular (LF)–space X,
since X ′

β = proj n(Xn)′β satisfies the required hypothesis, we can conclude that
X is a Grothendieck space. �

For the DP–property of inductive limits we have the following result.

Proposition 3.12. Let X = ind n Xn be an (LF)–space which satisfies:
(3.7) Every weakly compact subset of X is contained and weakly compact in

some step Xm.
If each Fréchet space Xn, for n ∈ N, has the DP–property, then also X has the
DP–property.

Proof. Let Y be any Banach space and T ∈ L(X, Y ) transform bounded subsets of
X into relatively weakly compact subsets of Y . Fix a weakly compact set A ⊆ X.
By (3.7) there exists m ∈ N such that A ⊆ Xm and A is weakly compact in Xm.
Since the restriction T |Xm of T to Xm maps bounded sets of Xm to relatively
weakly compact subsets of Y and Xm has the DP–property, it follows that T (A)
is relatively weakly compact in Y . Accordingly, X has the DP–property. �

Remark 3.13. (i) Every (LF)–space X = ind n Xn satisfying (3.7) is necessarily
regular. To see this, let {xk}∞k=1 ⊆ X be a σ(X, X ′)–null sequence. Then it
suffices to show that {xk}∞k=1 is contained and σ(Xm, X ′

m)–null in some step
Xm; the conclusion will then follow from [30, Theorem 1]. But, since A :=
{0}∪{xk}∞k=1 is weakly compact in X, (3.7) ensures that there is m ∈ N such that
A ⊆ Xm and A is σ(Xm, X ′

m)–compact. As the topology σ(Xm, X ′
m) restricted

to A is finer that σ(X, X ′) restricted to A and the latter topology is Hausdorff,
the two topologies coincide on A. Hence, limk→∞ xk = 0 for σ(Xm, X ′

m).
(ii) An (LF)–space X = ind n Xn is said to satisfy (Retakh’s) condition (M0)

if there exists an increasing sequence {Un}∞n=1 of absolutely convex 0–neighbour-
hoods Un in Xn such that for each n ∈ N there exists m(n) > n with the
property that the topologies σ(X, X ′) and σ(Xm(n), X

′
m(n)) coincide on Un. A

relevant reference for condition (M0) is [34]. An (LF)–space satisfying condition
(M0) need not be quasi–regular, [16]. On the other hand, if a regular (LF)–space
satisfies condition (M0), then it necessarily possesses the property (3.7). To see
this, let A ⊆ X be σ(X, X ′)–compact. By regularity of X there exists n ∈ N
such that A ⊆ Xn and A ∈ B(Xn). According to condition (M0) there exists
m(n) > n and a 0–neighbourhood Wn in Xn such that the topologies σ(X, X ′)
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and σ(Xm(n), X
′
m(n)) agree on Wn. Select λ > 0 such that λA ⊆ Wn and note

that λA is σ(X, X ′)–compact as A is. Accordingly, λA (and, hence also A) is
σ(Xm(n), X

′
m(n))–compact, i.e., (3.7) is valid.

There is a condition which is more restrictive than (M0) but, has the advantage
in practice that it is easier to verify. Namely, an (LF)–space X = ind n Xn

satisfies (Retakh’s) condition (M) if there exists an increasing sequence {Un}∞n=1

of absolutely convex 0–neighbourhoods Un in Xn such that for each n ∈ N there
exists m(n) > n with the property that X and Xm(n) induce the same topology
on Un. It is known that an (LF)–space X = ind n Xn satisfies condition (M) if
and only if it is sequentially retractive, i.e., every convergent sequence in X is
convergent in some step Xm, [36].

(iii) A regular co–echelon space k∞(V ) = ind n `∞(vn) of order infinity satisfies
condition (M0) if and only if it satisfies condition (M), [5], which in turn is
equivalent to the defining sequence V = (vn) being regularly decreasing. Co–
echelon spaces of the form k∞(V ) will be treated in more detail later. �

Since every (LF)–space satisfying (3.7) is regular (c.f. Remark 3.13(i)), the
following fact is a consequence of Propositions 3.11 and 3.12.

