GROTHENDIECK SPACES WITH THE DUNFORD–PETTIS PROPERTY

ANGELA A. ALBANESE^{*}, JOSÉ BONET⁺ AND WERNER J. RICKER

ABSTRACT. Banach spaces which are Grothendieck spaces with the Dunford– Pettis property (briefly, GDP) are classical. A systematic treatment of GDP– Fréchet spaces occurs in [12]. This investigation is continued here for locally convex Hausdorff spaces. The product and (most) inductive limits of GDP– space are again GDP–spaces. Also, every complete injective space is a GDP– space. For $p \in \{0\} \cup [1, \infty)$ it is shown that the classical co–echelon spaces $k_p(V)$ and $K_p(\overline{V})$ are GDP–spaces if and only if they are Montel. On the other hand, $K_{\infty}(\overline{V})$ is always a GDP–space and $k_{\infty}(V)$ is a GDP–space whenever its (Fréchet) predual, i.e., the Köthe echelon space $\lambda_1(A)$, is distinguished.

1. INTRODUCTION.

Grothendieck spaces with the Dunford–Pettis property (briefly, GDP) play a prominent role in the theory of Banach spaces and vector measures; see Ch.VI of [17], especially the Notes and Remarks, and [18]. Known examples include L^{∞} , $H^{\infty}(\mathbb{D})$, injective Banach spaces (e.g. ℓ^{∞}) and certain C(K) spaces. D. Dean showed in [14] that a GDP–space does not admit any Schauder decomposition; see also [26, Corollary 8]. This has serious consequences for spectral measures in such spaces, [31].

For non-normable spaces the situation changes dramatically. Every Fréchet Montel space X is a GDP-space, [12, Remark 2.2]. Other than Montel spaces, the only known non-normable Fréchet space which is a GDP-space is the Köthe echelon space $\lambda_{\infty}(A)$, for an arbitrary Köthe matrix A, [12, Proposition 3.1]. Moreover, such spaces often admit Schauder decompositions, even unconditional ones in the presence of the density condition, [12, Proposition 4.4].

Our aim here is to continue and expand on the investigation begun in [12]. We exhibit large classes of locally convex Hausdorff spaces (briefly, lcHs) which are GDP-spaces. Many of these admit Schauder decompositions, some even unconditional ones. The methods also exhibit new classes of Fréchet GDP-spaces which are neither Montel nor isomorphic to any space of the kind $\lambda_{\infty}(A)$. Consequences for spectral measures are also presented. In the final section we characterize those co-echelon spaces $k_p(V)$, for $p \in \{0\} \cup [1, \infty)$, which are GDP-spaces. For $p \neq \infty$,

Key words and phrases. Grothendieck space, Dunford–Pettis property, co–echelon space, Schauder decomposition.

Mathematics Subject Classification 2000: Primary 46A20, 46A45, 47B37; Secondary 46A04, 46A08, 46A13.

^{*} Support of the Alexander von Humboldt Foundation is gratefully acknowledged.

⁺ Support of the Alexander von Humboldt Foundation and MEC and FEDER Project MTM 2007-62643 (Spain) are gratefully acknowledged.

this is the case precisely when $k_p(V)$ is Montel but, for $p = \infty$, the situation is different.

2. Preliminaries.

If X is a lcHs and Γ_X is a system of continuous seminorms determining the topology of X, then the strong operator topology τ_s in the space $\mathcal{L}(X)$ of all continuous linear operators from X into itself (from X into another lcHs Y we write $\mathcal{L}(X, Y)$) is determined by the family of seminorms

$$q_x(S) := q(Sx), \quad S \in \mathcal{L}(X),$$

for each $x \in X$ and $q \in \Gamma_X$ (in which case we write $\mathcal{L}_s(X)$). Denote by $\mathcal{B}(X)$ the collection of all bounded subsets of X. The topology τ_b of uniform convergence on bounded sets is defined in $\mathcal{L}(X)$ via the seminorms

$$q_B(S) := \sup_{x \in B} q(Sx), \quad S \in \mathcal{L}(X),$$

for each $B \in \mathcal{B}(X)$ and $q \in \Gamma_X$ (in which case we write $\mathcal{L}_b(X)$). For X a Banach space, τ_b is the operator norm topology in $\mathcal{L}(X)$. If Γ_X is countable and X is complete, then X is called a Fréchet space.

By X_{σ} we denote X equipped with its weak topology $\sigma(X, X')$, where X' is the topological dual space of X. The strong topology in X (resp. X') is denoted by $\beta(X, X')$ (resp. $\beta(X', X)$) and we write X_{β} (resp. X'_{β}); see [23, §21.2] for the definition. The strong dual space $(X'_{\beta})'_{\beta}$ of X'_{β} is denoted simply by X''. By X'_{σ} we denote X' equipped with its weak-star topology $\sigma(X', X)$. Given $T \in \mathcal{L}(X)$, its dual operator $T^t \colon X' \to X'$ is defined by $\langle x, T^t x' \rangle = \langle Tx, x' \rangle$ for all $x \in X$, $x' \in X'$. It is known that $T^t \in \mathcal{L}(X'_{\sigma})$ and $T^t \in \mathcal{L}(X'_{\beta})$, [24, p.134]. The following two loggers

The following two known facts are included for ease of reading.

Lemma 2.1. Let X, Y be lcHs' with Y quasi-barrelled. Then the linear map $\Phi: \mathcal{L}_b(X, Y) \to \mathcal{L}_b(Y'_{\beta}, X'_{\beta})$ defined by $\Phi(T) := T^t$, for $T \in \mathcal{L}_b(X, Y)$, is continuous.

In particular, if X is quasi-barrelled and a sequence $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X)$ satisfies τ_b -lim_{$n\to\infty$} $T_n = T$ in $\mathcal{L}_b(X)$, then also τ_b -lim_{$n\to\infty$} $T_n^t = T^t$ in $\mathcal{L}_b(X'_{\beta})$.

Proof. A basis of 0-neighbourhoods in $\mathcal{L}_b(X, Y)$ consists of all sets of the form $W(B, U) := \{T \in \mathcal{L}(X, Y) : T(B) \subseteq U\}$ as B runs through $\mathcal{B}(X)$ and U runs through the collection $\mathcal{U}_0(Y)$ of all 0-neighbourhoods in Y.

Let $C \in \mathcal{B}(Y'_{\beta})$ and $V \in \mathcal{U}_0(X'_{\beta})$ be given. Since Y is quasi-barrelled, C is equicontinuous, [23, p.368]. So, there exist $U \in \mathcal{U}_0(Y)$ with $C \subseteq U^{\circ}$ (the polar of U) and, by definition of the topology of X'_{β} , a set $D \in \mathcal{B}(X)$ such that $D^{\circ} \subseteq V$. To complete the proof, we check that $\Phi(W(D,U)) \subseteq W(C,V)$. Fix $T \in W(D,U) \subseteq \mathcal{L}(X,Y)$, in which case $T(D) \subseteq U$. It suffices to show that $T^t(U^{\circ}) \subseteq D^{\circ}$ since this implies that $T^t(C) \subseteq V$. So, fix $y' \in U^{\circ}$ and $d \in D$. Then $|\langle d, T^t y' \rangle| = |\langle Td, y' \rangle| \leq 1$ as $Td \in U$ and $y' \in U^{\circ}$. Accordingly, $T^t y' \in D^{\circ}$ for all $y' \in U^{\circ}$.

Lemma 2.2. Let A be a subset of a lcHs X such that, for every $U \in \mathcal{U}_0(X)$, there exists a precompact set $B \subseteq X$ (depending on U) with $A \subseteq B + U$. Then A is precompact.

Proof. Fix U and B as in the statement of the lemma with $A \subseteq B + \frac{1}{2}U$. Since B is precompact, select x_1, \ldots, x_k from B such that $B \subseteq \bigcup_{j=1}^k (x_j + \frac{1}{2}U)$. It follows that $A \subseteq \bigcup_{j=1}^k (x_j + U)$. Hence, A is precompact.

A sequence $(P_n)_{n=1}^{\infty} \subseteq \mathcal{L}(X)$ is a Schauder decomposition of X if it satisfies: (S1) $P_n P_m = P_{\min\{m,n\}}$ for all $m, n \in \mathbb{N}$,

- (S2) $P_n \to I$ in $\mathcal{L}_s(X)$ as $n \to \infty$, and
- (S3) $P_n \neq P_m$ whenever $n \neq m$.

By setting $Q_1 := P_1$ and $Q_n := P_n - P_{n-1}$ for $n \ge 2$ we arrive at a sequence of pairwise orthogonal projections (i.e. $Q_n Q_m = 0$ if $n \ne m$) satisfying $\sum_{n=1}^{\infty} Q_n = I$, with the series converging in $\mathcal{L}_s(X)$. If the series is unconditionally convergent in $\mathcal{L}_s(X)$, then $\{P_n\}_{n=1}^{\infty}$ is called an *unconditional Schauder decomposition*, [28]. Such decompositions are intimately associated with (non-trivial) spectral measures; see (the proof of) [12, Proposition 4.3] and [28, Lemma 5 and Theorem 6]. If X is barrelled, then (S2) implies that $\{P_n\}_{n=1}^{\infty}$ is an equicontinuous subset of $\mathcal{L}(X)$. According to (S1) each P_n and Q_n , for $n \in \mathbb{N}$, is a projection and $Q_n \to 0$ in $\mathcal{L}_s(X)$ as $n \to \infty$. Condition (S3) ensures that $Q_n \ne 0$ for each $n \in \mathbb{N}$.

Let $\{P_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X)$ be a Schauder decomposition of X. Then the dual projections $\{P_n^t\}_{n=1}^{\infty} \subseteq \mathcal{L}(X'_{\sigma})$ always form a Schauder decomposition of X'_{σ} , [22, p.378]. If, in addition, $\{P_n^t\}_{n=1}^{\infty} \subseteq \mathcal{L}(X'_{\beta})$ is a Schauder decomposition of X'_{β} , then the original sequence $\{P_n\}_{n=1}^{\infty}$ is called *shrinking*, [22, p.379]. Since (S1) and (S3) clearly hold for $\{P_n^t\}_{n=1}^{\infty}$, this means precisely that $P_n^t \to I$ in $\mathcal{L}_s(X'_{\beta})$; see (S2).

3. GDP-spaces.

A lcHs X is called a Grothendieck space if every sequence in X' which is convergent in X'_{σ} is also convergent for $\sigma(X', X'')$. Clearly every reflexive lcHs is a Grothendieck space. A lcHs X is said to have the Dunford-Pettis property (briefly, DP) if every element of $\mathcal{L}(X, Y)$, for Y any quasicomplete lcHs, which transforms elements of $\mathcal{B}(X)$ into relatively $\sigma(Y, Y')$ -compact subsets of Y, also transforms $\sigma(X, X')$ -compact subsets of X into relatively compact subsets of Y, [21, p.633-634]. Actually, it suffices if Y runs through the class of all Banach spaces, [12, p.79]. A reflexive lcHs satisfies the DP-property if and only if it is Montel, [21, p.634]. According to [21, pp.633-634], a lcHs X has the DP-property if and only if every absolutely convex, $\sigma(X, X')$ -compact subset of X (denote all such sets by Σ) is precompact for the topology $\tau_{\Sigma'}$ of uniform convergence on the absolutely convex, equicontinuous, $\sigma(X', X'')$ -compact subsets of X' (denote all such sets by Σ). Clearly the topology $\tau_{\Sigma'}$ is finer than $\sigma(X, X')$.

