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Abstract. It is shown that the generator of every exponentially equicontinu-
ous, uniformly continuous C0–semigroup of operators in the class of quojection
Fréchet spaces X (which includes properly all countable products of Banach
spaces) is necessarily everywhere defined and continuous. If, in addition, X
is a Grothendieck space with the Dunford–Pettis property, then uniform con-
tinuity can be relaxed to strong continuity. Two results, one of M. Lin and
one of H.P. Lotz, both concerned with uniformly mean ergodic operators in
Banach spaces, are also extended to the class of Fréchet spaces mentioned
above. They fail to hold for arbitrary Fréchet spaces.

Dedicated to the memory of V. B. Moscatelli

1. Introduction.

Consider a C0-semigroup of operators (T (t))t≥0 acting in a Banach space X
and which is operator norm continuous. It is a classical result that its infinitesimal
generator is then an everywhere defined, bounded linear operator on X, [17, Chap.
VIII, Corollary 1.9]. If X happens to be a Grothendieck space with the Dunford-
Pettis property (briefly, a GDP-space), then the operator norm continuity of
(T (t))t≥0 is automatic whenever the semigroup is merely strongly continuous.
This is an elegant result due to H. P. Lotz, [26, 27], which had well known for-
runners for particular GDP-spaces and C0–semigroups of operators. For instance,
it was known that every strongly continuous semigroup of positive operators in
L∞ has a bounded generator, [20]. Or, by a result of L.A. Rubel (see [7], for
example), given any strongly continuous group of isometries (T (t))t∈R in H∞(D)
there exists α ∈ R such that T (t) = eiαtI, for t ∈ R. Hence, T (·) is surely
uniformly continuous.

Let T be a bounded linear operator on a Banach space X and consider its
Cesàro means

T[n] :=
1
n

n∑
m=1

Tm, n ∈ N.

If the sequence {T[n]}∞n=1 converges to some operator strongly in X (resp. in
operator norm), then T is called mean ergodic (resp. uniformly mean ergodic).
As a standard reference on this topic we refer to [24], for example. A useful result
of M. Lin states that if Ker(I − T ) = {0} and limn→∞

1
n‖T

n‖ = 0, then T is
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uniformly mean ergodic (with ‖T[n]‖ → 0 as n → ∞) if and only if I − T[n] is
surjective for some n ∈ N if and only if I − T is surjective, [25]. If X is a GDP-
space, then another interesting result of H.P. Lotz states that a bounded operator
T is uniformly mean ergodic in X whenever it merely satisfies limn→∞

1
n‖T

n‖ = 0,
[26, 27].

Suppose now that X is a Fréchet space. Then the natural analogue of operator
norm convergence for Banach spaces is the topology τb of uniform convergence
on the bounded subsets of X.

The basic theory of C0-semigroups in the class of sequentially complete lo-
cally convex spaces (which includes Fréchet spaces) was developed by Komura
and Yosida, [21, 39]. The recent (and growing) interest in the hypercyclicity of
continuous linear operators and, in particular, of C0-semigroups in non–normable
Fréchet spaces, [8, 9, 12, 13, 37], suggests the need to determine whether or not
certain important results concerning C0-semigroups on Banach spaces continue
to hold in the setting of Fréchet spaces. In particular, Conejero raised the ques-
tion of whether every C0-semigroup on ω has a continuous everywhere defined
infinitesimal generator, [12, p.467]. We also point out that in the recent articles
[3], [11], the theory of GDP-Fréchet spaces has been significantly advanced. So,
do those classical Banach results mentioned above also carry over to the Fréchet
space setting? Examples exist which show that in this generality the answer is
surely no! The aim of this note is to show, nevertheless, that there is an important
class of Fréchet spaces, namely the quojections, in which all of the above results
are valid. This class of spaces was introduced in [5] and contains all countable
products of Banach spaces. More precisely, it is shown in Section 3 that ev-
ery (exponentially) equicontinuous, τb-continuous C0-semigroup of operators in a
quojection X necessarily has an everywhere defined and continuous infinitesimal
generator. Furthemore, if X is also a GDP-space, then the τb-continuity of any
(exponentially) equicontinuous C0–semigroup in X follows automatically from its
strong continuity. Concerning mean ergodic operators, it is shown in Section 4
that the Banach space criterion of M. Lin also carries over to quojections pro-
vided that limn→∞

1
n‖T

n‖ = 0 is replaced with τb-limn→∞
1
nTn = 0. In addition,

a continuous linear operator T in a GDP-quojection is uniformly mean ergodic
whenever merely τb-limn→∞

1
nTn = 0.

2. Preliminaries.

Let X be a locally convex Hausdorff space (briefly, lcHs) and ΓX a system of
continuous seminorms determining the topology of X. Then the strong operator
topology τs in the space L(X) of all continuous linear operators from X into itself
(from X into another lcHs Y we write L(X, Y )) is determined by the family of
seminorms

qx(S) := q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is defined in L(X) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(X),
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for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For X a Banach
space, τb is the operator norm topology in L(X). If ΓX is countable and X is
complete, then X is called a Fréchet space. The identity operator on a lcHs X is
denoted by I.

By Xσ we denote X equipped with its weak topology σ(X, X ′), where X ′ is
the topological dual space of X. The strong topology in X (resp. X ′) is denoted
by β(X, X ′) (resp. β(X ′, X)) and we write Xβ (resp. X ′

β); see [22, §21.2] for the
definition. The strong dual space (X ′

β)′β of X ′
β is denoted simply by X ′′. By X ′

σ

we denote X ′ equipped with its weak–star topology σ(X ′, X). Given T ∈ L(X),
its dual operator T t : X ′ → X ′ is defined by 〈x, T tx′〉 = 〈Tx, x′〉 for all x ∈ X,
x′ ∈ X ′. It is known that T t ∈ L(X ′

σ) and T t ∈ L(X ′
β), [23, p.134].

Definition 2.1. [39, p.234] Let X be a lcHs and (T (t))t≥0 ⊆ L(X) be a one
parameter family of operators satisfying the following properties.

(i) T (s)T (t) = T (s + t) for all s, t ≥ 0, with T (0) = I.
(ii) limt→t0 T (t)x = T (t0)x for all t0 ≥ 0, x ∈ X, i.e., T (t) → T (t0) in Ls(X)

as t → t0.
(iii) There exists a ≥ 0 such that (e−atT (t))t≥0 is an equicontinuous subset of

L(X), i.e.,

∀p ∈ ΓX ∃q ∈ ΓX ,Mp > 0 such that p(T (t)x) ≤ Mpe
atq(x)∀t ≥ 0, x ∈ X. (2.1)

Such a family (T (t))t≥0 is called an exponentially equicontinuous, C0–semigroup
on X. If a = 0, then we simply say equicontinuous.

If (T (t))t≥0 satisfies the conditions (i) and (iii) and the stronger condition
(ii)’ for all t0 ≥ 0 we have T (t) → T (t0) in Lb(X) as t → t0,

then it is called an exponentially equicontinuous, uniformly continuous semigroup
on X.

Observe that, given any exponentially equicontinuous C0–semigroup (T (t))t≥0

(resp. any exponentially equicontinuous, uniformly continuous semigroup) on a
lcHs X, the condition (ii) (resp. the condition (ii)’) in Definition 2.1 is equivalent
to T (t) → I in Ls(X) (resp. in Lb(X)) as t → 0+. This is a consequence of (i),
namely, that T (t0 + h)− T (t0) = T (t0)(T (h)− I) for each t0 > 0 and all h such
that t0 + h ≥ 0.