Proposition 3.14. Let X = ind n Xn be an (LF)–space satisfying property (3.6).
If all the Fréchet spaces Xn, for n ∈ N, are GDP–spaces, then X is also a GDP–
space.

An immediate consequence is the following result.

Corollary 3.15. Let {Xn}∞n=1 be a sequence of Fréchet spaces. Then the lc–
direct sum X = ⊕∞n=1Xn is a GDP–space if and only if each Xn, for n ∈ N, is a
GDP–space.

Proof. Each space Xn is complemented in X, for n ∈ N. Moreover, X =
ind n⊕n

j=1Xj is a strict (LF)–space and hence, has property (3.6). Indeed, if
A ⊆ X is weakly compact, then A ∈ B(X) and hence, A ⊆ ⊕m

j=1Xj for some
m ∈ N. Since X induces the given topology on ⊕m

j=1Xj , it follows that A is
weakly compact in ⊕m

j=1Xj . �

Let us discuss another application of Proposition 3.14. Let Ω denote either
D := {z ∈ C : |z| > 1} or C and let a = 1 or a = ∞, respectively. A radial weight
is a continuous, non–increasing function v : Ω → (0,∞) such that v(z) = v(|z|)
for each z ∈ Ω and limr→a rmv(r) = 0 for all m ≥ 0 (for Ω = D this condition is
limr→1 v(r) = 0). Given such a weight, the space of holomorphic functions

Hv(Ω) := {f ∈ H(Ω) : ‖f‖v := sup
z∈Ω

v(z)|f(z)| < ∞}

is a Banach space when endowed with the norm ‖ · ‖v. W. Lusky showed that
Hv(Ω) is isomorphic to either `∞ or to the Hardy space H∞(D), [27]. In partic-
ular, Hv(Ω) is always a GDP–space.

Let V := {vn}∞n=1 be any decreasing sequence of strictly positive radial weights
on Ω and consider the weighted inductive limit VH(Ω) := ind nHvn(Ω). It follows
from results in [2] that VH(Ω) is a complete (LB)–space. The sequence V is called
regularly decreasing if for each n ∈ N there is m(n) ≥ n such that for all ε > 0
and k ≥ m(n) there is a δ > 0 such that vk ≥ δvn pointwise on Ω whenever
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vm(n) ≥ εvn pointwise on Ω. In this case VH(Ω) is a sequentially retractive
(LB)–space, [2, Theorem 2.3], and hence, it satisfies (3.7); see Remark 3.13(ii).
As a consequence of Proposition 3.14 we have the following result.

Corollary 3.16. Let Ω denote either D or C and V = {vn}∞n=1 be a decreasing
sequence of radial weights on Ω which is regularly decreasing. Then the weighted
(LB)–space VH(Ω) = ind nHvn(Ω) of holomorphic functions is a GDP–space.

Recall that a spectral measure in a lcHs X is a multiplicative map P : Σ →
L(X), defined on a σ–algebra Σ of subsets of a non–empty set Ω, which satisfies
P (Ω) = I and is σ–additive in Ls(X). If, in addition, P is σ–additive in Lb(X),
then P is called boundedly σ–additive. It is known that every spectral measure
in a Fréchet GDP–space (hence, in every Fréchet Montel space) is necessarily
boundedly σ–additive; see Proposition 4.3 of [12]. An examination of the proof
given in [12] shows that it can be adapted (by using Propositions 3.1(i) and 3.8(i)
above at the appropriate stage) to yield the following extension.

Proposition 3.17. Let X be any quasicomplete, barrelled lcHs which is a GDP–
space. Then every spectral measure in X is necessarily boundedly σ–additive.

For examples of spectral measures in classical spaces, some of which are bound-
edly σ–additive and others which are not, we refer to [9], [10], [11], [12], [32], [33],
for example.

The following result is an extension of Proposition 4.2 in [1], where it is for-
mulated for Fréchet spaces. However, an examination of the proof shows that
the metrizability of X is not necessary, in that the topology of X need not be
given by a sequence of continuous seminorms and the use of [35, Proposition 2.3]
applies in general spaces.