Examples of GDP–spaces, beyond those given in [12] for certain kinds of non–normable Fréchet spaces, are given via the next result.

Proposition 3.1. (i) Every complemented subspace of a GDP-space is a GDP-space.

(ii) An arbitrary product of lcHs' is a GDP-space if and only if each factor is a GDP-space.

Proof. (i) Concerning the DP–property, see [21, p.635]. The proof of the Grothendieck property for Fréchet spaces, as given in [12, Lemma 2.1(iv)], is valid in a general lcHs. (ii) For the DP-property of a product space $X = \prod_{\alpha \in A} X_{\alpha}$, with each X_{α} a GDP-space, we refer to [21, p.635]. Concerning the Grothendieck property, let $\{u^{(k)}\}_{k=1}^{\infty} \subseteq X'$ be a $\sigma(X', X)$ -null sequence. By [23, (2) p.284], $X' = \bigoplus_{\alpha \in A} X'_{\alpha}$ in the canonical way. Moreover, [23, (4) p.286], implies (for the respective Mackey topologies) that $(X', \mu(X', X)) = \bigoplus_{\alpha \in A} (X'_{\alpha}, \mu(X'_{\alpha}, X_{\alpha}))$. Now, $\{u^{(k)}\}_{k=1}^{\infty}$ is bounded in $(X', \mu(X', X))$ because the topologies $\sigma(X', X)$ and $\mu(X', X)$ have the same bounded sets. We can then apply [23, (4) p.213] to conclude that there exists a finite sum $\bigoplus_{j=1}^{n} X'_{\alpha(j)}$ such that $\{u^{(k)}\}_{k=1}^{\infty}$ is bounded in $\bigoplus_{j=1}^{n} (X'_{\alpha(j)}, \mu(X'_{\alpha(j)}, X_{\alpha(j)}))$. In particular, if $u^{(k)} = (u^{(k)}_{\alpha})_{\alpha \in A}$, then the coordinates $u^{(k)}_{\alpha} = 0$ for all $\alpha \notin \{\alpha(j)\}_{j=1}^{n}$ and $k \in \mathbb{N}$. Since each $X_{\alpha(j)}$ is a Grothendieck space, we have $u^{(k)}_{\alpha(j)} \to 0$ in $(X'_{\alpha(j)}, \sigma(X'_{\alpha(j)}, X''_{\alpha(j)}))$ as $k \to \infty$. It is the routine to conclude that $u^{(k)} \to 0$ in $(X', \sigma(X', X''))$ as $k \to \infty$.

Conversely, since each factor in a product space is a complemented subspace, it follows from part (i) that each factor is a GDP–space whenever the product is a GDP–space. $\hfill \Box$

Let us present an immediate application. Recall that a lcHs X is called *injective* if, whenever a lcHs Y contains a closed subspace isomorphic to X, then this subspace is complemented in Y. For Banach spaces the following fact is known, [25, p.121]

Corollary 3.2. Every injective complete lcHs X is a GDP-space.

Proof. As a complete lcHs, X is isomorphic to a closed subspace of a product $\prod_{\alpha} Y_{\alpha}$ of Banach spaces $\{Y_{\alpha}\}_{\alpha}$, [23, p.208]. On the other hand, each Y_{α} is isomorphic to a closed subspace of $\ell^{\infty}(I_{\alpha})$ for some index set I_{α} . So, X is isomorphic to a closed subspace of $\prod_{\alpha} \ell^{\infty}(I_{\alpha})$ and hence, being injective, X is isomorphic to a complemented subspace of $\prod_{\alpha} \ell^{\infty}(I_{\alpha})$. But, $\prod_{\alpha} \ell^{\infty}(I_{\alpha})$ is a GDP–space by Proposition 3.1(ii) and the fact that each Banach space $\ell^{\infty}(I_{\alpha})$ is a GDP–space, [26]. Hence, X is a GDP–space by Proposition 3.1(i).

For examples of (non–normable) injective lcHs' we refer to [19], [20], for example, and the references therein.

By taking any infinite sequence $\{X_n\}_{n=1}^{\infty}$ of Banach GDP–spaces (e.g. the classical ones listed in Section 1) and forming the product $\prod_{n=1}^{\infty} X_n$, one can exhibit many Fréchet GDP–spaces which are neither Montel nor Köthe echelon spaces. The dual X'_{β} of a GDP–space need not be a GDP–space, e.g. $(\ell^{\infty})'$ contains a complemented copy of ℓ^1 , which is not a GDP–space.

We now turn to an extension of the Brace–Grothendieck characterization of the DP–property. For Banach spaces we refer to [17, p.177], [21, pp.635–636], and for Fréchet spaces to [7, p.397].

A subset A of a lcHs X is called *relatively sequentially* $\sigma(X, X')$ -compact if every sequence in A contains a subsequence which is convergent in X_{σ} . Such sets belong to $\mathcal{B}(X)$, [23, §24;(1)], after recalling that every sequentially compact set in any lcHs is also countably compact, [23, p.310].

Proposition 3.3. Let X be a quasicomplete lcHs.

(i) If X is barrelled and has the DP-property, then for every $\sigma(X, X')$ -null sequence $\{x_k\}_{k=1}^{\infty} \subseteq X$ and every $\sigma(X', X'')$ -null sequence $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ we have $\lim_{k\to\infty} \langle x_k, x'_k \rangle = 0$.

(ii) Let both X and X'_{β} have the property that their relatively weakly compact subsets are relatively sequentially weakly compact. Suppose that $\lim_{k\to\infty} \langle x_k, x'_k \rangle =$ 0 whenever $\{x_k\}_{k=1}^{\infty} \subseteq X$ is a $\sigma(X, X')$ -null sequence and $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ is a $\sigma(X', X'')$ -null sequence. Then X has the DP-property.

It is routine to check (but, in practice quite useful) that the condition $x_k \to 0$ for $\sigma(X, X')$ and $x'_k \to 0$ for $\sigma(X', X'')$ in part (i) can be replaced with $x_k \to 0$ for $\sigma(X, X')$ and $\{x'_k\}_{k=1}^{\infty}$ is $\sigma(X', X'')$ -convergent in X'. For Banach spaces this was noted in [21, (c') p.636].

Proof. (i) Fix null sequences $\{x_k\}_{k=1}^{\infty} \subseteq X_{\sigma}$ and $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ for $\sigma(X', X'')$. Since X is barrelled, the lcHs $(X', \sigma(X', X''))$ is quasicomplete, [23, (3) p. 297], and the closed absolutely convex hull B of $\{0\} \cup \{x'_k\}_{k=1}^{\infty}$ is equicontinuous and $\sigma(X', X'')$ -compact by Krein' Theorem, [23, (4) p. 325]. Since X is quasicomplete, the closed absolutely convex hull A of $\{0\} \cup \{x_k\}_{k=1}^{\infty}$ is $\sigma(X, X')$ -compact, again by Krein's theorem. Via the discussion prior to Proposition 3.1, A is precompact for the topology $\tau_{\Sigma'}$. By Grothendieck's Theorem applied to u := I from X to X, [21, Theorem 9.2.1], the topology $\sigma(X, X')$ is finer on A than $\tau_{\Sigma'}$. In particular, $x_k \to 0$ for $\tau_{\Sigma'}$ as $k \to \infty$ and hence, uniformly on B. This yields that $\lim_{k\to\infty} \langle x_k, x'_k \rangle = 0$.

(ii) Under the given hypotheses, to conclude that X has the DP-property it is enough to show that $x_k \to 0$ for $\tau_{\Sigma'}$ as $k \to \infty$ whenever $\{x_k\}_{k=1}^{\infty} \subseteq X$ is a $\sigma(X, X')$ -null sequence. To this effect, we show that the stated condition implies that every $A \in \Sigma$ is relatively $\tau_{\Sigma'}$ -countably compact and hence, is $\tau_{\Sigma'}$ precompact. So, take any sequence $\{x_k\}_{k=1}^{\infty} \subseteq A$. Since A is $\sigma(X, X')$ -compact, it is sequentially $\sigma(X, X')$ -compact (by hypothesis), and so we can select a subsequence $\{x_{k(j)}\}_{j=1}^{\infty}$ converging to some $x_0 \in X$ for $\sigma(X, X')$. Then $(x_{k(j)} - x_0) \to 0$ for $\sigma(X, X')$ as $j \to \infty$ and hence, by the stated condition, also for $\tau_{\Sigma'}$ as $j \to \infty$. So, $x_{k(j)} \to x_0$ for $\tau_{\Sigma'}$ as $j \to \infty$ and hence, A is $\tau_{\Sigma'}$ -countably compact.

To complete the proof we proceed by contradiction, i.e. assume there is a $\sigma(X, X')$ -null sequence $\{x_k\}_{k=1}^{\infty} \subseteq X$ which does not converge to 0 for $\tau_{\Sigma'}$. Then there exist $\varepsilon > 0$, a sequence $k(1) < k(2) < \ldots$ and a sequence $\{x'_j\}_{j=1}^{\infty}$ contained in some set $B \in \Sigma'$ such that $|\langle x_{k(j)}, x'_j \rangle| > \varepsilon$ for each $j \in \mathbb{N}$. By hypothesis (since $(X'_{\beta})' = X''$), B is sequentially $\sigma(X', X'')$ -compact and hence, there is a subsequence $\{x'_{j(i)}\}_{i=1}^{\infty}$ of $\{x'_j\}_{j=1}^{\infty}$ and $x' \in X'$ such that $x'_{j(i)} \to x'$ for $\sigma(X', X'')$ as $i \to \infty$. Since $x_{k(j(i))} \to 0$ for $\sigma(X, X')$ as $i \to \infty$ and $x'_{j(i)} \to x'$ for $\sigma(X', X'')$ as $i \to \infty$, it follows from the assumed hypotheses (in the form of the comment prior the proof) that $\langle x_{k(j(i))}, x'_{j(i)} \rangle \to 0$ as $i \to \infty$, which is a contradiction. \Box

Remark 3.4. (i) The following requirements on a lcHs X ensure that X is quasicomplete and that both X and X'_{β} satisfy the hypotheses of part (ii) in Proposition 3.3.

(a) X is a Fréchet space. The space X'_{β} is then a complete (DF)–space and the claim follows from [13, Theorem 1.1 and Example 1.2].