If X is a sequentially complete lcHs and (T (t))t≥0 is an exponentially equicon-
tinuous C0–semigroup on X, then the linear operator A defined by

Ax := lim
t→0+

T (t)x− x

t
,

for x ∈ D(A) := {x ∈ X : limt→0+
T (t)x−x

t exists in X}, is closed with D(A) =
X, [39, Ch. IX, Sections 3 & 4]. The operator (A,D(A)) is called the infinitesimal
generator of (T (t))t≥0.

It is known that every C0–semigroup of operators in a Banach space is nec-
essarily exponentially equicontinuous, [17, p.619]. For Fréchet spaces this need
not be the case. Indeed, in the sequence space ω = CN (with the topology of
coordinate convergence) it is routine to check that

T (t)x := (entxn)∞n=1, t ≥ 0, x = (xn)∞n=1 ∈ ω,
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defines a C0–semigroup which is not exponentially equicontinuous. Actually, since
ω is a Montel space, (T (t))t≥0 is even uniformly continuous.

Remark 2.2. Let X be a lcHs and (T (t))t≥0 be an equicontinuous C0–semigroup
on X. Given any p ∈ ΓX , define p̃ on X via the formula

p̃(x) := sup
t≥0

p(T (t)x), x ∈ X.

By Definition 2.1(i)–(iii) p̃ is well-defined, is a seminorm and satisfies

p(x) ≤ p̃(x) ≤ Mpq(x) ≤ Mpq̃(x), x ∈ X. (2.2)

Hence, Γ̃X := {p̃ : p ∈ ΓX} is also a system of continuous seminorms generating
the given lc–topology of X, with the additional property that

p̃(T (t)x) = sup
s≥0

p(T (t)T (s)x) = sup
s≥0

p(T (t + s)x) ≤ p̃(x), x ∈ X, t ≥ 0, (2.3)

for all p̃ ∈ Γ̃X .

A Fréchet space X is always a projective limit of continuous linear operators
Sk : Xk+1 → Xk, for k ∈ N, with each Xk a Banach space. If it is possible
to choose Xk and Sk such that each Sk is surjective and X is isomorphic to
proj j(Xj , Sj), then X is called a quojection, [5, Section 5]. Banach spaces and
countable products of Banach spaces are quojections. Actually, every quojection
is the quotient of a countable product of Banach spaces, [10]. In [31] Moscatelli
gave the first examples of quojections which are not isomorphic to countable
products of Banach spaces. Concrete examples of quojections are the sequence
space ω = CN, the function spaces Lp

loc(Ω), with 1 ≤ p ≤ ∞ and Ω an open
subset of RN , and C(m)(Ω), with m ∈ N0 and Ω an open subset of RN , when
equipped with their canonical lc–topology. Indeed, the above function spaces
are isomorphic to countable products of Banach spaces. Moreover, the spaces of
continuous functions C(X), with X a σ–compact completely regular topological
space, endowed with the compact open topology are also examples of quojections.
However, Domański constructed a completely regular topological space X such
that the Fréchet space C(X) is a quojection which is not isomorphic to a com-
plemented subspace of a product of Banach spaces [16, Theorem]. It is known
that a Fréchet space X admits a continuous norm if and only if X contains no
isomorphic copy of ω, see [19, Theorem 7.2.7]. On the other hand, a quojection X
admits a continuous norm if and only if it is a Banach space, see [5, Proposition
3]. Hence, a quojection is either a Banach space or contains an isomorphic copy
of ω, necessarily complemented, see [19, Theorem 7.2.7]. For further information
on quojections we refer to the survey paper [29] and the references therein; see
also [5], [15].

The following technical result plays a crucial role in later sections.

Lemma 2.3. Let X be a quojection and let {qj}∞j=1 be an increasing sequence of
seminorms generating the lc–topology of X. Let {Sn}∞n=1 ⊆ L(X) be any sequence
of operators satisfying the following properties.

(i) For each j ∈ N there exists cj > 0 such that

qj(Snx) ≤ cjqj(x), x ∈ X, n ∈ N,

that is, {Sn}∞n=1 is equicontinuous in L(X).
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(ii) For each m ∈ N, we have limn→∞(I − Sm)Sn = 0 in Lb(X).
(iii) limn→∞ S2

n = 0 in Lb(X).

Then also limn→∞ Sn = 0 in Lb(X).

Proof. For each j ∈ N, set Xj := X/q−1
j ({0}), endowed with the quotient lc–

topology and denote by Qj : X → Xj the canonical (surjective) quotient map,
so that Ker(Qj) = q−1

j ({0}). Then Xj is a Fréchet space whose lc–topology is
generated by the sequence of seminorms {(q̂j)k}∞k=1 given by

(q̂j)k(Qjx) := inf{qk(y) : y ∈ X satisfies Qjy = Qjx}, x ∈ X.

Observe that
(q̂j)k(Qjx) ≤ qk(x), x ∈ X, k ∈ N. (2.4)

Moreover, (q̂j)j(Qjx) = qj(x), for all x ∈ X, thereby implying that (q̂j)j is a norm
on Xj and hence, that (q̂j)k is a norm on Xj for all k ≥ j. So, Xj is actually
a Banach space because X is a quojection, [5, Proposition 3]. Then there exists
k(j) ≥ j such that the norm (q̂j)k(j) generates the lc–topology of Xj . Conse-
quently, X is isomorphic to the projective limit of the sequence (Xj , (q̂j)k(j))∞j=1

of Banach spaces with respect to the surjective linking maps Qj,j+1 : Xj+1 → Xj

defined by Qj,j+1(Qj+1x) = Qjx for all x ∈ X, i.e, X = proj j(Xj , Qj,j+1).
Next, fix j ∈ N and define a sequence {S(j)

n }∞n=1 of operators on the Banach
space Xj via

S(j)
n Qjx := QjSnx, x ∈ X. (2.5)

Each S
(j)
n , for n ∈ N, is a well defined continuous linear operator on Xj . Indeed,

suppose that Qjx = Qjy for some x, y ∈ X, i.e., x − y ∈ Ker(Qj) so that
qj(x− y) = 0. This, together with (i), yields qj(Sn(x− y)) = 0, i.e., Sn(x− y) ∈
q−1
j ({0}) = Ker(Qj). Therefore, QjSnx = QjSny which implies that S

(j)
n Qjx =

S
(j)
n Qjy by (2.5). So, S

(j)
n is well defined and clearly linear. Moreover, via (i),

(2.4) and (2.5) we obtain that

(q̂j)k(j)(S
(j)
n x̂) = (q̂j)k(j)(S

(j)
n Qjx) = (q̂j)k(j)(QjSnx)

≤ qk(j)(Snx) ≤ ck(j)qk(j)(x)

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the infimum with respect to
x ∈ Q−1

j ({x̂}), it follows from the definition of the quotient seminorm (q̂j)k(j)

that
(q̂j)k(j)(S

(j)
n x̂) ≤ ck(j)(q̂j)k(j)(x̂), x̂ ∈ Xj . (2.6)

Since the norm (q̂j)k(j) induces the lc–topology of Xj , (2.6) ensures the continuity
of S

(j)
n .

It follows from (2.5) that, for fixed j ∈ N, we have

(S(j)
n )2Qjx = S(j)

n QjSnx = QjS
2
nx, x ∈ X, n ∈ N.