Proposition 3.18. Let X be a quasicomplete, barrelled lcHs. Suppose that there
exists a spectral measure in X which fails to be boundedly σ–additive. Then X
admits an unconditional Schauder decomposition without property (M).

For explicit examples of spaces which admit spectral measures which fail to be
boundedly σ–additive we refer to Remark 4.3 in [1].

Unconditional Schauder decompositions are of particular interest in non–nor-
mable GDP–spaces (in GDP–Banach spaces they do not exist). It was shown in
[12, Proposition 3.1] that every Fréchet Köthe echelon space λ∞(A) of infinite
order is a GDP–space and, under certain conditions on the Köthe matrix A,
that λ∞(A) admits unconditional Schauder decompositons, [12, Proposition 4.4].
Further examples can now be exhibited. For example, let X =

∏∞
n=1 Xn be any

countable product of Fréchet GDP–spaces Xn, for n ∈ N, in which case X is also
a Fréchet GDP–space. Define a continuous projection Qj ∈ L(X) by Qjx :=
(0, . . . , 0, xj , 0, . . .) for x = (xn) ∈ X, where xj is in position j, for each j ∈ N,
and set Pn :=

∑n
j=1 Qj for n ∈ N. Then {Pn}∞n=1 is a Schauder decomposition

of X. Moreover, for a fixed x ∈ X, it is routine to verify that
∑∞

n=1 Qn is
unconditionally convergent to x in Xσ and hence, by the Orlicz–Pettis theorem,
also in X. Accordingly, {Pn}∞n=1 is an unconditional Schauder decomposition
of X. Since X always contains a complemented copy of the Fréchet sequence
space ω =

∏∞
n=1 C, other unconditional Schauder decompositions also exist in X.

Or, consider the lc–direct sum X = ⊕∞n=1Xn of Fréchet GDP–spaces. Again the
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coordinate projections generate an unconditional Schauder decomposition of the
(non–metrizable) GDP–space X.

4. Co–echelon spaces.

In the final section we make a detailed investigation of co–echelon spaces from
the viewpoint of GDP–spaces. For Köthe echelon spaces such an analysis was
undertaken in [12].

In this section, I will always denote a fixed countable index set and A = (an)n∈N
an increasing sequence of functions an : I → (0,∞), which is called a Köthe matrix
on I. Corresponding to each p ∈ {0} ∪ [1,∞] we associate the spaces

λp(A) :=

x = (x(i))i∈I ∈ CI : q(p)
n (x) =

(∑
i∈I

(an(i)|x(i)|)p

)1/p

< ∞,∀n ∈ N


λ∞(A) :=

{
x = (x(i))i∈I ∈ CI : q(∞)

n (x) = sup
i∈I

an(i)|x(i)| < ∞,∀n ∈ N
}

λ0(A) :=
{
x = (x(i))i∈I ∈ CI : anx ∈ c0(I),∀n ∈ N

}
,

with the last space being endowed with the topology induced by λ∞(A). The
spaces λp(A) are called (Köthe) echelon spaces of order p; they are Fréchet spaces
relative to the sequence of seminorms {q(p)

n }∞n=1 for p ∈ {0} ∪ [1,∞].
For a Köthe matrix A = (an)∞n=1, let V = (vn)∞n=1 with vn := 1/an for n ∈ N,

and set

kp(V ) =: ind
n

`p(vn), p ∈ [1,∞], and k0(V ) := ind
n

c0(vn),

where `p(vn) ⊆ CI and c0(vn) ⊆ CI are the usual (weighted) Banach spaces, for
n ∈ N. So, kp(V ) is the increasing union ∪∞n=1`

p(vn) (resp. ∪∞n=1c0(vn)) endowed
with the strongest lc–topology under which the natural injection of each of the
Banach spaces `p(vn) (resp. c0(vn)), for n ∈ N, is continuous. The spaces kp(V )
are called co–echelon spaces of order p. The natural map k0(V ) → k∞(V ) is
clearly continuous but, it is even a topological isomorphism into k∞(V ). For a
systematic treatment of echelon and co–echelon spaces see [3].