- (b) X is a complete (DF)-space, in which case X'_{β} is a Fréchet space. Again the claim follows from [13, Theorem 1.1 and Example 1.2].
- (c) $X = \operatorname{ind}_n X_n$ is a complete (LF)-space. According to [23, p.368] the space is barrelled and [13, Example 1.2(A)] implies that the relatively $\sigma(X, X')$ compact sets are relatively sequentially $\sigma(X, X')$ -compact. Concerning X'_{β} , since every bounded set in X is contained and bounded in one of the component spaces X_n , [23, (5) p.225], it follows that $X'_{\beta} = \operatorname{proj}_n(X_n)'_{\beta}$ and so X'_{β} is a subspace of the countable product $\prod_{n \in \mathbb{N}} (X_n)'_{\beta}$. The desired conclusion for X'_{β} then follows from Proposition 5, Proposition 6 and Theorem 11 of [13].

(ii) Suppose that X is a complete (DF)-space; see [29, p.248] for definition. Such a space is necessarily \aleph_0 -barrelled, [29, Observation 8.2.2. (c)]; see [29, p.236] for the definition of \aleph_0 -quasibarrelled and \aleph_0 -barrelled. We claim that X has the DP-property if and only if $\lim_{k\to\infty} \langle x_k, x'_k \rangle = 0$ for every $\sigma(X, X')$ -null sequence $\{x_k\}_{k=1}^{\infty} \subseteq X$ and every $\sigma(X', X'')$ -null sequence $\{x'_k\}_{k=1}^{\infty} \subseteq X'$. Indeed, that the validity of the stated condition on pairs of null sequences implies the DP-property follows from part (i)-(b) above and Proposition 3.3(ii). Conversely, suppose that X has the DP-property. We cannot apply Proposition 3.3(i) directly as X need not be barrelled. Nevertheless, suppose that $\{x_k\}_{k=1}^{\infty} \subseteq X'$ is $\sigma(X', X'')$ -null. Then the absolutely convex hull of $\{0\} \cup \{x'_k\}_{k=1}^{\infty}$ is both $\sigma(X', X'')$ -compact by Krein's Theorem (applied in the Fréchet space X'_{β}) and equicontinuous because X is \aleph_0 -barrelled. The proof that $\lim_{k\to\infty} \langle x_k, x'_k \rangle = 0$ can then be completed as in the proof of Proposition 3.3(i).

The following technical result will be useful in the sequel.

Lemma 3.5. Let X be a barrelled lcHs which is a Grothendieck space and $\{T_j\}_{j=1}^{\infty} \subseteq \mathcal{L}(X)$ be a sequence of pairwise commuting operators satisfying

$$\lim_{j \to \infty} T_j = 0 \quad in \ \mathcal{L}_s(X) \tag{3.1}$$

and

$$\lim_{i \to \infty} (I - T_k) T_j = 0 \quad in \ \mathcal{L}_b(X), \ for \ each \ k \in \mathbb{N}.$$
(3.2)

Then the following assertions are valid.

(i) For each bounded sequence $\{x_j\}_{j=1}^{\infty} \subseteq X$ we have

$$\lim_{j \to \infty} T_j x_j = 0 \quad in \ X_{\sigma}.$$

(ii) For each $\sigma(X', X)$ -bounded sequence $\{x'_i\}_{i=1}^{\infty} \subseteq X'$ we have

$$\lim_{j \to \infty} T_j^t x_j' = 0 \quad in \ (X', \sigma(X', X'')).$$

Proof. (ii) Let $\{x'_j\}_{j=1}^{\infty} \subseteq X'$ be a $\sigma(X', X)$ -bounded sequence. Since X is barrelled, the set $B := \{x'_j\}_{j=1}^{\infty} \subseteq X'$ is equicontinuous. For fixed $x \in X$, it follows from (3.1) that $\sup_{z' \in B} |\langle T_j x, z' \rangle| \to 0$ as $j \to \infty$, that is, $|\langle x, T_j^t x'_j \rangle| \to 0$ as $j \to \infty$. This shows that $\lim_{j\to\infty} T_j^t x'_j = 0$ in $(X', \sigma(X', X))$. Since X is a Grothendieck space, we can conclude that $\lim_{j\to\infty} T_j^t x'_j = 0$ in $(X', \sigma(X', X))$.

(i) Set $S_j := I - T_j$, for $j \in \mathbb{N}$, in which case $S_j^t \in \mathcal{L}(X_\beta')$. By part (ii) applied to $\{S_j\}_{j=1}^{\infty}$ we have (in $(X', \sigma(X', X''))$) that

$$\lim_{j \to \infty} S_j^t u' = u', \quad u' \in X'.$$

Define a linear subspace $H \subseteq X'$ by

$$H := \{u' \in X' : u' = \lim_{j \to \infty} S_j^t u' \text{ in } X'_\beta\}$$

To show that H is closed in X'_{β} , fix a net $\{x'_{\alpha}\}_{\alpha \in A} \subseteq H$ such that $\lim_{\alpha \in A} x'_{\alpha} = x'$ in X'_{β} . Fix $B \in \mathcal{B}(X)$. The barrelledness of X and the fact that $\{T_j\}_{j=1}^{\infty}$ is bounded in $\mathcal{L}_s(X)$ (see (3.1)) imply that $\{S_j\}_{j=1}^{\infty}$ is equicontinuous in $\mathcal{L}(X)$. Accordingly, $C := B \cup \bigcup_{j=1}^{\infty} S_j(B) \in \mathcal{B}(X)$. Since $x'_{\alpha} \to x'$ in X'_{β} , it follows that there exists $\alpha(0) \in A$ such that

$$\sup_{x \in C} |\langle x, (x'_{\alpha} - x') \rangle| \le \frac{1}{3}, \quad \alpha \ge \alpha(0).$$
(3.3)

For each $\alpha \geq \alpha(0)$ and $z \in B$ we have, for all $j \in \mathbb{N}$, that

$$\begin{aligned} |\langle z, x' \rangle - \langle z, S_j^t x' \rangle| \\ &\leq |\langle z, x' \rangle - \langle z, x'_{\alpha} \rangle| + |\langle z, x'_{\alpha} \rangle - \langle z, S_j^t x'_{\alpha} \rangle| + |\langle z, S_j^t (x'_{\alpha} - x') \rangle| \\ &= |\langle z, (x' - x'_{\alpha}) \rangle| + |\langle z, (x'_{\alpha} - S_j^t x'_{\alpha}) \rangle| + |\langle S_j z, (x'_{\alpha} - x') \rangle| \\ &\leq \frac{2}{3} + |\langle z, (x'_{\alpha} - S_j^t x'_{\alpha}) \rangle|, \end{aligned}$$

where (3.3) is applied twice to deduce the final inequality. In particular, for $\alpha := \alpha(0)$ we have, for all $j \in \mathbb{N}$, that

$$|\langle z, x' \rangle - \langle z, S_j^t x' \rangle| \le \frac{2}{3} + |\langle z, (x'_{\alpha(0)} - S_j^t x'_{\alpha(0)}) \rangle|, \quad z \in B.$$

Since $x'_{\alpha(0)} \in H$, there exists $j(0) \in \mathbb{N}$ such that

$$\sup_{z \in B} |\langle z, (x'_{\alpha(0)} - S^t_j x'_{\alpha(0)}) \rangle| \le \frac{1}{3}, \quad j \ge j(0).$$

This shows that $\{x' - S_j^t x'\}_{j=j(0)}^{\infty} \subseteq B^{\circ}$ (the polar of B). It follows that $S_j^t x' \to x'$ in X'_{β} as $j \to \infty$, i.e., $x' \in H$.

Next we show that $\bigcup_{k=1}^{\infty} S_k^t(X') \subseteq H$. So, fix any $k \in \mathbb{N}$. By (3.2) we have

$$\lim_{j \to \infty} T_j S_k = \lim_{j \to \infty} S_k T_j = 0 \text{ in } \mathcal{L}_b(X).$$

In particular, for each $x' \in X'$, we have $\lim_{j\to\infty} x' \circ (T_j S_k) = 0$ in X'_{β} or, equivalently, that $\lim_{j\to\infty} S_k^t T_j^t x' = 0$ in X'_{β} . It follows, for any $x' \in X'$, that

$$\lim_{j \to \infty} S_j^t(S_k^t x') = \lim_{j \to \infty} S_k^t(I - T_j^t) x' = S_k^t x' - \lim_{j \to \infty} S_k^t T_j^t x' = S_k^t x'$$

with the limits taken in X'_{β} . This shows that $S^t_k x' \in H$, for each $x' \in X'$, i.e. $S^t_k(X') \subseteq H$.

For each $x' \in X'$, it follows from (ii) that

$$x' = \lim_{j \to \infty} S_j^t x$$

in $(X', \sigma(X', X''))$, with $\{S_j^t x'\}_{j=1}^{\infty} \subseteq H$ because of $\bigcup_{k=1}^{\infty} S_k^t(X') \subseteq H$. Accordingly, H is dense in $(X', \sigma(X', X''))$. On the other hand, H is closed in X'_{β} and both $\sigma(X', X'')$ and $\beta(X', X)$ are topologies for the dual pairing (X', X''), which implies that H = X'. In particular, in X'_{β} we have $x' = \lim_{j \to \infty} S_j^t x'$, for each $x' \in X'$, that is, $\lim_{j \to \infty} T_j^t x' = 0$, for each $x' \in X'$.

To complete the proof, let $\{x_j\}_{j=1}^{\infty}$ be any bounded sequence in X and set $D := \{x_j\}_{j=1}^{\infty} \in \mathcal{B}(X)$. Fix $x' \in X'$. Since $\lim_{j\to\infty} T_j^t x' = 0$ in X'_{β} we get

$$\lim_{j \to \infty} \sup_{z \in D} |\langle z, T_j^t x' \rangle| = 0$$

and hence, in particular, that $0 = \lim_{j \to \infty} |\langle x_j, T_j^t x' \rangle| = \lim_{j \to \infty} |\langle T_j x_j, x' \rangle|$. This shows that $\lim_{j \to \infty} T_j x_j = 0$ in X_{σ} , as required.

Remark 3.6. Lemma 3.5 is an extension of Proposition 4.1 in [12]. Indeed, let $\{P_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X)$ be any Schauder decomposition. Set $T_j := (I - P_j)$, for $j \in \mathbb{N}$, in which case $T_j \to 0$ in $\mathcal{L}_s(X)$ as $j \to \infty$, i.e., (3.1) holds. Moreover, for $k \in \mathbb{N}$ fixed we have

$$(I - T_k)T_j = P_k(I - T_j) = P_k - P_kP_j = 0, \quad j \ge k,$$

and so (3.2) also holds.

The proof of Lemma 3.5 is based on methods introduced by H.P. Lotz, [25, §3].

The following notion is due to J.C. Díaz and M.A. Miñarro, [15, p.194]. A Schauder decomposition $\{P_n\}_{n=1}^{\infty}$ in a lcHs X is said to have property (M) if $P_n \to I$ in $\mathcal{L}_b(X)$ as $n \to \infty$. Since every non-zero projection P in a Banach space satisfies $||P|| \ge 1$, it is clear that no Schauder decomposition in any Banach space can have property (M). For non-normable spaces the situation is quite different. For instance, if X is a Fréchet Montel space (resp. Fréchet GDP–space, which is a larger class of spaces; see [12]), then every Schauder decomposition in X has property (M); see [15] (resp. [12, Proposition 4.2]). The next result significantly extends these classes of spaces. First a useful observation (see [12, Remark 2.2] for Fréchet spaces).