To see that (S(j)
n )2 → 0 in Lb(Xj) as n →∞ (i.e., in operator norm), let B̂j denote

the closed unit ball of the Banach space (Xj , (q̂j)k(j)). Since X is a quojection,
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there is Bj ∈ B(X) such that B̂j ⊆ Qj(Bj), [15, Proposition 1]. Accordingly,

sup
x̂∈B̂j

(q̂j)k(j)

(
(S(j)

n )2x̂
)

≤ sup
x̂∈Qj(Bj)

(q̂j)k(j)

(
(S(j)

n )2x̂
)

= sup
x∈Bj

(q̂j)k(j)

(
(S(j)

n )2Qjx
)

= sup
x∈Bj

(q̂j)k(j)

(
Qj(S2

nx)
)

≤ sup
x∈Bj

qk(j)

(
S2

nx
)
,

where the last inequality follows from (2.4). But, supx∈Bj
qk(j)

(
S2

nx
)
→ 0 as

n →∞ by (iii). It follows that (S(j)
n )2 → 0 in Lb(Xj) as n →∞.

Now, fix m ∈ N. Then, for each j ∈ N, it follows from (2.5) that

(I − S(j)
m )S(j)

n Qjx = QjSnx− S(j)
m QjSnx = QjSnx−QjSmSnx

= Qj(I − Sm)Snx,

for all x ∈ X and n ∈ N. Moreover, (ii) states that (I − Sm)Sn → 0 in Lb(X) as
n →∞ and so we can proceed as for (S(j)

n )2 to conclude that

lim
n→∞

(I − Sj
m)Sj

n = 0 in Lb(Xj), m ∈ N. (2.7)

Now, as Xj is a Banach space and (S(j)
n )2 → 0 in Lb(Xj) as n → ∞, for all

j ∈ N there exists n(j) > n(j − 1) (setting n(0) := 1) such that (I − (S(j)
n(j))

2) is
invertible in L(Xj), [17, p.566]. Then the identity

(I − S
(j)
n(j))(I + S

(j)
n(j))(I − (S(j)

n(j))
2)−1 = I

in Xj implies that I −S
(j)
n(j) is invertible in L(Xj). But, for each j ∈ N, it follows

from (2.7) that limn→∞(I − S
(j)
n(j))S

(j)
n = 0 in Lb(Xj) and so

τb − lim
n→∞

S(j)
n = τb − lim

n→∞
(I − S

(j)
n(j))

−1(I − S
(j)
n(j))S

(j)
n = 0. (2.8)

Finally, in order to conclude that Sn → 0 in Lb(X), we fix j ∈ N and B ∈ B(X).
Then, for each n ∈ N, we have via (2.5) that

sup
x∈B

qj(Snx) = sup
x∈B

(q̂j)j(QjSnx) = sup
x∈B

(q̂j)j(S(j)
n Qjx)

= sup
x̂∈Qj(B)

(q̂j)j(S(j)
n x̂) ≤ sup

x̂∈Qj(B)
(q̂j)k(j)(S

(j)
n x̂),

with Qj(B) ∈ B(Xj), after recalling that qj(x) = (q̂j)j(Qjx), for x ∈ X and
j ∈ N (because Ker(Qj) = q−1

j ({0})). �

Recall that a lcHs X is a Grothendieck space if every sequence in X ′ which is
convergent for σ(X ′, X) is also convergent for σ(X ′, X ′′). Clearly every reflexive
lcHs is a Grothendieck space. A lcHs X is said to have the Dunford–Pettis property
(briefly, DP) if every element of L(X, Y ), for Y any quasicomplete lcHs, which
transforms elements of B(X) into relatively σ(Y, Y ′)–compact subsets of Y , also
transforms σ(X, X ′)–compact subsets of X into relatively compact subsets of Y ,
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[18, pp.633-634]. Actually, it suffices if Y runs through the class of all Banach
spaces, [11, p.79]. A reflexive lcHs satisfies the DP property if and only if it
is Montel, [18, p.634]. A Grothendieck lcHs X with the DP property is called,
briefly, a GDP space.

Lemma 2.4. Let X be a barrelled lcHs which is a GDP space. Let {Sn}∞n=1 ⊆
L(X) be a sequence of operators satisfying the following properties.

(i) For each m, n ∈ N we have SmSn = SnSm.
(ii) For each m ∈ N we have limn→∞(Sn − I)Sm = 0 in Lb(X).
(iii) limn→∞ Sn = I in Ls(X).

Then limn→∞(Sn − I)2 = 0 in Lb(X).
If, in addition, X is a quojection Fréchet space and there exists a fundamental

sequence {qj}∞j=1 of seminorms generating the lc–topology of X which satisfy
(iv) for each j ∈ N there exists cj > 0 such that

qj(Snx) ≤ cjqj(x), x ∈ X, n ∈ N,

then also (Sn − I) → 0 in Lb(X) as n →∞, i.e., limn→∞ Sn = I in Lb(X).

Proof. For n ∈ N, set Tn := I − Sn. Observe, by the hypotheses, that for each
m ∈ N, we have via (i) and (ii) that

(I − Tm)Tn = Tn(I − Tm) = (I − Sn)Sm → 0 in Lb(X) as n →∞. (2.9)

Moreover, (iii) gives
lim

n→∞
Tn = 0 in Ls(X). (2.10)

Next, suppose that T 2
n 6→ 0 in Lb(X) as n → ∞. Then there exist B ∈ B(X),

q ∈ ΓX and ε > 0 such that supx∈B q(T 2
nx) ≥ ε for infinitely many n. Select

increasing integers n(s) ↑ ∞ and a sequence {xs}∞s=1 ⊆ B with q(T 2
n(s)xs) ≥ ε for

all s ∈ N. Arguing as in the proof of [11, Proposition 4.2], for each s ∈ N there is
x′s ∈ X ′ with |〈·, x′s〉| ≤ q(·) pointwise on X and such that |〈T 2

n(s)xs, x
′
s〉| ≥ ε, i.e.,

|〈Tn(s)xs, T
t
n(s)x

′
s〉| ≥ ε, s ∈ N.

Because of (2.9) we can apply [3, Lemma 3.5(ii)] to the sequence {Tn(s)}∞s=1 acting
in the GDP space X to conclude that

lim
s→∞

Tn(s)xs = 0, for σ(X, X ′),

after noting that {xs}∞s=1 is bounded in X, and apply [3, Lemma 3.5(i)] to con-
clude that

lim
s→∞

T t
n(s)x

′
s = 0, for σ(X ′, X ′′),

after noting that {x′s}∞s=1 ⊆ X ′ is bounded for σ(X ′, X). Then the DP property
of X ensures that

lim
s→∞

|〈Tn(s)xs, T
t
n(s)x

′
s〉| = 0,

[3, Proposition 3.3(i)], which is a contradiction. Thus, we must have that T 2
n → 0

in Lb(X) as n →∞.
Suppose now, in addition, that X is a quojection Fréchet space and (iv) is

satisfied. Then we can apply Lemma 2.3 to {Tn}∞n=1 to conclude that Tn → 0 in
Lb(X), i.e., limn→∞ Sn = I in Lb(X), after noting that condition (iv) implies

qj(Tnx) ≤ (1 + cj)qj(x), x ∈ X, j, n ∈ N.



8 A.A. Albanese, J. Bonet and W. J. Ricker

�

3. C0-semigroups in Quojections

As already noted in the Introduction, every operator norm continuous semi-
group in a Banach space X has its infinitesimal generator belonging to L(X). We
begin with an example to show that this fails to hold in general Fréchet spaces.

Example 3.1. Let B = (an(i))i,n∈N be a Köthe matrix, i.e., 1 ≤ an(i) ≤ an+1(i)
for all i, n ∈ N. Then we define the spaces

λ1(B) := {x = (xi)i∈N ∈ CN : pn(x) :=
∑
i∈N

an(i)|xi| < ∞,∀n ∈ N},

λ∞(B) := {x = (xi)i∈N ∈ CN : qn(x) := sup
i∈N

an(i)|xi| < ∞,∀n ∈ N}.