Given any decreasing sequence V = (vn)∞n=1 of strictly positive functions on
I (or for the corresponding Köthe matrix A = (an)∞n=1 with an := 1/vn) we
introduce

V :=
{

v = (v(i))i∈I ∈ [0,∞)I : sup
i∈I

v(i)
vn(i)

= sup
i∈I

an(i)v(i) < ∞, ∀n ∈ N
}

.

Since I is countable, the system V always contains strictly positive functions.
Next, associated with V is the family of spaces

Kp(V ) := proj
v∈V

`p(v), p ∈ [1,∞], and K0(V ) := proj
v∈V

c0(v).

These spaces are equipped with the complete lc–topology given by the collection
of seminorms

q
(p)
v (x) :=

(∑
i∈I

(v(i)|x(i)|)p

)1/p

, 1 ≤ p < ∞, and q
(∞)
v (x) := sup

i∈I
v(i)|x(i)|,
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for each v ∈ V . For 1 ≤ p < ∞ it is known that kp(V ) equals to Kp(V ) as
vector spaces and also topologically. In particular, the inductive limit topology is
given by the system of seminorms {q(p)

v : v ∈ V } and kp(V ) is always complete.
Moreover, K0(V ) is the completion of k0(V ) and the inductive limit topology
of k0(V ) is given by the system of seminorms {q(∞)

v : v ∈ V }. However, it can
happen that k0(V ) is a proper subspace of K0(V ). Finally, k∞(V ) and K∞(V ) are
equal as vector spaces and the two spaces have the same bounded sets. Moreover,
k∞(V ) is the bornological space associated with K∞(V ) but, in general, the
inductive limit topology is genuinely stronger than the topology of K∞(V ).

Concerning duality we have (λp(A))′β = Kq(V ) and (kp(V ))′β = λq(A), where
p ∈ {0} ∪ [1,∞) with 1

p + 1
q = 1 (and q = ∞ if p = 1; q = 1 if p = 0). Also,

for 1 < p < ∞ and 1
p + 1

q = 1 or p = 0 and q = 1, we have (λp(A))′β = kq(V ).
In case 1 < p < ∞, the spaces λp(A) and kp(V ) are reflexive. The space λ0(A)
is distinguished and satisfies ((λ0(A))′β)′β = (k1(V ))′β = λ∞(A). Furthemore,
K0(V ) is a barrelled (DF)–space with (K0(V ))′β = (k0(V ))′β = λ1(A). Hence,
there is the biduality ((k0(V ))′β)′β = ((K0(V ))′β)′β = K∞(V ). The inductive dual
(λ1(A))′i = k∞(V ) and this space is complete. We point out that k∞(V ) =
(λ1(A))′β if and only if K∞(V ) = k∞(V ) if and only if λ1(A) is distinguished. For
all the above facts on echelon and co–echelon spaces we refer to [3], [6].

Proposition 4.1. Let V = (vn)∞n=1 be any decreasing sequence of strictly posi-
tive functions defined on a countable index set I and p ∈ [1,∞). The following
assertions are equivalent.

(i) kp(V ) = ind n `p(vn) is a GDP–space.
(ii) kp(V ) is a Montel space.
(iii) For every infinite set I0 ⊆ I and every n ∈ N there exists m(n) > n such

that

inf
i∈I0

vm(n)(i)
vn(i)

= 0.

Proof. (ii)⇔(iii) is well known, [3, Theorem 4.7].
(ii)⇒(i); see Remark 3.7.
(i)⇒(iii). Suppose that (iii) fails. Then there is an infinite set I0 ⊆ I and

n ∈ N such that for each m > n there exists εm > 0 satisfying vm(i) ≥ εmvn(i)
for all i ∈ I0. Consider the (complemented) sectional subspace

X0 := {x = (x(i))i∈I ∈ kp(V ) : x(i) = 0 ∀i 6∈ I0} .