Remark 3.7. Every Montel lcHs X is a GDP–space. Indeed, since X is reflexive, [23, (1) p.369], it is surely a Grothendieck space. That every Montel space has the DP–property is known, [21, Example 9.4.2]. Actually, it was already noted above, [21, Example 9.4.2], that a lcHs X is Montel if and only if it is semireflexive and has the DP–property.

Proposition 3.8. Let X be any quasicomplete, barrelled lcHs and $\{P_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X)$ be a Schauder decomposition of X.

- (i) If X is a GDP-space, then $\{P_n\}_{n=1}^{\infty}$ has property (M).
- (ii) If X is a GDP-space, then $\{P_n^t\}_{n=1}^{\infty} \subseteq \mathcal{L}(X_{\beta}')$ is a Schauder decomposition of X_{β}' with property (M). In particular, $\{P_n\}_{n=1}^{\infty}$ is a shrinking Schauder decomposition of X.
- (iii) Suppose that $\{P_n\}_{n=1}^{\infty}$ has property (M) and that each complemented subspace $Q_n(X)$ of X, where $Q_n := P_n - P_{n-1}$ with $P_0 := 0$ for $n \in \mathbb{N}$, is a Grothendieck space (resp. has the DP-property, resp. is Montel). Then X is also a Grothendieck space (resp. has the DP-property, resp. is Montel).

Proof. (i) We proceed with a contradiction argument as in the proof of Proposition 4.2 in [12]. Setting $T_n := I - P_n$, for $n \in \mathbb{N}$, it follows from that proof that there exist $p \in \Gamma_X$ and $B \in \mathcal{B}(X)$, an $\varepsilon > 0$, and an increasing sequence $n(k) \nearrow \infty$ in \mathbb{N} together with sequences $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ and $\{x_k\}_{k=1}^{\infty} \subseteq B$ such that $|\langle x, x'_k \rangle| \leq p(x)$, for all $x \in X$, and

$$|\langle T_{n(k)}x_k, T_{n(k)}^t x_k' \rangle| > \varepsilon, \quad k \in \mathbb{N}.$$

$$(3.4)$$

We check the hypotheses of Lemma 3.5. Clearly, the sequence $\{T_{n(k)}\}_{k=1}^{\infty}$ is pairwise commuting. Since $P_n \to I$ in $\mathcal{L}_s(X)$ as $n \to \infty$, it is clear that (3.1) is satisfied. The condition (3.2) follows from Remark 3.6. So, Lemma 3.5 does indeed apply and hence, $\lim_{k\to\infty} T_{n(k)}x_k = 0$ in X_{σ} (since $\{x_{n(k)}\}_{k=1}^{\infty} \subseteq B$ is a bounded sequence). Moreover, the equicontinuity of $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ implies that $\{x'_k\}_{k=1}^{\infty}$ is $\sigma(X', X)$ -bounded and hence, part (ii) of Lemma 3.5 implies that $\lim_{k\to\infty} T_{n(k)}^t x'_k = 0$ in $(X', \sigma(X', X''))$. According to Proposition 3.3(i), the DP-property of X implies that $\lim_{k\to\infty} \langle T_{n(k)}x_k, T_{n(k)}^t x'_k \rangle = 0$ which contradicts (3.4). So, $P_n \to I$ in $\mathcal{L}_b(X)$ as $n \to \infty$.

(ii) According to [24, p.134] we have $\{P_n^t\}_{n=1}^{\infty} \subseteq \mathcal{L}(X'_{\beta})$. Part (i) ensures that $P_n \to I$ in $\mathcal{L}_b(X)$ and hence, by Lemma 2.1, $P_n^t \to I$ in $\mathcal{L}_b(X'_{\beta})$. So, $\{P_n^t\}_{n=1}^{\infty}$ is a Schauder decomposition of X'_{β} with property (*M*). In particular, $P_n^t x' \to x'$ in X'_{β} for each $x' \in X'$, i.e., $\{P_n\}_{n=1}^{\infty}$ is a shrinking Schauder decomposition of X.

(iii) Suppose first that each $Q_n(X)$, for $n \in \mathbb{N}$, is a Grothendieck space. Fix $x'' \in X''$. We claim that

$$\lim_{n \to \infty} (I - P_n^{tt}) x'' = 0 \text{ in } (X'_{\beta})'_{\beta}.$$
 (3.5)

To see this, fix $B \in \mathcal{B}(X'_{\beta})$. Then

$$W := \{ S \in \mathcal{L}(X'_{\beta}) : |\langle Sv', x'' \rangle| \le 1, \ \forall v' \in B \}$$

is a 0-neighbourhood in $\mathcal{L}_b(X'_{\beta})$. Since $(I - P_n^t) \to 0$ in $\mathcal{L}_b(X'_{\beta})$ as $n \to \infty$ (see Lemma 2.1), there is $m \in \mathbb{N}$ such that $(I - P_n^t) \in W$ for all $n \ge m$. That is, for all $v' \in B$ and $n \ge m$ we have

$$|\langle v', (I - P_n^{tt})x''\rangle| = |\langle (I - P_n^t)v', x''\rangle| \le 1.$$

This shows that $(I - P_n^{tt})x'' \in B^\circ$ for $n \ge m$, i.e., $\lim_{n\to\infty} (I - P_n^{tt})x'' = 0$ in $(X'_\beta)'_\beta$, as claimed.

Let $\{x'_k\}_{k=1}^{\infty} \subseteq X'$ be any sequence such that $x'_k \to 0$ in $(X', \sigma(X', X))$ as $k \to \infty$. Since X is barrelled, the sequence $\{x'_k\}_{k=1}^{\infty}$ is bounded in X'_{β} . So, (3.5) implies that for every $\varepsilon > 0$ there is $m \in \mathbb{N}$ with

$$|\langle x'_k, (I - P_n^{tt})x''\rangle| < \varepsilon, \quad k \in \mathbb{N}, \ n \ge m.$$

It follows, for each $k \in \mathbb{N}$, that

$$|\langle x'_k, x''\rangle| \le |\langle x'_k, (I - P_m^{tt})x''\rangle| + |\langle x'_k, P_m^{tt}x''\rangle| \le \varepsilon + |\langle x'_k, P_m^{tt}x''\rangle|.$$

Setting $E_m := P_m(X)$, we have that the restriction $P_m^t : (E_m)'_{\beta} \to X'_{\beta}$ is continuous and hence, $x'' \circ P_m^t : (E_m)'_{\beta} \to \mathbb{C}$ is continuous, i.e., $P_m^{tt}x'' \in ((E_m)'_{\beta})'_{\beta}$. But, E_m is a Grothendieck space (c.f. proof of (i) of Proposition 3.1) and the restrictions $x'_k|_{E_m} \to 0$ in $(E'_m, \sigma(E'_m, E_m))$ as $k \to \infty$. Accordingly, $x'_k|_{E_m} \to 0$ in $(E'_m, \sigma(E'_m, E''_m))$ as $k \to \infty$. This implies that $\limsup_k |\langle x'_k, x'' \rangle| \leq \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have $\langle x'_k, x'' \rangle \to 0$ as $k \to \infty$. Hence, X is a Grothendieck space.

Next assume that $Q_n(X)$ has the DP-property for each $n \in \mathbb{N}$. Fix any operator $T \in \mathcal{L}(X, Y)$, with Y a Banach space, which maps bounded sets in X into $\sigma(Y, Y')$ -compact sets in Y. Let $B \subseteq X$ be any $\sigma(X, X')$ -compact set. Given $\varepsilon > 0$ there exists a 0-neighbourhood $U \subseteq X$ with $T(U) \subseteq \varepsilon B_Y$, where B_Y is the closed unit ball of Y. Since $\lim_{n\to\infty} (I - P_n) = 0$ in $\mathcal{L}_b(X)$, there is $n(0) \in \mathbb{N}$ such that $(I - P_{n(0)})(B) \subseteq U$. Then

$$T(B) \subseteq T(P_{n(0)}(B)) + T((I - P_{n(0)})(B)) \subseteq T(P_{n(0)}(B)) + \varepsilon B_Y.$$
(3.6)

Clearly $P_{n(0)}(B)$ is weakly compact in $E_{n(0)} := P_{n(0)}(X)$. Moreover, $E_{n(0)}$ has the DP-property since it is the direct sum (hence, also product) of finitely many spaces $Q_n(X)$, for $1 \le n \le n(0)$, each one with the DP-property, [21, p.635]. Hence, $T(P_{n(0)}(B))$ is relatively compact in Y and it follows from (3.6) and Lemma 2.2 that T(B) is precompact (hence, relatively compact) in Y. It follows that X has the DP-property.

Finally, assume that each $Q_n(X)$, for $n \in \mathbb{N}$, is Montel. Fix $B \in \mathcal{B}(X)$. Since X is quasicomplete, it suffices to show that B is precompact. Let U be a 0-neighbourhood in X. Since $P_n \to I$ in $\mathcal{L}_b(X)$, there is $m \in \mathbb{N}$ such that $(I - P_m)(B) \subseteq U$. On the other hand, $P_m(B) \subseteq \sum_{j=1}^m Q_j(B)$. Since $Q_j(B)$ is bounded in the Montel space $Q_j(X)$, it follows that $Q_j(B)$ is relatively compact in $Q_j(X)$, for each $1 \leq j \leq m$ and hence, also in X. It follows that $P_m(B)$ is relatively compact. Since $B \subseteq P_m(B) + U$, it follows from Lemma 2.2 that B is precompact.

Remark 3.9. (i) For X a Fréchet space, that part of (iii) in Proposition 3.8 which states if each $Q_n(X)$, $n \in \mathbb{N}$, is Montel, then X is Montel, is known, [15, Proposition 4].

(ii) Suppose that X is quasicomplete, barrelled GDP-space which admits a Schauder decomposition $\{P_n\}_{n=1}^{\infty}$ (necessarily with property (M) by Proposition 3.8(i)) such that each space $Q_n(X)$, with $Q_n := P_n - P_{n-1}$ for $n \ge 1$, is finite dimensional. Then X is a Montel space; see Proposition 3.8(ii). In particular, every quasicomplete barrelled GDP-space with a Schauder basis is Montel.

Let $X = \operatorname{ind}_n X_n$ be a countable inductive limit of lcHs' with canonical inclusions $j_n \colon X_n \to X$, for each $n \in \mathbb{N}$. Recall that X is quasi-regular if for every $B \in \mathcal{B}(X)$ there exist $m \in \mathbb{N}$ and $C \in \mathcal{B}(X_m)$ such that $B \subseteq \overline{C}$, where the closure \overline{C} of C is taken in X, [16]. If every bounded subset of X is contained and bounded in a step X_m , for some $m \in \mathbb{N}$, then X is called regular, [29]. Every (LB)-space $X = \operatorname{ind}_n X_n$ is quasi-regular; this follows from [29, Corollary 8.3.19]. If X is quasi-regular, then $X'_{\beta} = \operatorname{proj}_n(X_n)'_{\beta}$, where the projective limit is formed with respect to the linking maps $j_n^t \colon X' \to X'_n$; see, for example, [23, §22.6 and 22.7], [16]. In particular, if X is a quasi-regular (LF)-space, then every relatively weakly compact subset of X'_{β} is relatively sequentially weakly compact, [13, Propositions 5 and 6, Theorem 11]. The following result is a reformulation of [8, Proposition 22].