These spaces are Fréchet spaces relative to the sequence of seminorms {pn}∞n=1

and {qn}∞n=1, respectively. They are called Köthe sequence (or echelon) spaces.
Moreover, they are nuclear if and only if for every n ∈ N there is m ∈ N with
m > n such that ( an(i)

am(i))i∈N ∈ `1, in which case λ1(B) = λ∞(B), [28, Proposition
28.16]. In particular, the space s := {x ∈ CN : pn(x) =

∑
i∈N in|xi| < ∞ ∀n ∈ N}

of all rapidly decreasing sequences is a nuclear Köthe sequence space with Köthe
matrix B = (in)i,n∈N.

Now, suppose that the Köthe sequence space λ1(B) is nuclear and that µ =
(µi)i∈N is a sequence of real numbers such that each µi > 0 and limi→∞ µi = ∞.
For each t ≥ 0, define a linear operator T (t) on λ1(B) by

T (t)x := (e−µitxi)i∈N, x ∈ λ1(B).

We claim that (T (t))t≥0 is an equicontinuous, uniformly continuous semigroup in
λ1(B). Indeed, observe that T (0) = I. Moreover, we have

pn(T (t)x) =
∑
i∈N

an(i)e−µit|xi| ≤
∑
i∈N

an(i)|xi| = pn(x), x ∈ λ1(B),

for each t ≥ 0 and n ∈ N. Accordingly, (T (t))t≥0 ⊆ L(λ1(B)) and is equicontinu-
ous.

Fix any x ∈ λ1(B) and ε > 0. Then, for given n ∈ N, there is i0 ∈ I
such that

∑
i>i0

an(i)|xi| < ε/4. On the other hand, there is t0 > 0 such that∑
i≤i0

|e−µit− 1|an(i)|xi| < ε/2 for all 0 < t < t0. It follows, for every 0 < t < t0,
that

pn(T (t)x− x) =
∑
i≤i0

|e−µit − 1|an(i)|xi|+
∑
i>i0

|e−µit − 1|an(i)|xi|

<
ε

2
+ 2

∑
i>i0

an(i)|xi| <
ε

2
+

ε

2
= ε,

i.e., limt→0+ pn(T (t)x− x) = 0 for each n ∈ N. Since x is arbitrary, we conclude
that limt→0+ T (t) = I in Ls(λ1(B)). So, (T (t))t≥0 is an equicontinuous C0-
semigroup in λ1(B) and hence, it is also uniformly continuous as λ1(B) is Montel,
since it is nuclear.
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A routine calculation shows that the infinitesimal generator (A,D(A)) of the
C0–semigroup (T (t))t≥0 is given by

Ax = (−µixi)i∈N for x ∈ D(A) = {x ∈ λ1(B) : µ · x := (µixi)i∈N ∈ λ1(B)}.

If the sequence µ = (µi)i∈N grows fast enough, then D(A) 6= λ1(B) and hence,
the operator A is neither everywhere defined nor continuous! The sequence µ
can be selected as follows. Without loss of generality, we may suppose that
( an(i)

an+1(i))i∈N ∈ `1 for all n ∈ N (pass to a subsequence, if necessary). Then, for
each n ∈ N, we set µi :=

∑i
n=1 an(i), for i ∈ N. So, µi → ∞ (recall that

an(i) ≥ 1) and 1
µ := ( 1

µi
)i∈N ∈ λ1(B) because

pm(
1
µ

) =
∑
i∈N

am(i)
1
µi

=
m∑

i=1

am(i)
1
µi

+
∞∑

i=m+1

am(i)∑i
n=1 an(i)

≤
m∑

i=1

am(i)
1
µi

+
∞∑

i=m+1

am(i)
am+1(i)

< ∞,

for all m ∈ N. But µ · 1
µ = (1)i∈N 6∈ λ1(B), i.e., 1

µ 6∈ D(A).

Proposition 3.2. Suppose that X is a Fréchet space which contains a comple-
mented copy of some nuclear Köthe sequence space λ1(B). Then there exists an
equicontinuous, uniformly continuous semigroup in X whose infinitesimal gener-
ator is not everywhere defined.

Proof. Let P : X → X be any projection satisfying Im(P) = λ1(B) and define
Y := Ker(P ). Next, let (T1(t))t≥0 be any equicontinuous, uniformly continuous
semigroup on λ1(B) (see Example 3.1). Let A ∈ L(Y ) be any operator for which
{An}∞n=0 ⊆ L(Y ) is equicontinuous. We may then assume that for each seminorm
p ∈ ΓY there exists q ∈ ΓY such that

p(Any) ≤ q(y), y ∈ Y, n ∈ N0;

see for example [2, Remark 2.6(i)]. It follows that

p(etAy) ≤
∞∑

n=0

p

(
tnAny

n!

)
≤ etq(y), y ∈ Y, t ≥ 0.

Accordingly, we can define an equicontinuous, uniformly continuous semigroup
(T2(t))t≥0 in Y by

T2(t) := e−tetA, t ≥ 0.

Then the one parameter family (T (t))t≥0 of continuous linear operators on X
defined via

T (t)x := T1(t)Px + T2(t)(I − P )x, t ≥ 0, x ∈ X,

is an equicontinuous, uniformly continuous semigroup in X whose infinitesimal
generator is not everywhere defined. �

For the class of quojection Fréchet spaces, the phenomenon exhibited by Ex-
ample 3.1 cannot occur.
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Theorem 3.3. Let X be a quojection Fréchet space and (T (t))t≥0 be an exponen-
tially equicontinuous, uniformly continuous semigroup on X. Then the infinites-
imal generator A of (T (t))t≥0 is everywhere defined, i.e., D(A) = X and hence,
A ∈ L(X).

Proof. Let a ≥ 0 be as in Definition 2.1. Then the rescaled semigroup (e−atT (t))t≥0

is equicontinuous and has infinitesimal generator A−aI with domain D(A−aI) =
D(A). So, without loss of generality, we may suppose that (T (t))t≥0 is equicon-
tinuous.

According to Remark 2.2 there is a fundamental increasing sequence {qj}∞j=1

of continuous seminorms on X such that

qj(T (t)x) ≤ qj(x), x ∈ X, t ≥ 0, j ∈ N. (3.1)

For each j ∈ N, set Xj := X/q−1
j ({0}), endowed with the quotient lc–topology

and denote by Qj : X → Xj the canonical (surjective) quotient map, so that
Ker(Qj) = q−1

j ({0}). As in the proof of Lemma 2.3, define the sequence of
seminorms {(q̂j)k}∞k=1 in the Fréchet space Xj by

(q̂j)k(Qjx) := inf{qk(y) : y ∈ X satisfies Qjy = Qjx}, x ∈ X,

in which case (q̂j)k is a norm for each k ≥ j, and select k(j) ≥ j such that the
norm (q̂j)k(j) generates the lc–topology of Xj . That is, X is isomorphic to the
projective limit of the sequence (Xj , (q̂j)k(j))∞j=1 of Banach spaces with respect to
the surjective linking maps Qj,j+1 : Xj+1 → Xj defined by Qj,j+1Qj+1x = Qjx
for all x ∈ X.