If x ∈ X0, then x ∈ `p(vm) for some m > n. It follows from the previous
inequalities that ‖x‖n ≤ ε−1

m ‖x‖m, where ‖ · ‖r is the norm of `p(vr) for each
r ∈ N. Hence, X0 ⊆ `p(vn) and so we can endow X0 with the norm ‖ · ‖ induced
by `p(vn), i.e., ‖x‖ =

(∑
i∈I0

(vn(i)|x(i)|)p
)1/p. The injection j0 : X0 → kp(V ) is

continuous because the injection j̃0 : X0 → `p(vn) is continuous. Moreover, the
projection P : kp(V ) → X0 defined by Px := xχI0 , for x ∈ kp(V ), is continuous.
To see this we need to show that the restriction P : `p(vm) → X0 is continuous
for each m > n. But, this is precisely the inequality ‖Px‖ = ‖xχI0‖n ≤ ε−1

m ‖x‖m

indicated above. Accordingly, (X0, ‖ · ‖) is a Banach space which is isomorphic
to a complemented subspace of kp(V ) and also isomorphic to `p. Since `p, for
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1 ≤ p < ∞, is not a GDP–space neither is kp(V ); see Proposition 3.1(i). So, (i)
fails. �

For the notion of V = (vn)∞n=1 being regularly decreasing we refer to Section 3.

Proposition 4.2. Let V = (vn)∞n=1 be any decreasing sequence of strictly positive
functions defined on a countable index set I which is regularly decreasing. The
following assertions are equivalent.

(i) k0(V ) = ind n c0(vn) is a GDP–space.
(ii) k0(V ) is a Montel space.
(iii) For every infinite set I0 ⊆ I and every n ∈ N there exists m(n) > n such

that

inf
i∈I0

vm(n)(i)
vn(i)

= 0.

Proof. Since k0(V ) is complete and k0(V ) ' K0(V ), [3, Lemma 3.6], the equiva-
lences (ii)⇔(iii) are known; see (1)⇔(3) in [3, Theorem 4.7].

(ii)⇒(i); see Remark 3.7.
Finally, if (iii) fails to hold, then we can repeat the argument in the proof of

(i)⇒(iii) in Propositon 4.1 above to conclude that k0(V ) contains a complemented
copy of c0. Since the Banach space c0 is not a GDP–space neither is k0(V ); see
Proposition 3.1(i). �

Proposition 4.3. Let V = (vn)∞n=1 be any decreasing sequence of strictly positive
functions defined on a countable index set I which is regularly decreasing. Then
k∞(V ) = ind n `∞(vn) is a GDP–space.

Proof. Each Banach space `∞(vn) is isomorphic to `∞ and hence, is a GDP–
space. Since V is regularly decreasing, k∞(V ) = ind n `∞(vn) is sequentially
retractive, [2, Theorem 2.3]. In particular, k∞(V ) satisfies (3.6); see parts (ii)
and (iii) of Remark 3.13. So, Proposition 3.12 ensures that k∞(V ) has the DP–
property. Since k∞(V ) is an (LB)–space, the discussion prior to Lemma 3.10
implies that k∞(V ) is quasi–regular. Then Proposition 3.11 implies that k∞(V )
is a Grothendieck space. �

Observe that the proof of k∞(V ) being a Grothendieck space does not require
V to be regularly decreasing and hence, holds for arbitrary V .

Concerning the GDP–property of K∞(V ) it is possible to remove the require-
ment of regularly decreasing. To achieve this we require a technical result.

Lemma 4.4. Let V = (vn)∞n=1 be any decreasing sequence of strictly positive
functions defined on a countable index set I. For each v ∈ V there exists an
increasing sequence {Ik}∞k=1 of subsets of I such that

(i) for every k ∈ N and every n > k there exists αn,k > 0 satisfying

vk(i) ≤ αn,kvn(i), i ∈ Ik,

(ii) for every m ∈ N and every ε > 0 there exists k = k(m, ε) satisfying

v(i) ≤ εvm(i), i ∈ I \ Ik.
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Proof. Fix v ∈ V . By definition of V we can select, for each n ∈ N, a constant
Mn ≥ 1 with v ≤ Mnvn pointwise on I. Set βk := 2kMk ≥ 2k, for each k ∈ N,
and define (possibly some empty) subsets of I by