Lemma 3.10. Let X be a \aleph_0 -barrelled lcHs such that every relatively weakly compact subset of X'_{β} is relatively sequentially weakly compact. Then X is a

Grothendieck space if and only if every operator $T \in \mathcal{L}(X, c_0)$ maps bounded subsets of X to relatively weakly compact subsets of c_0 .

We can now establish a useful fact concerning inductive limits.

Proposition 3.11. Let $X = \text{ind}_n X_n$ be a quasi-regular (LF)-space such that each Fréchet space X_n , for $n \in \mathbb{N}$, is a Grothendieck space. Then X is also a Grothendieck space.

Proof. Let $T \in \mathcal{L}(X, c_0)$ and $B \in \mathcal{B}(X)$. Since X is quasi-regular, there exist $m \in \mathbb{N}$ and $C \in \mathcal{B}(X_m)$ such that $B \subseteq \overline{C}$, with the closure of C formed in X. The restriction $S := T|_{X_m}$ belongs to $\mathcal{L}(X_m, c_0)$. Since X_m is a Grothendieck space, the set T(C) = S(C) is relatively weakly compact in c_0 . Moreover, $T(B) \subseteq T(\overline{C}) \subseteq \overline{T(C)}$ and so T(B) is also relatively weakly compact in c_0 . Observing that Lemma 3.10 can be applied to the (barrelled) quasi-regular (LF)-space X, since $X'_{\beta} = \operatorname{proj}_n(X_n)'_{\beta}$ satisfies the required hypothesis, we can conclude that X is a Grothendieck space.

For the DP-property of inductive limits we have the following result.

Proposition 3.12. Let $X = \operatorname{ind}_n X_n$ be an (LF)-space which satisfies:

(3.7) Every weakly compact subset of X is contained and weakly compact in some step X_m .

If each Fréchet space X_n , for $n \in \mathbb{N}$, has the DP-property, then also X has the DP-property.

Proof. Let Y be any Banach space and $T \in \mathcal{L}(X, Y)$ transform bounded subsets of X into relatively weakly compact subsets of Y. Fix a weakly compact set $A \subseteq X$. By (3.7) there exists $m \in \mathbb{N}$ such that $A \subseteq X_m$ and A is weakly compact in X_m . Since the restriction $T|_{X_m}$ of T to X_m maps bounded sets of X_m to relatively weakly compact subsets of Y and X_m has the DP-property, it follows that T(A) is relatively weakly compact in Y. Accordingly, X has the DP-property. \Box

Remark 3.13. (i) Every (LF)-space $X = \operatorname{ind}_n X_n$ satisfying (3.7) is necessarily regular. To see this, let $\{x_k\}_{k=1}^{\infty} \subseteq X$ be a $\sigma(X, X')$ -null sequence. Then it suffices to show that $\{x_k\}_{k=1}^{\infty}$ is contained and $\sigma(X_m, X'_m)$ -null in some step X_m ; the conclusion will then follow from [30, Theorem 1]. But, since A := $\{0\} \cup \{x_k\}_{k=1}^{\infty}$ is weakly compact in X, (3.7) ensures that there is $m \in \mathbb{N}$ such that $A \subseteq X_m$ and A is $\sigma(X_m, X'_m)$ -compact. As the topology $\sigma(X_m, X'_m)$ restricted to A is finer that $\sigma(X, X')$ restricted to A and the latter topology is Hausdorff, the two topologies coincide on A. Hence, $\lim_{k\to\infty} x_k = 0$ for $\sigma(X_m, X'_m)$.

(ii) An (LF)-space $X = \operatorname{ind}_n X_n$ is said to satisfy (Retakh's) condition (M_0) if there exists an increasing sequence $\{U_n\}_{n=1}^{\infty}$ of absolutely convex 0-neighbourhoods U_n in X_n such that for each $n \in \mathbb{N}$ there exists m(n) > n with the property that the topologies $\sigma(X, X')$ and $\sigma(X_{m(n)}, X'_{m(n)})$ coincide on U_n . A relevant reference for condition (M_0) is [34]. An (LF)-space satisfying condition (M_0) need not be quasi-regular, [16]. On the other hand, if a regular (LF)-space satisfies condition (M_0) , then it necessarily possesses the property (3.7). To see this, let $A \subseteq X$ be $\sigma(X, X')$ -compact. By regularity of X there exists $n \in \mathbb{N}$ such that $A \subseteq X_n$ and $A \in \mathcal{B}(X_n)$. According to condition (M_0) there exists m(n) > n and a 0-neighbourhood W_n in X_n such that the topologies $\sigma(X, X')$ and $\sigma(X_{m(n)}, X'_{m(n)})$ agree on W_n . Select $\lambda > 0$ such that $\lambda A \subseteq W_n$ and note that λA is $\sigma(X, X')$ -compact as A is. Accordingly, λA (and, hence also A) is $\sigma(X_{m(n)}, X'_{m(n)})$ -compact, i.e., (3.7) is valid.

There is a condition which is more restrictive than (M_0) but, has the advantage in practice that it is easier to verify. Namely, an (LF)-space $X = \operatorname{ind}_n X_n$ satisfies (Retakh's) condition (M) if there exists an increasing sequence $\{U_n\}_{n=1}^{\infty}$ of absolutely convex 0-neighbourhoods U_n in X_n such that for each $n \in \mathbb{N}$ there exists m(n) > n with the property that X and $X_{m(n)}$ induce the same topology on U_n . It is known that an (LF)-space $X = \operatorname{ind}_n X_n$ satisfies condition (M) if and only if it is sequentially retractive, i.e., every convergent sequence in X is convergent in some step X_m , [36].

(iii) A regular co-echelon space $k_{\infty}(V) = \operatorname{ind}_{n} \ell^{\infty}(v_{n})$ of order infinity satisfies condition (M_{0}) if and only if it satisfies condition (M), [5], which in turn is equivalent to the defining sequence $V = (v_{n})$ being regularly decreasing. Coechelon spaces of the form $k_{\infty}(V)$ will be treated in more detail later. \Box

Since every (LF)–space satisfying (3.7) is regular (c.f. Remark 3.13(i)), the following fact is a consequence of Propositions 3.11 and 3.12.

Proposition 3.14. Let $X = \text{ind}_n X_n$ be an (LF)-space satisfying property (3.6). If all the Fréchet spaces X_n , for $n \in \mathbb{N}$, are GDP-spaces, then X is also a GDP-space.

An immediate consequence is the following result.

Corollary 3.15. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of Fréchet spaces. Then the lcdirect sum $X = \bigoplus_{n=1}^{\infty} X_n$ is a GDP-space if and only if each X_n , for $n \in \mathbb{N}$, is a GDP-space.

Proof. Each space X_n is complemented in X, for $n \in \mathbb{N}$. Moreover, X =ind $_n \oplus_{j=1}^n X_j$ is a strict (LF)–space and hence, has property (3.6). Indeed, if $A \subseteq X$ is weakly compact, then $A \in \mathcal{B}(X)$ and hence, $A \subseteq \oplus_{j=1}^m X_j$ for some $m \in \mathbb{N}$. Since X induces the given topology on $\oplus_{j=1}^m X_j$, it follows that A is weakly compact in $\oplus_{j=1}^m X_j$.

Let us discuss another application of Proposition 3.14. Let Ω denote either $\mathbb{D} := \{z \in \mathbb{C} : |z| > 1\}$ or \mathbb{C} and let a = 1 or $a = \infty$, respectively. A radial weight is a continuous, non-increasing function $v \colon \Omega \to (0, \infty)$ such that v(z) = v(|z|) for each $z \in \Omega$ and $\lim_{r \to a} r^m v(r) = 0$ for all $m \ge 0$ (for $\Omega = \mathbb{D}$ this condition is $\lim_{r \to 1} v(r) = 0$). Given such a weight, the space of holomorphic functions

$$\mathcal{H}_{v}(\Omega) := \{ f \in \mathcal{H}(\Omega) : \|f\|_{v} := \sup_{z \in \Omega} v(z)|f(z)| < \infty \}$$

is a Banach space when endowed with the norm $\|\cdot\|_v$. W. Lusky showed that $\mathcal{H}_v(\Omega)$ is isomorphic to either ℓ^{∞} or to the Hardy space $H^{\infty}(\mathbb{D})$, [27]. In particular, $\mathcal{H}_v(\Omega)$ is always a GDP-space.

Let $V := \{v_n\}_{n=1}^{\infty}$ be any decreasing sequence of strictly positive radial weights on Ω and consider the weighted inductive limit $V\mathcal{H}(\Omega) := \operatorname{ind}_n \mathcal{H}_{v_n}(\Omega)$. It follows from results in [2] that $V\mathcal{H}(\Omega)$ is a complete (LB)–space. The sequence V is called regularly decreasing if for each $n \in \mathbb{N}$ there is $m(n) \ge n$ such that for all $\varepsilon > 0$ and $k \ge m(n)$ there is a $\delta > 0$ such that $v_k \ge \delta v_n$ pointwise on Ω whenever $v_{m(n)} \geq \varepsilon v_n$ pointwise on Ω . In this case $V\mathcal{H}(\Omega)$ is a sequentially retractive (LB)-space, [2, Theorem 2.3], and hence, it satisfies (3.7); see Remark 3.13(ii). As a consequence of Proposition 3.14 we have the following result.

Corollary 3.16. Let Ω denote either \mathbb{D} or \mathbb{C} and $V = \{v_n\}_{n=1}^{\infty}$ be a decreasing sequence of radial weights on Ω which is regularly decreasing. Then the weighted (LB)-space $\mathcal{VH}(\Omega) = \operatorname{ind}_n \mathcal{H}_{v_n}(\Omega)$ of holomorphic functions is a GDP-space.

Recall that a spectral measure in a lcHs X is a multiplicative map $P: \Sigma \to \mathcal{L}(X)$, defined on a σ -algebra Σ of subsets of a non-empty set Ω , which satisfies $P(\Omega) = I$ and is σ -additive in $\mathcal{L}_s(X)$. If, in addition, P is σ -additive in $\mathcal{L}_b(X)$, then P is called *boundedly* σ -additive. It is known that every spectral measure in a Fréchet GDP-space (hence, in every Fréchet Montel space) is necessarily boundedly σ -additive; see Proposition 4.3 of [12]. An examination of the proof given in [12] shows that it can be adapted (by using Propositions 3.1(i) and 3.8(i) above at the appropriate stage) to yield the following extension.

Proposition 3.17. Let X be any quasicomplete, barrelled lcHs which is a GDP-space. Then every spectral measure in X is necessarily boundedly σ -additive.