Fix j ∈ N. Define a family (Tj(t))t≥0 of operators on the Banach space Xj via

Tj(t)Qjx := QjT (t)x, x ∈ X, t ≥ 0. (3.2)

Each Tj(t), for t ≥ 0, is a well defined linear continuous operator on Xj . Indeed,
fix t and suppose that Qjx = Qjy for some x, y ∈ X, i.e., x−y ∈ Ker(Qj) so that
qj(x − y) = 0. This, together with (3.1), yields qj(T (t)(x − y)) = 0 and hence,
by (3.2), that T (t)(x− y) ∈ q−1

j ({0}) = Ker(Qj). Therefore, QjT (t)x = QjT (t)y
which implies that Tj(t)Qjx = Tj(t)Qjy; see (3.2). So, Tj(t) is well defined, and
clearly linear, for t ≥ 0 and j ∈ N, with Tj(0) = I. Moreover, via (2.4), (3.1) and
(3.2) we obtain that

(q̂j)k(j)(Tj(t)x̂) = (q̂j)k(j)(Tj(t)Qjx) = (q̂j)k(j)(QjT (t)x) ≤ qk(j)(T (t)x) ≤ qk(j)(x)

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the infimum with respect to
x ∈ Q−1

j ({x̂}), it follows that

(q̂j)k(j)(Tj(t)x̂) ≤ (q̂j)k(j)(x̂), x̂ ∈ Xj . (3.3)

Since (q̂j)k(j) is the norm of Xj , (3.3) ensures the continuity of Tj(t), for all t ≥ 0,
and that (Tj(t))t≥0 ⊆ L(Xj) is uniformly bounded (i.e., equicontinuous).

Next observe that (Tj(t))t≥0 satisfies the semigroup law. Indeed, by (3.2) and
the surjectivity of Qj we have

Tj(s)Tj(t)Qjx = Tj(s)QjT (t)x = QjT (s)T (t)x
= QjT (s + t)x = Tj(s + t)Qjx, x ∈ X, s, t ≥ 0.

Finally, we claim that (Tj(t))t≥0 is operator norm continuous on the Banach
space Xj . Denote by B̂j := {x̂ ∈ Xj : (q̂j)k(j)(x̂) ≤ 1} the unit ball of Xj . As in
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the proof of Lemma 2.3, there is Bj ∈ B(X) such that B̂j ⊆ Qj(Bj). It follows
from this containment and (3.2) that

sup
x̂∈B̂j

(q̂j)k(j)(Tj(t)x̂− x̂) ≤ sup
x̂∈Qj(Bj)

(q̂j)k(j)(Tj x̂− x̂)

= sup
x∈Bj

(q̂j)k(j)(Tj(t)Qjx−Qjx)

= sup
x∈Bj

(q̂j)k(j)(Qj(T (t)x− x))

≤ sup
x∈Bj

qk(j)(T (t)x− x),

where the last inequality follows from (2.4). But, supx∈Bj
qk(j)(T (t)x − x) → 0

as t → 0+, because (T (t))t≥0 is uniformly continuous by assumption. Hence,
(Tj(t))t≥0 is operator norm continuous in Xj .

As noted in the Introduction, the operator norm continuity of (Tj(t))t≥0 on Xj

implies that its infinitesimal generator Aj ∈ L(Xj). In particular, Tj(t) = etAj for
t ≥ 0, and this holds for all j ∈ N, which implies that the infinitesimal generator
A of (T (t))t≥0 is also everywhere defined. To show this we proceed as follows.
Again, fix j ∈ N. Observe, by (3.2) and the identity Qj,j+1Qj+1 = Qj , that

Tj(t)Qjx = QjT (t)x = Qj,j+1Qj+1T (t)x
= Qj,j+1Tj+1(t)Qj+1x, x ∈ X, t ≥ 0.

Thus, for each x ∈ X, we have

Tj(t)Qjx−Qjx

t
=

Qj,j+1Tj+1(t)Qj+1x−Qj,j+1Qj+1x

t

= Qj,j+1

(
Tj+1(t)Qj+1x−Qj+1x

t

)
, t > 0. (3.4)

Taking the limit in (3.4) for t → 0+, we obtain

AjQjx = Qj,j+1Aj+1Qj+1x, (3.5)

which holds for all x ∈ X and j ∈ N. So, by (3.5) the operator A : X → X
defined by

QjAx := AjQjx, x ∈ X, j ∈ N, (3.6)

is well defined, linear (recall that X = proj j(Xj , Qj,j+1)) and satisfies

qj(Ax) = (q̂j)j(QjAx) = (q̂j)j(AjQjx) ≤ (q̂j)k(j)(AjQjx)

≤ cj(q̂j)k(j)(Qjx) ≤ qk(j)(x), x ∈ X, (3.7)

for each j ∈ N, i.e., A ∈ L(X), where cj denotes the operator norm of Aj ∈ L(Xj).
Moreover, A coincides with A on D(A). Indeed, if x ∈ D(A), the we have the
existence of

lim
t→0+

T (t)x− x

t
= Ax in X,
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thereby implying, via (3.2), the existence of

QjAx = lim
t→0+

Qj

(
T (t)x− x

t

)
= lim

t→0+

Tj(t)Qjx−Qjx

t
= AjQjx,

in Xj , for each j ∈ N. Hence, (3.6) yields

QjAx = QjAx, j ∈ N,

which implies that Ax = Ax as X = proj j(Xj , Qj.j+1). On the other hand, if
j ∈ N and x ∈ X, then we have from the previous calculation and (3.2) that

lim
t→0+

Qj

(
T (t)x− x

t

)
= lim

t→0+

Tj(t)Qjx−Qjx

t
= AjQjx,

with the limit existing in Xj . As X = proj j(Xj , Qj.j+1), this means exactly that

lim
t→0+

T (t)x− x

t
= Ax

with the limit existing in X. This completes the proof. �

In the notation of the proof of Theorem 3.3, we point out that the power series
expansion of etAj = Tj(t) in the Banach space Xj yields

Tj(t)Qjx =
∞∑

n=0

tn

n!
An

j (Qjx), x ∈ X, t ≥ 0, j ∈ N.

So, as X = proj j(Xj , Qj.j+1), we obtain from (3.2) the expansion

T (t)x =
∑
n=0

tn

n!
Anx, x ∈ X, t ≥ 0.

A prequojection is a Fréchet space X such that X ′′
β is a quojection. Every

quojection is a prequojection. A prequojection is called non–trivial if it is not
itself a quojection. It is known that X is a prequojection if and only if X ′

β is
a strict (LB)–space. An alternative characterization is that X is a prequojecton
if and only if X has no nuclear quotient which admits a continuous norm, see
[5, 14, 33, 38]. The problem of the existence of non–trivial prequojections arose
in a natural way in [5]; it has been solved, in the positive sense, in various papers,
[6], [14], [32]. All of these papers employ the same method, which consists in the
construction of the dual of a prequojection, rather than the prequojection itself,
which is often difficult to describe (see the survey paper [29] for further informa-
tion). However, in [30] an alternative method for constructing prequojections is
presented which has the advantage of being direct. For an example of a concrete
space (i.e., a space of continuous functions on a suitable topological space), which
is a non–trivial prequojection, see [1]. The relevance of such spaces for this paper
is the following extension of Theorem 3.3.