J1 := ∩∞n=2{i ∈ I : vn−1(i) ≤ βnvn(i)}

and

Jk := (∩s>k{i ∈ I : vs−1(i) ≤ βsvs(i)}) ∩ {i ∈ I : vk−1(i) > βkvk(i)},

for k ≥ 2. Then the sets {Jk}∞k=1 are pairwise disjoint and, from their definition
it follows, for each k ∈ N, that

vk(i) ≤ (βk+1 . . . βl)vl(i), i ∈ Jk, ∀l > k. (4.1)

Set Ik := ∪k
s=1Js, for k ∈ N. If i ∈ Ik and n > k and 1 ≤ s ≤ k, then it follows

from (4.1) that

vk(i) ≤ vs(i) ≤ (βs+1 . . . βn)vn(i) ≤ αn,kvl(i),

where αn,k := (βk+1 . . . βn). Then (i) is clear.
Now, fix i 6∈ ∪∞k=1Jk. Since i 6∈ J1 there is n(1) ∈ N with

vn(1)−1(i) > βn(1)vn(1)(i). (4.2)

As i 6∈ Jn(1) and (4.2) holds, there is n(2) > n(1) with

vn(2)−1(i) > βn(2)vn(2)(i).

Proceeding by induction, we can select n(1) < n(2) < . . . < n(k) < . . . such that,
for each k ∈ N, we have

vn(k)−1(i) > βn(k)vn(k)(i).

In particular, as V is decreasing, it follows that

v1(i) > βn(k)vn(k)(i), k ∈ N.

So, for each k ∈ N, we have

2n(k)v(i) ≤ 2n(k)Mn(k)vn(k)(i) = βn(k)vn(k)(i) < v1(i).

That is, v(i) < 2−n(k)v1(i) for each k ∈ N which implies that v(i) = 0. Accord-
ingly, we have established that

v(i) = 0, i 6∈ ∪∞r=1Jr.

We can now complete the proof of (ii). Fix m ∈ N and ε > 0 and select k ∈ N
satisfying k > m and 2k > ε−1. Then, for i 6∈ Ik, either i 6∈ ∪∞r=1Jr, in which case
v(i) = 0 from above, or i ∈ Jl for some l > k. In this latter case we have

v(i) ≤ Mlvl(i) < Mlβ
−1
l vl−1(i) (as i ∈ Jl)

= 2−lvl−1(i) ≤ 2−lvm(i) (as m < k < l)
≤ 2−kvm(i) < εvm(i) (as k < l).

This establishes (ii) and the proof is thereby complete. �



18 A.A. Albanese, J. Bonet and W. J. Ricker

It should be pointed out that Lemma 4.4 implies Lemma 2.4 of [12]; see also
the discussion prior to this result in [12].

For an absolutely convex bounded subset B of a lcHs X, there is always an asso-
ciated normed space XB, [23, Section 20.11]. We recall that a sequence {Bn}∞n=1

of sets Bn ∈ B(X) is called fundamental if, for every B ∈ B(X) there exists
n ∈ N such that B ⊆ Bn. Associated with such a sequence is the bornological
space X× := ind n XBn . As vector spaces X = X× and the topology of X× is
finer than that of X. Nevertheless, X and X× have the same bounded sets. For
the definition of X× and many of its properties we refer to [29, Section 6.2].

Lemma 4.5. Let X be a complete (DF)–space with a fundamental sequence of
bounded sets {Bn}∞n=1. If the associated bornological space X× := ind n XBn,
which is an (LB)–space, is a Grothendieck space, then X is also a Grothendieck
space.

Proof. Let T ∈ L(X, c0). Since X× has a finer topology than X, we also have
T ∈ L(X×, c0). As X× is an (LB)–space, it is barrelled and a (DF)–space and so
Lemma 3.10 can be applied in X×. So, X× being a Grothendieck space, it follows
from Lemma 3.10 that T ∈ L(X×, c0) maps bounded sets of X× into relatively
weakly compact subsets of c0. But, B(X) = B(X×) and so T ∈ L(X, c0) maps
bounded sets of X into relatively weakly compact subsets of c0. By Lemma 3.10
applied in X, we conclude that X is a Grothendieck space. �

Proposition 4.6. Let V = (vn)∞n=1 be any decreasing sequence of strictly positive
functions on a countable index set I. Then K∞(V ) is a GDP–space.