For examples of spectral measures in classical spaces, some of which are boundedly σ -additive and others which are not, we refer to [9], [10], [11], [12], [32], [33], for example.

The following result is an extension of Proposition 4.2 in [1], where it is formulated for Fréchet spaces. However, an examination of the proof shows that the metrizability of X is not necessary, in that the topology of X need *not* be given by a sequence of continuous seminorms and the use of [35, Proposition 2.3] applies in general spaces.

Proposition 3.18. Let X be a quasicomplete, barrelled lcHs. Suppose that there exists a spectral measure in X which fails to be boundedly σ -additive. Then X admits an unconditional Schauder decomposition without property (M).

For explicit examples of spaces which admit spectral measures which *fail* to be boundedly σ -additive we refer to Remark 4.3 in [1].

Unconditional Schauder decompositions are of particular interest in non-normable GDP-spaces (in GDP-Banach spaces they do not exist). It was shown in [12, Proposition 3.1] that every Fréchet Köthe echelon space $\lambda_{\infty}(A)$ of infinite order is a GDP-space and, under certain conditions on the Köthe matrix A, that $\lambda_{\infty}(A)$ admits unconditional Schauder decompositons, [12, Proposition 4.4]. Further examples can now be exhibited. For example, let $X = \prod_{n=1}^{\infty} X_n$ be any countable product of Fréchet GDP–spaces X_n , for $n \in \mathbb{N}$, in which case X is also a Fréchet GDP-space. Define a continuous projection $Q_j \in \mathcal{L}(X)$ by $Q_j x :=$ $(0,\ldots,0,x_j,0,\ldots)$ for $x = (x_n) \in X$, where x_j is in position j, for each $j \in \mathbb{N}$, and set $P_n := \sum_{j=1}^n Q_j$ for $n \in \mathbb{N}$. Then $\{P_n\}_{n=1}^\infty$ is a Schauder decomposition of X. Moreover, for a fixed $x \in X$, it is routine to verify that $\sum_{n=1}^{\infty} Q_n$ is unconditionally convergent to x in X_{σ} and hence, by the Orlicz–Pettis theorem, also in X. Accordingly, $\{P_n\}_{n=1}^{\infty}$ is an unconditional Schauder decomposition of X. Since X always contains a complemented copy of the Fréchet sequence space $\omega = \prod_{n=1}^{\infty} \mathbb{C}$, other unconditional Schauder decompositions also exist in X. Or, consider the lc-direct sum $X = \bigoplus_{n=1}^{\infty} X_n$ of Fréchet GDP-spaces. Again the coordinate projections generate an unconditional Schauder decomposition of the (non-metrizable) GDP-space X.

4. CO-ECHELON SPACES.

In the final section we make a detailed investigation of co–echelon spaces from the viewpoint of GDP–spaces. For Köthe echelon spaces such an analysis was undertaken in [12].

In this section, I will always denote a fixed countable index set and $A = (a_n)_{n \in \mathbb{N}}$ an increasing sequence of functions $a_n \colon I \to (0, \infty)$, which is called a *Köthe matrix* on I. Corresponding to each $p \in \{0\} \cup [1, \infty]$ we associate the spaces

$$\lambda_p(A) := \left\{ x = (x(i))_{i \in I} \in \mathbb{C}^I : q_n^{(p)}(x) = \left(\sum_{i \in I} (a_n(i)|x(i)|)^p \right)^{1/p} < \infty, \forall n \in \mathbb{N} \right\}$$
$$\lambda_\infty(A) := \left\{ x = (x(i))_{i \in I} \in \mathbb{C}^I : q_n^{(\infty)}(x) = \sup_{i \in I} a_n(i)|x(i)| < \infty, \forall n \in \mathbb{N} \right\}$$
$$\lambda_0(A) := \left\{ x = (x(i))_{i \in I} \in \mathbb{C}^I : a_n x \in c_0(I), \forall n \in \mathbb{N} \right\},$$

with the last space being endowed with the topology induced by $\lambda_{\infty}(A)$. The spaces $\lambda_p(A)$ are called (Köthe) *echelon spaces* of order p; they are Fréchet spaces relative to the sequence of seminorms $\{a_n^{(p)}\}^{\infty}$, for $p \in \{0\} \cup [1, \infty]$.

relative to the sequence of seminorms $\{q_n^{(p)}\}_{n=1}^{\infty}$ for $p \in \{0\} \cup [1, \infty]$. For a Köthe matrix $A = (a_n)_{n=1}^{\infty}$, let $V = (v_n)_{n=1}^{\infty}$ with $v_n := 1/a_n$ for $n \in \mathbb{N}$, and set

$$k_p(V) =: \inf_n \ell^p(v_n), \ p \in [1, \infty], \ \text{and} \ k_0(V) := \inf_n c_0(v_n),$$

where $\ell^p(v_n) \subseteq \mathbb{C}^I$ and $c_0(v_n) \subseteq \mathbb{C}^I$ are the usual (weighted) Banach spaces, for $n \in \mathbb{N}$. So, $k_p(V)$ is the increasing union $\bigcup_{n=1}^{\infty} \ell^p(v_n)$ (resp. $\bigcup_{n=1}^{\infty} c_0(v_n)$) endowed with the strongest lc-topology under which the natural injection of each of the Banach spaces $\ell^p(v_n)$ (resp. $c_0(v_n)$), for $n \in \mathbb{N}$, is continuous. The spaces $k_p(V)$ are called *co-echelon spaces* of order *p*. The natural map $k_0(V) \to k_{\infty}(V)$ is clearly continuous but, it is even a topological isomorphism into $k_{\infty}(V)$. For a systematic treatment of echelon and co-echelon spaces see [3].

Given any decreasing sequence $V = (v_n)_{n=1}^{\infty}$ of strictly positive functions on I (or for the corresponding Köthe matrix $A = (a_n)_{n=1}^{\infty}$ with $a_n := 1/v_n$) we introduce

$$\overline{V} := \left\{ \overline{v} = (\overline{v}(i))_{i \in I} \in [0, \infty)^I : \sup_{i \in I} \frac{\overline{v}(i)}{v_n(i)} = \sup_{i \in I} a_n(i)\overline{v}(i) < \infty, \ \forall n \in \mathbb{N} \right\}.$$

Since I is countable, the system \overline{V} always contains strictly positive functions. Next, associated with \overline{V} is the family of spaces

$$K_p(\overline{V}) := \operatorname{proj}_{\overline{v} \in \overline{V}} \ell^p(\overline{v}), \ p \in [1, \infty], \text{ and } K_0(\overline{V}) := \operatorname{proj}_{\overline{v} \in \overline{V}} c_0(\overline{v}).$$

These spaces are equipped with the complete lc–topology given by the collection of seminorms

$$q_{\overline{v}}^{(p)}(x) := \left(\sum_{i \in I} (\overline{v}(i)|x(i)|)^p\right)^{1/p}, \ 1 \le p < \infty, \ \text{ and } \ q_{\overline{v}}^{(\infty)}(x) := \sup_{i \in I} \overline{v}(i)|x(i)|,$$

for each $\overline{v} \in \overline{V}$. For $1 \leq p < \infty$ it is known that $k_p(V)$ equals to $K_p(\overline{V})$ as vector spaces and also topologically. In particular, the inductive limit topology is given by the system of seminorms $\{q_{\overline{v}}^{(p)} : \overline{v} \in \overline{V}\}$ and $k_p(V)$ is always complete. Moreover, $K_0(\overline{V})$ is the completion of $k_0(V)$ and the inductive limit topology of $k_0(V)$ is given by the system of seminorms $\{q_{\overline{v}}^{(\infty)} : \overline{v} \in \overline{V}\}$. However, it can happen that $k_0(V)$ is a proper subspace of $K_0(\overline{V})$. Finally, $k_{\infty}(V)$ and $K_{\infty}(\overline{V})$ are equal as vector spaces and the two spaces have the same bounded sets. Moreover, $k_{\infty}(V)$ is the bornological space associated with $K_{\infty}(\overline{V})$ but, in general, the inductive limit topology is genuinely stronger than the topology of $K_{\infty}(\overline{V})$.

Concerning duality we have $(\lambda_p(A))'_{\beta} = K_q(\overline{V})$ and $(k_p(V))'_{\beta} = \lambda_q(A)$, where $p \in \{0\} \cup [1,\infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$ (and $q = \infty$ if p = 1; q = 1 if p = 0). Also, for $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$ or p = 0 and q = 1, we have $(\lambda_p(A))'_{\beta} = k_q(V)$. In case $1 , the spaces <math>\lambda_p(A)$ and $k_p(V)$ are reflexive. The space $\lambda_0(A)$ is distinguished and satisfies $((\lambda_0(A))'_{\beta})'_{\beta} = (k_1(V))'_{\beta} = \lambda_{\infty}(A)$. Furthemore, $K_0(\overline{V})$ is a barrelled (DF)-space with $(K_0(\overline{V}))'_{\beta} = (k_0(V))'_{\beta} = \lambda_1(A)$. Hence, there is the biduality $((k_0(V))'_{\beta})'_{\beta} = ((K_0(\overline{V}))'_{\beta})'_{\beta} = K_{\infty}(\overline{V})$. The inductive dual $(\lambda_1(A))'_i = k_{\infty}(V)$ and this space is complete. We point out that $k_{\infty}(V) = (\lambda_1(A))'_{\beta}$ if and only if $K_{\infty}(\overline{V}) = k_{\infty}(V)$ if and only if $\lambda_1(A)$ is distinguished. For all the above facts on echelon and co–echelon spaces we refer to [3], [6].

Proposition 4.1. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions defined on a countable index set I and $p \in [1, \infty)$. The following assertions are equivalent.

- (i) $k_p(V) = \operatorname{ind}_n \ell^p(v_n)$ is a GDP-space.
- (ii) $k_p(V)$ is a Montel space.
- (iii) For every infinite set $I_0 \subseteq I$ and every $n \in \mathbb{N}$ there exists m(n) > n such that

$$\inf_{i \in I_0} \frac{v_{m(n)}(i)}{v_n(i)} = 0$$

Proof. (ii) \Leftrightarrow (iii) is well known, [3, Theorem 4.7].