Proposition 3.4. Let X be a prequojection Fréchet space. Then every expo-
nentially equicontinuous, uniformly continuous semigroup in X has infinitesimal
generator belonging to L(X).
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Proof. Suppose that X is a prequojection and that (T (t))t≥0 is an exponentially
equicontinuous, uniformly continuous semigroup in X. It is routine to check
that the bidual operators (T (t)tt)t≥0 form an exponentially equicontinuous, C0-
semigroup in X ′′

β . Via the definition of the bounded sets and 0–neighbourhoods
in X ′′

β , it is straightforward to check that the uniform continuity of (T (t)tt)t≥0 in
Lb(X ′′

β) follows from that of (T (t))t≥0 in Lb(X); see also [3, Lemma 2.1]. Hence,
X ′′

β being a quojection, we can apply Theorem 3.3 to (T (t)tt)t≥0 to conclude that
its infinitesimal generator Att (which is the bi-dual of the infinitesimal generator
A of (T (t))t≥0) is everywhere defined, i.e., D(Att) = X ′′ and that Att ∈ L(X ′′

β).
Since Att|D(A) = A and D(A) is dense in X, it follows that A is also everywhere
defined and hence, that A ∈ L(X). �

Recall that a Fréchet space is not a prequojection if and only if it admits a
separated quotient isomorphic to an infinite dimensional nuclear Köthe echelon
space, see [5, 14, 33, 38]. This fact, together with Propositions 3.2 and 3.4, suggest
the following

Question 1. Is a Fréchet space X a prequojection if and only if every exponen-
tially equicontinuous, uniformly continuous semigroup in X has its infinitesimal
generator belonging to L(X)?

For Banach spaces the following result is due to H.P. Lotz, [26], [27].

Theorem 3.5. Let X be a quojection GDP–Fréchet space and (T (t))t≥0 be an
exponentially equicontinuous, C0–semigroup on X. Then (T (t))t≥0 is uniformly
continuous and its infinitesimal generator belongs to L(X).

Proof. Without loss of generality, we can suppose that (T (t))t≥0 is actually equicon-
tinuous (see the proof of Theorem 3.3). As in the proof of Theorem 3.3 we can
select a fundamental increasing sequence {qj}∞j=1 of continuous seminorms gen-
erating the lc–topology in X such that (3.1) is satisfied. Denote by {R(λ) :=
(λI −A)−1}λ∈C,Re(λ)>0 ⊆ L(X) the family of resolvent operators of the infinites-
imal generator A, in which case (3.1) and Theorem 2 of [39, p.241] (see also its
proof) yield

qj((λR(λ))kx) ≤ qj(x), x ∈ X, λ ∈ (0,+∞), j, k ∈ N.

Choose any increasing sequence (λn)∞n=1 ⊆ (0,+∞) with λn →∞ and set Sn :=
λnR(λn). For k = 1 the previous inequalities yield

qj(Snx) ≤ qj(x), x ∈ X, j, n ∈ N. (3.8)

On the other hand, the resolvent equation R(λ)−R(µ) = (µ−λ)R(λ)R(µ) implies
that (Sn − I)Sm = (λn − λm)−1λm(Sm − Sn) for λn 6= λm. Hence, via (3.8) we
obtain limn→∞(Sn − I)Sm = 0 in Lb(X), for each m ∈ N. Moreover, Sn =
λnR(λn) → I in Ls(X) as n → ∞, see [39, Corollary 2, p.241]. In view of (3.8)
we can then apply Lemma 2.4 to the sequence {Sn}∞n=1 of pairwise commuting
operators in X to conclude that λnR(λn) = Sn → I in Lb(X) as n →∞.

As in the proof of Theorem 3.3, for each j ∈ N, we set Xj := X/q−1
j ({0}), de-

note by Qj : X → Xj the canonical (surjective) quotient map, so that Ker(Qj) =
q−1
j ({0}), and define the sequence of seminorms {(q̂j)k}∞k=1 in Xj so that (q̂j)k is

a norm for k ≥ j. Again select k(j) ≥ j such that the norm (q̂j)k(j) generates
the lc–topology of Xj . Consequently, X is isomorphic to the projective limit
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of the sequence (Xj , (q̂j)k(j))∞j=1 of Banach spaces with surjective linking maps
Qj,j+1 : Xj+1 → Xj defined by Qj,j+1Qj+1x = Qjx for all x ∈ X.

Fix j ∈ N. Define a one parameter family (Tj(t))t≥0 of operators on the Banach
space Xj (see (3.2)) by setting

Tj(t)Qjx := QjT (t)x, x ∈ X, t ≥ 0. (3.9)

As in the proof of Theorem 3.3, one shows that (Tj(t))t≥0 is an equicontinuous
C0–semigroup on Xj . It follows from (3.9) that the family {(R(λ))j}λ∈C,Re(λ)>0 ⊆
L(Xj) of resolvent operators of the infinitesimal generator of (Tj(t))t≥0 satisfies

(R(λ))jQj = QjR(λ), λ ∈ C, Re(λ) > 0, (3.10)

in L(X, Xj). Denote by (A,D(A)) and (Aj , D(Aj)) the infinitesimal generator of
(T (t))t≥0 and (Tj(t))t≥0, respectively. Then Qj(D(A)) ⊆ D(Aj) and

AjQjx = QjAx, x ∈ D(A). (3.11)

Indeed, it follows from the identity t−1(Tj(t) − I)Qjx = Qj(t−1(T (t) − I)x),
valid for t > 0, and the continuity of Qj : X → Xj that if x ∈ D(A), i.e.,
limt→0+ t−1(T (t)−I)x = Ax exists in X, then t−1(Tj(t)−I)Qjx = QjAx exists in
Xj . That is, Qjx ∈ D(Aj) and (3.11) holds. Next, observe that λn(R(λn))j → I

in Lb(Xj) as n → ∞. Indeed, denote by B̂j := {x̂ ∈ Xj : (q̂j)k(j)(x̂) ≤ 1} the
closed unit ball of the Banach space Xj , in which case there is Bj ∈ B(X) such
that B̂j ⊆ Qj(Bj), see [15, Proposition 1]. So, via (3.10) it follows that

sup
x̂∈B̂j

(q̂j)k(j)(λn(R(λn))j x̂− x̂) ≤ sup
x̂∈Qj(Bj)

(q̂j)k(j)(λn(R(λn))j x̂− x̂)

= sup
x∈Bj

(q̂j)k(j)(λn(R(λn))jQjx−Qjx)

= sup
x∈Bj

(q̂j)k(j)(Qj(λnR(λn)x− x))

≤ sup
x∈Bj

qk(j)(λnR(λn)x− x),

with supx∈Bj
qk(j)(λnR(λn)x − x) → 0 as n → ∞. Since Xj is a Banach space,

for each j ∈ N, the operator S
(j)
n := λn(R(λn))j ∈ L(Xj) is invertible for some

n(j) > n(j − 1) (with n(0) := 1), i.e., the series
∑∞

k=0(I − S
(j)
n(j))

k converges to

(S(j)
n(j))

−1 in operator norm, i.e., in Lb(Xj). This implies, in particular, that the

range Im((R(λn(j)))j) = Im(S(j)
n(j)) = Xj so that D(Aj) = Xj and hence, Aj =

λn(j)(I − (S(j)
n(j))

−1) ∈ L(Xj). Accordingly, (Tj(t))t≥0 is a uniformly continuous
semigroup on Xj , see [17, Ch. VIII Corollary 1.9].
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Thus, also (T (t))t≥0 is a uniformly continuous semigroup on X. Indeed, fix
B ∈ B(X) and j ∈ N. By (3.9) we then have

sup
x∈B

qj(T (t)x− x) = sup
x∈B

(q̂j)j(QjT (t)x−Qjx)

= sup
x∈B

(q̂j)j(Tj(t)Qjx−Qjx)

= sup
x̂∈Qj(B)

(q̂j)j(Tj(t)x̂− x̂)

≤ sup
x̂∈Qj(B)

(q̂j)k(j)(Tj(t)x̂− x̂). (3.12)

Since (Tj(t))t≥0 is uniformly continuous in Xj with Qj(B) ∈ B(Xj), we see that
the right–side of (3.12) converges to 0 as t → 0+. That is, limt→0+ T (t) = I in
Lb(X). Theorem 3.3 now implies that A ∈ L(X). �

Every Montel Fréchet space is a GDP–space, see [11, Remark 2.2]. Moreover, by
virtue of the Montel property, every exponentially equicontinuous, C0–semigroup
in such a space is necessarily uniformly continuous. However, Example 3.1 shows
that without the space being a quojection in Theorem 3.5 it is not possible to
conclude that the infinitesimal generator is everywhere defined.