Proof. It is known that K∞(V )× = k∞(V ), [6, Theorem 15(c)], with k∞(V ) =
ind n `∞(vn) an (LB)–space. By Proposition 3.11, k∞(V ) is a Grothendieck space
and so, by Lemma 4.5, K∞(V ) is also a Grothendieck space.

Concerning the DP–property, it was noted at the beginning of this section that
K∞(V ) = (λ1(A))′β , that is, K∞(V ) is a complete (DF)–space. So, it suffices to
show that if xj → 0 weakly in K∞(V ) and uj → 0 for σ((K∞(V ))′, (K∞(V ))′′),
then limj→∞〈xj , uj〉 = 0; see Remark 3.4(i)(b) and Remark 3.4(ii). To establish
this, first observe that {xj}∞j=1 ∈ B(K∞(V )). Since B(K∞(V )) = B(k∞(V )) with
k∞(V ) = ind n `∞(vn) an (LB)–space, there exist m ∈ N and C > 0 such that

sup
j∈N

sup
i∈I

vm(i)|xj(i)| ≤ C. (4.3)

Since {uj}∞j=1 is bounded for σ((K∞(V ))′, (K∞(V ))′′) and K∞(V ) is a complete
(DF)–space (hence, ℵ0–barrelled), it follows that {uj}∞j=1 is equicontinuous. Ac-
cordingly, choose v ∈ V such that {uj}∞j=1 ⊆ W ◦, where

W := {x ∈ K∞(V ) : sup
i∈I

v(i)|x(i)| ≤ 1}.

For this particular v we select the subsets {Ik}∞k=1 of I according to Lemma 4.4.
By (i) of that lemma, for each k ∈ N, the sectional subspace

Xk := {x ∈ K∞(V ) : x(i) = 0 ∀i 6∈ Ik}

is a Banach space isomorphic to `∞.
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Fix ε > 0. For that m ∈ N and C > 0 as given in (4.3), we select k(0) =
k(m, ε/2C) ∈ N via (ii) of Lemma 4.4 to get

v(i) ≤ ε

2C
vm(i), i 6∈ Ik(0).

For each i 6∈ Ik(0) and j ∈ N, we then have

v(i)|xj(i)| ≤ ε

2C
vm(i)|xj(i)| ≤ ε

2
.

That is, {xjχI\Ik(0)
}∞j=1 ⊆ ε

2W . Since {uj}∞j=1 ⊆ W ◦, this implies that

sup
j∈N

∣∣∣〈xjχI\Ik(0)
, uj〉

∣∣∣ ≤ ε

2
. (4.4)

Now, {xjχIk(0)
}∞j=1 is a σ(Xk(0), X

′
k(0))–null sequence in Xk(0) and the restric-

tions {uj |Xk(0)
}∞j=1 form a σ(X ′

k(0), X
′′
k(0))–null sequence in X ′

k(0). Since Xk(0) is
isomorphic to `∞, it has the DP–property and so there is j(0) ∈ N such that

sup
j≥j(0)

|〈xjχIk(0)
, uj〉| ≤ ε

2
. (4.5)

For each j ≥ j(0) we can conclude from (4.4) and (4.5) that

|〈xj , uj〉| ≤ |〈xjχIk(0)
, uj〉|+ |〈xjχI\Ik(0)

, uj〉| ≤ ε.

This shows that limj→∞〈xj , uj〉 = 0 and completes the proof. �

For the definition of a sequence V = (vn)∞n=1 (as above) satisfying condition (D)
we refer to [4], [6]. It can be shown directly that if V is regularly decreasing, then
it satisfies condition (D) but, not conversely. So, our final result is an extension
of Proposition 4.3.

Corollary 4.7. Let V = (vn)∞n=1 be any decreasing sequence of strictly positive
functions on a countable index set I such that V satisfies condition (D). Then
k∞(V ) = ind n `∞(vn) is a GDP–space.

Proof. Condition (D) implies that k∞(V ) and K∞(V ) coincide as vector spaces
and also topologically, [6, Corollary 8 and Theorem 8]. Then apply Proposition
4.6. �
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