 $(ii) \Rightarrow (i); see Remark 3.7.$

(i) \Rightarrow (iii). Suppose that (iii) fails. Then there is an infinite set $I_0 \subseteq I$ and $n \in \mathbb{N}$ such that for each m > n there exists $\varepsilon_m > 0$ satisfying $v_m(i) \ge \varepsilon_m v_n(i)$ for all $i \in I_0$. Consider the (complemented) sectional subspace

$$X_0 := \{ x = (x(i))_{i \in I} \in k_p(V) : x(i) = 0 \ \forall i \notin I_0 \}.$$

If $x \in X_0$, then $x \in \ell^p(v_m)$ for some m > n. It follows from the previous inequalities that $||x||_n \leq \varepsilon_m^{-1} ||x||_m$, where $||\cdot||_r$ is the norm of $\ell^p(v_r)$ for each $r \in \mathbb{N}$. Hence, $X_0 \subseteq \ell^p(v_n)$ and so we can endow X_0 with the norm $||\cdot||$ induced by $\ell^p(v_n)$, i.e., $||x|| = \left(\sum_{i \in I_0} (v_n(i)|x(i)|)^p\right)^{1/p}$. The injection $j_0: X_0 \to k_p(V)$ is continuous because the injection $\tilde{j}_0: X_0 \to \ell^p(v_n)$ is continuous. Moreover, the projection $P: k_p(V) \to X_0$ defined by $Px := x\chi_{I_0}$, for $x \in k_p(V)$, is continuous. To see this we need to show that the restriction $P: \ell^p(v_m) \to X_0$ is continuous for each m > n. But, this is precisely the inequality $||Px|| = ||x\chi_{I_0}||_n \leq \varepsilon_m^{-1} ||x||_m$ indicated above. Accordingly, $(X_0, ||\cdot||)$ is a Banach space which is isomorphic to a complemented subspace of $k_p(V)$ and also isomorphic to ℓ^p . Since ℓ^p , for $1 \leq p < \infty$, is not a GDP-space neither is $k_p(V)$; see Proposition 3.1(i). So, (i) fails.

For the notion of $V = (v_n)_{n=1}^{\infty}$ being regularly decreasing we refer to Section 3.

Proposition 4.2. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions defined on a countable index set I which is regularly decreasing. The following assertions are equivalent.

- (i) $k_0(V) = \operatorname{ind}_n c_0(v_n)$ is a GDP-space.
- (ii) $k_0(V)$ is a Montel space.
- (iii) For every infinite set $I_0 \subseteq I$ and every $n \in \mathbb{N}$ there exists m(n) > n such that

$$\inf_{i \in I_0} \frac{v_{m(n)}(i)}{v_n(i)} = 0.$$

Proof. Since $k_0(V)$ is complete and $k_0(V) \simeq K_0(\overline{V})$, [3, Lemma 3.6], the equivalences (ii) \Leftrightarrow (iii) are known; see (1) \Leftrightarrow (3) in [3, Theorem 4.7].

(ii) \Rightarrow (i); see Remark 3.7.

Finally, if (iii) fails to hold, then we can repeat the argument in the proof of $(i) \Rightarrow (iii)$ in Propositon 4.1 above to conclude that $k_0(V)$ contains a complemented copy of c_0 . Since the Banach space c_0 is not a GDP–space neither is $k_0(V)$; see Proposition 3.1(i).

Proposition 4.3. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions defined on a countable index set I which is regularly decreasing. Then $k_{\infty}(V) = \operatorname{ind}_n \ell^{\infty}(v_n)$ is a GDP-space.

Proof. Each Banach space $\ell^{\infty}(v_n)$ is isomorphic to ℓ^{∞} and hence, is a GDP– space. Since V is regularly decreasing, $k_{\infty}(V) = \operatorname{ind}_n \ell^{\infty}(v_n)$ is sequentially retractive, [2, Theorem 2.3]. In particular, $k_{\infty}(V)$ satisfies (3.6); see parts (ii) and (iii) of Remark 3.13. So, Proposition 3.12 ensures that $k_{\infty}(V)$ has the DP– property. Since $k_{\infty}(V)$ is an (LB)–space, the discussion prior to Lemma 3.10 implies that $k_{\infty}(V)$ is quasi–regular. Then Proposition 3.11 implies that $k_{\infty}(V)$ is a Grothendieck space.

Observe that the proof of $k_{\infty}(V)$ being a Grothendieck space does *not* require V to be regularly decreasing and hence, holds for arbitrary V.

Concerning the GDP-property of $K_{\infty}(\overline{V})$ it is possible to remove the requirement of regularly decreasing. To achieve this we require a technical result.

Lemma 4.4. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions defined on a countable index set I. For each $\overline{v} \in \overline{V}$ there exists an increasing sequence $\{I_k\}_{k=1}^{\infty}$ of subsets of I such that

(i) for every $k \in \mathbb{N}$ and every n > k there exists $\alpha_{n,k} > 0$ satisfying

 $v_k(i) \le \alpha_{n,k} v_n(i), \quad i \in I_k,$

(ii) for every $m \in \mathbb{N}$ and every $\varepsilon > 0$ there exists $k = k(m, \varepsilon)$ satisfying

$$\overline{v}(i) \leq \varepsilon v_m(i), \quad i \in I \setminus I_k.$$

Proof. Fix $\overline{v} \in \overline{V}$. By definition of \overline{V} we can select, for each $n \in \mathbb{N}$, a constant $M_n \geq 1$ with $\overline{v} \leq M_n v_n$ pointwise on I. Set $\beta_k := 2^k M_k \geq 2^k$, for each $k \in \mathbb{N}$, and define (possibly some empty) subsets of I by

$$J_1 := \bigcap_{n=2}^{\infty} \{ i \in I : v_{n-1}(i) \le \beta_n v_n(i) \}$$

and

$$J_k := (\cap_{s>k} \{i \in I : v_{s-1}(i) \le \beta_s v_s(i)\}) \cap \{i \in I : v_{k-1}(i) > \beta_k v_k(i)\},$$

for $k \geq 2$. Then the sets $\{J_k\}_{k=1}^{\infty}$ are pairwise disjoint and, from their definition it follows, for each $k \in \mathbb{N}$, that

$$v_k(i) \le (\beta_{k+1} \dots \beta_l) v_l(i), \quad i \in J_k, \ \forall l > k.$$

$$(4.1)$$

Set $I_k := \bigcup_{s=1}^k J_s$, for $k \in \mathbb{N}$. If $i \in I_k$ and n > k and $1 \le s \le k$, then it follows from (4.1) that

$$v_k(i) \le v_s(i) \le (\beta_{s+1} \dots \beta_n) v_n(i) \le \alpha_{n,k} v_l(i),$$

where $\alpha_{n,k} := (\beta_{k+1} \dots \beta_n)$. Then (i) is clear.

Now, fix $i \notin \bigcup_{k=1}^{\infty} J_k$. Since $i \notin J_1$ there is $n(1) \in \mathbb{N}$ with

$$v_{n(1)-1}(i) > \beta_{n(1)}v_{n(1)}(i).$$
(4.2)

As $i \notin J_{n(1)}$ and (4.2) holds, there is n(2) > n(1) with

$$v_{n(2)-1}(i) > \beta_{n(2)}v_{n(2)}(i).$$

Proceeding by induction, we can select $n(1) < n(2) < \ldots < n(k) < \ldots$ such that, for each $k \in \mathbb{N}$, we have

$$v_{n(k)-1}(i) > \beta_{n(k)}v_{n(k)}(i).$$

In particular, as V is decreasing, it follows that

$$v_1(i) > \beta_{n(k)} v_{n(k)}(i), \quad k \in \mathbb{N}.$$

So, for each $k \in \mathbb{N}$, we have

$$2^{n(k)}\overline{v}(i) \le 2^{n(k)}M_{n(k)}v_{n(k)}(i) = \beta_{n(k)}v_{n(k)}(i) < v_1(i).$$

That is, $\overline{v}(i) < 2^{-n(k)}v_1(i)$ for each $k \in \mathbb{N}$ which implies that $\overline{v}(i) = 0$. Accordingly, we have established that

$$\overline{v}(i) = 0, \quad i \notin \bigcup_{r=1}^{\infty} J_r.$$

We can now complete the proof of (ii). Fix $m \in \mathbb{N}$ and $\varepsilon > 0$ and select $k \in \mathbb{N}$ satisfying k > m and $2^k > \varepsilon^{-1}$. Then, for $i \notin I_k$, either $i \notin \bigcup_{r=1}^{\infty} J_r$, in which case $\overline{v}(i) = 0$ from above, or $i \in J_l$ for some l > k. In this latter case we have

$$\overline{v}(i) \leq M_l v_l(i) < M_l \beta_l^{-1} v_{l-1}(i) \quad (\text{as } i \in J_l)$$

$$= 2^{-l} v_{l-1}(i) \leq 2^{-l} v_m(i) \quad (\text{as } m < k < l)$$

$$\leq 2^{-k} v_m(i) < \varepsilon v_m(i) \quad (\text{as } k < l).$$

This establishes (ii) and the proof is thereby complete.

It should be pointed out that Lemma 4.4 implies Lemma 2.4 of [12]; see also the discussion prior to this result in [12].

For an absolutely convex bounded subset B of a lcHs X, there is always an associated normed space X_B , [23, Section 20.11]. We recall that a sequence $\{B_n\}_{n=1}^{\infty}$ of sets $B_n \in \mathcal{B}(X)$ is called *fundamental* if, for every $B \in \mathcal{B}(X)$ there exists $n \in \mathbb{N}$ such that $B \subseteq B_n$. Associated with such a sequence is the bornological space $X^{\times} := \operatorname{ind}_n X_{B_n}$. As vector spaces $X = X^{\times}$ and the topology of X^{\times} is finer than that of X. Nevertheless, X and X^{\times} have the same bounded sets. For the definition of X^{\times} and many of its properties we refer to [29, Section 6.2].

Lemma 4.5. Let X be a complete (DF)-space with a fundamental sequence of bounded sets $\{B_n\}_{n=1}^{\infty}$. If the associated bornological space $X^{\times} := \operatorname{ind}_n X_{B_n}$, which is an (LB)-space, is a Grothendieck space, then X is also a Grothendieck space.

Proof. Let $T \in \mathcal{L}(X, c_0)$. Since X^{\times} has a finer topology than X, we also have $T \in \mathcal{L}(X^{\times}, c_0)$. As X^{\times} is an (LB)–space, it is barrelled and a (DF)–space and so Lemma 3.10 can be applied in X^{\times} . So, X^{\times} being a Grothendieck space, it follows from Lemma 3.10 that $T \in \mathcal{L}(X^{\times}, c_0)$ maps bounded sets of X^{\times} into relatively weakly compact subsets of c_0 . But, $\mathcal{B}(X) = \mathcal{B}(X^{\times})$ and so $T \in \mathcal{L}(X, c_0)$ maps bounded sets of X into relatively weakly compact subsets of x into relatively weakly compact subsets of c_0 . But, $\mathcal{B}(X) = \mathcal{B}(X^{\times})$ and so $T \in \mathcal{L}(X, c_0)$ maps bounded sets of X into relatively weakly compact subsets of c_0 . By Lemma 3.10 applied in X, we conclude that X is a Grothendieck space.

Proposition 4.6. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions on a countable index set I. Then $K_{\infty}(\overline{V})$ is a GDP-space.

Proof. It is known that $K_{\infty}(\overline{V})^{\times} = k_{\infty}(V)$, [6, Theorem 15(c)], with $k_{\infty}(V) =$ ind $_{n} \ell^{\infty}(v_{n})$ an (LB)–space. By Proposition 3.11, $k_{\infty}(V)$ is a Grothendieck space and so, by Lemma 4.5, $K_{\infty}(\overline{V})$ is also a Grothendieck space.