According to Theorems 3.3 and 3.5, the natural analogue in Fréchet spaces
of C0–semigroups of operators in Banach spaces are, perhaps, the exponentially
equicontinuous ones. Nevertheles, other types of semigroups are always present.

Proposition 3.6. Every Fréchet space X without a continuous norm admits
a uniformly continuous semigroup of operators which fails to be exponentially
equicontinuous.

Proof. The hypotheses on X imply that it contains a complemented subspace Z
which is isomorphic to ω (see the discussion before Lemma 2.3), that is, X = Y ⊕Z
with Z ' ω.

Let (T (t))t≥0 ⊆ L(ω) be the uniformly continuous semigroup given in the
example just prior to Remark 2.2 (and which is not exponentially equicontinuous).
Denote the operators T (t) when transferred from ω to Z by U(t), for t ≥ 0. Then
S(t) : Y ⊕Z → Y ⊕Z defined by (y, z) → (y, U(t)z), that is, S(t) = I ⊕U(t) for
t ≥ 0, is a semigroup in X of the required type. �

We end this section with a result about semigroups on the space ω.

Proposition 3.7. Let (T (t))t≥0 be a C0–semigroup on ω with infinitesimal gen-
erator (A,D(A)). Then (T (t))t≥0 is uniformly continuous. Moreover, if there
exists λ ∈ C such that the operator λI − A is invertible, then the infinitesimal
generator A belongs to L(ω).

Proof. Since ω is a Fréchet space, the semigroup (T (t))t≥0 is locally equicontinu-
ous and its infinitesimal generator (A,D(A)) is a closed densely defined operator
in ω, see [21, Propositions 1.3 and 1.4, Corollary p.261], [34, Proposition 1.1].

Set R := λI − A. By the definition of being invertible, R is injective and
continuously maps ω onto D(A), when D(A) is endowed with the lc–topology
induced on it by ω. Since ω is minimal, i.e., every injective, continuous linear
operator from ω into any lcHs is open, see [35, p.66], the operator R is also open
and hence, a topological isomorphism. It follows that D(A), being isomorphic to
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ω, must be a closed subspace of ω. But D(A) is dense in ω and hence, D(A) = ω.
So, A is everywhere defined and accordingly, belongs to L(ω). �

In [12, p.467] Conejero raised the question of whether every C0–semigroup on
ω is of the form {etA}t≥0 for some A ∈ L(ω). Proposition 3.7 provides a positive
answer for an extensive class of C0-semigroups on ω. We point out that [39, Ch.IX,
§4, Corollary 1] implies that every exponentially equicontinuous C0–semigroup in
ω necessarily satisfies the hypothesis of Proposition 3.7 (since the resolvent set
of A contains an interval of the form (a,∞) for some a ≥ 0). However, the
example just prior to Remark 2.2 shows that Proposition 3.7 also applies to some
C0–semigroups which are not exponentially equicontinuous.

4. Mean Ergodic Operators

A continuous linear operator T in a lcHs X is called mean ergodic if the limits

Px := lim
n→∞

1
n

n∑
m=1

Tmx, x ∈ X, (4.1)

exist in X. An operator T ∈ L(X) is said to be power bounded if {Tm}∞m=1 is
an equicontinuous subset of L(X). Of course, for a Banach space X, this means
that supm≥0 ‖Tm‖ < ∞. A power bounded operator T is mean ergodic precisely
when

X = Ker(I − T )⊕ Im(I − T ), (4.2)
where I is the identity operator, Im(I − T) denotes the range of I − T and the
bar denotes the “closure in X”.

Given T ∈ L(X), let

T[n] :=
1
n

n∑
m=1

Tm, n ∈ N, (4.3)

denote the Cesàro means of T (see also (4.1)). For X a barrelled lcHs, T is mean
ergodic precisely when {T[n]}∞n=1 is a convergent sequence in Ls(X). If {T[n]}∞n=1

happens to be convergent in Lb(X), then T is called uniformly mean ergodic.
The space X itself is called mean ergodic (resp. uniformly mean ergodic) if every
power bounded operator on X is mean ergodic (resp. uniformly mean ergodic).

Given a lcHs X and T ∈ L(X) we have

(I − T )T[n] = T[n](I − T ) =
1
n

(T − Tn+1), n ∈ N, (4.4)

and also, with T[0] := I, that

1
n

Tn = T[n] −
n− 1

n
T[n−1], n ∈ N. (4.5)

If T ∈ L(X) is power bounded, then

Im(I − T ) = {x ∈ X : lim
n→∞

T[n]x = 0} (4.6)

and hence, in particular,

Im(I − T ) ∩Ker(I − T ) = {0}, (4.7)
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[39, Ch. VIII, §3]. Moreover, such a T clearly satisfies

lim
n→∞

1
n

Tn = 0, in Ls(X). (4.8)

In the Banach space setting the following result is due to M. Lin [25]. For
general Fréchet spaces the implications (i) ⇔ (ii) ⇒ (iii) occur in [2, Proposition
2.16] and for more general lcHs’ in [4, Proposition 2.5]

Theorem 4.1. Let X be a lcHs with the property that every continuous linear
surjection from X onto itself is an open map. Let T ∈ L(X) satisfy Ker(I−T ) =
{0} and 1

nTn → 0 in Lb(X) as n →∞. Consider the following statements.
(i) I − T[n] is surjective for some n ∈ N.
(ii) I − T is surjective.
(iii) T[n] → 0 in Lb(X) as n →∞.

Then (i) ⇔ (ii) ⇒ (iii).
If, in addition, X is a quojection Fréchet space, then also (iii) ⇒ (i).

Proof. As indicated prior to the statement of Theorem 4.1, it only remains to
establish (iii)⇒(ii), under the assumption that X is a quojection Fréchet space.

So, let {rj}∞j=1 be a fundamental increasing sequence of seminorms generating
the lc–topology of X. As 1

nTn → 0 in Lb(X) and X is a Fréchet space, the
sequence { 1

nTn}∞n=1 is equicontinuous. So, for each j ∈ N, there exists cj ≥ 1
such that

rj

(
1
n

Tnx

)
≤ cjrj+1(x), x ∈ X, n ∈ N. (4.9)

Define qj on X by

qj(x) := max
{

rj(x), sup
n

rj

(
1
n

Tnx

)}
, x ∈ X.

According to (4.9), each qj is well defined. It is routine to check that qj is a
seminorm and satisfies

rj(x) ≤ qj(x) ≤ cjrj+1(x) ≤ cjqj+1(x), x ∈ X.

Hence, {qj}∞j=1 is also a fundamental increasing sequence of seminorms generating
the Fréchet-topology of X. Moreover, for j ∈ N, we have

qj(Tx) = max
{

rj(Tx), sup
n

rj

(
1
n

Tn+1x

)}
= max

{
rj(Tx), sup

n
rj

(
n + 1

n

1
n + 1

Tn+1x

)}
(4.10)

≤ 2qj(x), x ∈ X.