Concerning the DP-property, it was noted at the beginning of this section that $K_{\infty}(\overline{V}) = (\lambda_1(A))'_{\beta}$, that is, $K_{\infty}(\overline{V})$ is a complete (DF)-space. So, it suffices to show that if $x^j \to 0$ weakly in $K_{\infty}(\overline{V})$ and $u^j \to 0$ for $\sigma((K_{\infty}(\overline{V}))', (K_{\infty}(\overline{V}))')$, then $\lim_{j\to\infty} \langle x^j, u^j \rangle = 0$; see Remark 3.4(i)(b) and Remark 3.4(ii). To establish this, first observe that $\{x^j\}_{j=1}^{\infty} \in \mathcal{B}(K_{\infty}(\overline{V}))$. Since $\mathcal{B}(K_{\infty}(\overline{V})) = \mathcal{B}(k_{\infty}(V))$ with $k_{\infty}(V) = \operatorname{ind}_n \ell^{\infty}(v_n)$ an (LB)-space, there exist $m \in \mathbb{N}$ and C > 0 such that

$$\sup_{j \in \mathbb{N}} \sup_{i \in I} v_m(i) |x^j(i)| \le C.$$
(4.3)

Since $\{u^j\}_{j=1}^{\infty}$ is bounded for $\sigma((K_{\infty}(\overline{V}))', (K_{\infty}(\overline{V}))'')$ and $K_{\infty}(\overline{V})$ is a complete (DF)–space (hence, \aleph_0 –barrelled), it follows that $\{u^j\}_{j=1}^{\infty}$ is equicontinuous. Accordingly, choose $\overline{v} \in \overline{V}$ such that $\{u^j\}_{j=1}^{\infty} \subseteq W^\circ$, where

$$W := \{ x \in K_{\infty}(\overline{V}) : \sup_{i \in I} \overline{v}(i) | x(i) | \le 1 \}.$$

For this particular \overline{v} we select the subsets $\{I_k\}_{k=1}^{\infty}$ of I according to Lemma 4.4. By (i) of that lemma, for each $k \in \mathbb{N}$, the sectional subspace

$$X_k := \{ x \in K_{\infty}(\overline{V}) : x(i) = 0 \ \forall i \notin I_k \}$$

is a Banach space isomorphic to ℓ^{∞} .

Fix $\varepsilon > 0$. For that $m \in \mathbb{N}$ and C > 0 as given in (4.3), we select $k(0) = k(m, \varepsilon/2C) \in \mathbb{N}$ via (ii) of Lemma 4.4 to get

$$\overline{v}(i) \le \frac{\varepsilon}{2C} v_m(i), \quad i \notin I_{k(0)}.$$

For each $i \notin I_{k(0)}$ and $j \in \mathbb{N}$, we then have

$$\overline{v}(i)|x^j(i)| \le \frac{\varepsilon}{2C}v_m(i)|x^j(i)| \le \frac{\varepsilon}{2}.$$

That is, $\{x^j \chi_{I \setminus I_{k(0)}}\}_{j=1}^{\infty} \subseteq \frac{\varepsilon}{2} W$. Since $\{u^j\}_{j=1}^{\infty} \subseteq W^{\circ}$, this implies that

$$\sup_{j\in\mathbb{N}} \left| \langle x^j \chi_{I \setminus I_{k(0)}}, u^j \rangle \right| \le \frac{\varepsilon}{2}.$$
(4.4)

Now, $\{x^j\chi_{I_{k(0)}}\}_{j=1}^{\infty}$ is a $\sigma(X_{k(0)}, X'_{k(0)})$ -null sequence in $X_{k(0)}$ and the restrictions $\{u^j|_{X_{k(0)}}\}_{j=1}^{\infty}$ form a $\sigma(X'_{k(0)}, X''_{k(0)})$ -null sequence in $X'_{k(0)}$. Since $X_{k(0)}$ is isomorphic to ℓ^{∞} , it has the DP-property and so there is $j(0) \in \mathbb{N}$ such that

$$\sup_{j \ge j(0)} |\langle x^j \chi_{I_{k(0)}}, u^j \rangle| \le \frac{\varepsilon}{2}.$$
(4.5)

For each $j \ge j(0)$ we can conclude from (4.4) and (4.5) that

$$|\langle x^j, u^j \rangle| \le |\langle x^j \chi_{I_{k(0)}}, u^j \rangle| + |\langle x^j \chi_{I \setminus I_{k(0)}}, u^j \rangle| \le \varepsilon.$$

This shows that $\lim_{i\to\infty} \langle x^j, u^j \rangle = 0$ and completes the proof.

For the definition of a sequence $V = (v_n)_{n=1}^{\infty}$ (as above) satisfying *condition* (D) we refer to [4], [6]. It can be shown directly that if V is regularly decreasing, then it satisfies condition (D) but, not conversely. So, our final result is an extension of Proposition 4.3.

Corollary 4.7. Let $V = (v_n)_{n=1}^{\infty}$ be any decreasing sequence of strictly positive functions on a countable index set I such that V satisfies condition (D). Then $k_{\infty}(V) = \operatorname{ind}_n \ell^{\infty}(v_n)$ is a GDP-space.

Proof. Condition (D) implies that $k_{\infty}(V)$ and $K_{\infty}(\overline{V})$ coincide as vector spaces and also topologically, [6, Corollary 8 and Theorem 8]. Then apply Proposition 4.6.

References

- A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodic operators in Fréchet spaces, preprint 2008.
- [2] K.D. Bierstedt, R.G. Meise, W.H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107–160.
- [3] K.D. Bierstedt, R.G. Meise, W.H. Summers, Köthe sets and Köthe sequence spaces, In: "Functional Analysis, Holomorphy and Approximation Theory" (Rio de Janeiro, 1980), North Holland Math. Studies 71 (1982), pp. 27–91.
- [4] K.D. Bierstedt, R. Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of type $\mathcal{V}_d\mathcal{C}(X)$, In: "Aspects of Mathematics and its Applications", North Holland Math. Library, 1986, pp. 169–226.
- [5] K.D. Bierstedt, J. Bonet, A question of D. Vogt on (LF)-spaces, Arch. Math., 61 (1993), 170–172.
- [6] K.D. Bierstedt, J. Bonet, Some aspects of the modern theory of Fréchet spaces, Rev. R. Acad. Cien. Serie A Mat. RACSAM, 97 (2003), 159–188.

- [7] J. Bonet, M. Lindström, Convergent sequences in duals of Fréchet spaces, In. "Functional Analysis", Proc. of the Essen Conference, Marcel Dekker, New York, 1993, pp. 391–404.
- [8] J. Bonet, P. Domański, M. Lindström, M.S. Ramanujan, Operator spaces containing c_0 or ℓ^{∞} , Results Math., **28** (1995), 250–269.
- J. Bonet, W.J. Ricker, Spectral measures in classes of Fréchet spaces, Bull. Soc. Roy. Sci. Liège, 73 (2004), 99-117.
- [10] J. Bonet, W.J. Ricker, The canonical spectral measure in Köthe echelon spaces, Integral Equations Operator Theory, 53 (2005), 477-496.
- [11] J. Bonet, S. Okada, W.J. Ricker, The canonical spectral measure and Köthe function spaces, *Quaestiones Math.*, **29** (2006), 91-116.
- [12] J. Bonet, W.J. Ricker, Schauder decompositions and the Grothendieck and Dunford-Pettis properties in Köthe echelon spaces of infinite order, *Positivity*, **11** (2007), 77-93.
- [13] B. Cascales, J. Orihuela, On compactness in locally convex spaces, Math. Z., 195 (1987), 365-381.
- [14] D.W. Dean, Schauder decompositions in (m), Proc. Amer. Math. Soc., 18 (1967), 619–623.
- [15] J.C. Díaz, M.A. Miñarro, Distinguished Fréchet spaces and projective tensor product, Doğa-Tr. J. Math., 14 (1990), 191-208.
- [16] J.C. Díaz, S. Dierolf, On duals of weakly angelic (LF)-spaces, Proc. Amer. Math. Soc., 125 (1997), 2897–2905.
- [17] J. Diestel, J.J. Uhl Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977.
- [18] J. Diestel, A survey of results related to the Dunford–Pettis property, Contemporary Math., 2 (1980) (Amer. Math. Soc.), pp. 15–60.
- [19] P. Domański, Fréchet injective spaces of continuous functions, Results Math., 18 (1990), 209-230.
- [20] P. Domański, On the injective C(T)-spaces, Indag. Math. (N.S.), 3 (1991), 289-299.
- [21] R.E. Edwards, Functional Analysis, Reinhart and Winston, New York, 1965.
- [22] N.J. Kalton, Schauder decompositions in locally convex spaces, Proc. Camb. Phil. Soc., 68 (1970), 377-392.
- [23] G. Köthe, Topological Vector Spaces I, 2nd Rev. Ed., Springer Verlag, Berlin-Heidelberg-New York, 1983.
- [24] G. Köthe, Topological Vector Spaces II, Springer Verlag, Berlin-Heidelberg-New York, 1979.
- [25] H.P. Lotz, Tauberian theorems for operators on L[∞] and similar spaces, In: "Functional Analysis: Surveys and Recent Results III", K.D. Bierstedt and B. Fuchssteiner (Eds.), North Holland, Amsterdam (1984), pp. 117-133.
- [26] H.P. Lotz, Uniform convergence of operators on L^{∞} and similar spaces, *Math. Z.*, **190** (1985), 207-220.
- [27] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, *Studia Math.*, **175** (2006), 19–45.
- [28] S. Okada, Spectrum of scalar-type spectral operators and Schauder decompositions, Math. Nachr., 139 (1988), 167-174.
- [29] P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces, North Holland Math. Studies 131, Amsterdam, 1987.
- [30] J.H. Qiu, Retakh's conditions and regularity properties of (LF)-spaces, Arch. Math., 67 (1996), 302-307.
- [31] W.J. Ricker, Spectral operators of scalar-type in Grothendieck spaces with the Dunford-Pettis property, Bull. London Math. Soc., 17 (1985), 268-270.
- [32] W.J. Ricker, Spectral measures, boundedly σ -complete Boolean algebras and applications to operator theory, *Trans. Amer. Math. Soc.*, **304** (1987), 819–838.
- [33] W.J. Ricker, Operator algebras generated by Boolean algebras of projections in Montel spaces, *Integral Equations Operator Theory*, **12** (1989), 143-145.
- [34] D. Vogt, Regularity properties of (LF)-spaces, In: "Progress in Functional Analysis", North Holland Math. Studies 170, Amsterdam, 1992, pp. 57–84.
- [35] B. Walsh, Structure of spectral measures on locally convex spaces, Trans. Amer. Math. Soc., 120 (1965), 295-326.

[36] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math., 120 (1996), 247–258.

A.A. Albanese, Dipartimento di Matematica, Università del Salento- C.P.193, I-73100 Lecce, Italy

 $E\text{-}mail\ address: \texttt{angela.albanese@unile.it}$

J. Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Edificio IDI5 (8E), Cubo F, Cuarta Planta, Universidad Politécnica de Valencia, E-46071 Valencia, Spain

E-mail address: jbonet@mat.upv.es

W.J. Ricker, Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku-eichstaett.de