For each j ∈ N, set Xj := X/q−1
j ({0}), endowed with the quotient lc–topology

and denote by Qj : X → Xj the canonical (surjective) quotient map. As in the
proof of Lemma 2.3, define the sequence of seminorms {(q̂j)k}∞k=1 in Xj by

(q̂j)k(Qjx) := inf{qk(y) : y ∈ X satisfies Qjy = Qjx}, x ∈ X,

and select k(j) ≥ j such that the norm (q̂j)k(j) generates the lc–topology of Xj .
That is, X is isomorphic to the projective limit of the sequence (Xj , (q̂j)k(j))∞j=1
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of Banach spaces with respect to the surjective linking maps Qj,j+1 : Xj+1 → Xj

defined by Qj,j+1(Qj+1x) = Qjx for all x ∈ X.
Fix j ∈ N. Define an operator Tj on the Banach space Xj via

TjQjx := QjTx, x ∈ X. (4.11)

Each Tj is a well defined linear operator on Xj ; this follows via the same argument
used for Tj(t) in the proof of Theorem 3.3. Moreover, by (2.4), (4.10) and (4.11)
we obtain that

(q̂j)k(j)(Tj x̂) = (q̂j)k(j)(TjQjx) = (q̂j)k(j)(QjTx) ≤ qk(j)(Tx) ≤ 2qk(j)(x)

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the infimum with respect to
x ∈ Q−1

j ({x̂}), it follows that

(q̂j)k(j)(Tj x̂) ≤ 2(q̂j)k(j)(x̂), x̂ ∈ Xj . (4.12)

Since (Xj , (q̂j)k(j)) is a Banach space, (4.12) ensures the continuity of Tj .
It follows from (4.11) that, for fixed j ∈ N, we have

Tn
j Qjx = Tn−1

j QjTx = . . . = TjQjT
n−1x = QjT

n
j x, x ∈ X, n ∈ N.

To see that 1
nTn

j → 0 in Lb(Xj) as n → ∞, recall that B̂j denotes the closed
unit ball of the Banach space (Xj , (q̂j)k(j)). Since X is a quojection, there is
Bj ∈ B(X) such that B̂j ⊆ Qj(Bj). So, it follows that

sup
x̂∈B̂j

(q̂j)k(j)

(
1
n

Tn
j x̂

)
≤ sup

x̂∈Qj(Bj)
(q̂j)k(j)

(
1
n

Tn
j x̂

)
= sup

x∈Bj

(q̂j)k(j)

(
1
n

Tn
j Qjx

)
= sup

x∈Bj

(q̂j)k(j)

(
Qj

(
1
n

Tnx

))
≤ sup

x∈Bj

qk(j)

(
1
n

Tnx

)
.

Since supx∈Bj
qk(j)

(
1
nTnx

)
→ 0 as n → ∞ (by assumption), it follows that

1
nTn

j → 0 in Lb(Xj) as n →∞. Because of

(Tj)[n]Qjx =
1
n

n∑
i=1

T i
jQjx =

1
n

n∑
i=1

QjT
ix = QjT[n]x, x ∈ X, n ∈ N,

with T[n] → 0 in Lb(X) as n → ∞ (by assumption), we can proceed as in the
previous argument (showing that 1

nTn
j → 0 in Lb(Xj)) to establish that (Tj)[n] →

0 in Lb(Xj) as n → ∞. On the other hand, Ker(I − Tj) = {0}; this follows
by observing (see (4.6)) that Im(I − Tj) = {x ∈ Xj : limn→∞(Tj)[n]x = 0}, i.e.,
Im(I − Tj) = Xj , and hence, Ker(I − Tj) = {0} via (4.7). Since Xj is a Banach
space, by Lin’s result, [25], we can conclude that I − Tj is invertible, i.e., I − Tj

is a topological isomorphism on Xj .
To conclude that I − T is invertible in L(X), first observe, by (4.11) and the

identity Qj,j+1Qj+1 = Qj , that

Qj(I−T ) = (I−Tj)Qj and Qj,j+1(I−Tj+1) = (I−Tj)Qj,j+1, j ∈ N, (4.13)

with the first equalities holding in L(X, Xj) and the second equalities holding in
L(Xj+1, Xj). Now, I − Tj is bijective, for all j ∈ N. Hence, given any y ∈ X,
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define xj := (I − Tj)−1Qjy, for each j ∈ N, and x := (xj)∞j=1 ∈
∏∞

j=1 Xj . Then,
by (4.13),

(I − Tj)Qj,j+1xj+1 = Qj,j+1(I − Tj+1)xj+1 = Qj,j+1Qj+1y = Qjy, j ∈ N,

and hence, by the injectivity of I − Tj , we have

Qj,j+1xj+1 = (I − Tj)−1Qjy = xj , j ∈ N.

Since X = proj j(Xj , Qj,j+1) = {(uj)∞j=1 ∈
∏∞

j=1 Xj : Qj,j+1uj+1 = uj ∀j ∈ N}
we can conclude that x ∈ X. Moreover, (I − T )x = y because (4.13) implies
that Qj(I − T )x = (I − Tj)Qjx = Qjy for all j ∈ N. This shows that I − T is
surjective. Since I−T is injective by hypothesis, it follows that I−T is invertible
in L(X). �

Remark 4.2. The proof of (iii)⇒(i) in Theorem 4.1, for the particular sequence
{T[n]}∞n=1, relies on the facts that X is a quojection and that {Tn}n∈N is a semi-
group, in the sense that TnTm = Tn+m for all n, m ∈ N. The conclusion does
not extend to a general sequence {Rn}n∈N of operators on a quojection satisfying
Rn → 0 in Lb(X); see Remark 4.5(i) below.

We now present a result concerning any mean ergodic operator T satisfying
1
nTn → 0 in Lb(X) and defined in a lcHs X which is a GDP–space. Namely,
there exists a projection P ∈ L(X) such that the sequence of squares (T[n])2 → P
in Lb(X) as n →∞. If, in addition, X is a quojection Fréchet space, then actually
limn→∞ T[n] = P in Lb(X), i.e., T is uniformly mean ergodic. For GDP–Banach
spaces we recover a classical result of H.P. Lotz, [26, Theorem 8], [27, Theorem
5].

Theorem 4.3. Let X be a barrelled lcHs which is a GDP–space and T ∈ L(X) be
a mean ergodic operator satisfying limn→∞

1
nTn = 0 in Lb(X). Then the following

properties hold.
(i) There exists a projection P ∈ L(X) such that limn→∞(T[n])2 = P in

Lb(X).
(ii) If, in addition, X is a quojection Fréchet space, then limn→∞ T[n] = P in

Lb(X), i.e., T is uniformly mean ergodic.

Proof. (i) Observe that T[n]T[m] = T[m]T[n] for all n, m ∈ N. Moreover,

lim
n→∞

(I − T[m])T[n] = 0 in Lb(X), ∀m ∈ N. (4.14)

Indeed, it is routine to verify that gm(T ) := 1
m

∑m−1
k=0 (

∑k
r=0 T r) satisfies the

identity I − T[m] = gm(T )(I − T ) and hence, via (4.3) and (4.4) that

(I − T[m])T[n] = gm(T )(I − T )T[n] = gm(T )
1
n

(T − Tn+1), n ∈ N.

Since gm(T ) is a continuous linear operator and m is fixed, these identities, to-
gether with τb-limn→∞

1
nTn = 0, yield (4.14).

According to [2, Theorem 2.4], [35, Proposition 2.2], there is a projection P ∈
L(X), commuting with T , such that τs-limn→∞ T[n] = P and with the closed
subspaces Im(P) = Ker(I − T) and Ker(P ) = Im(I − T ) satisfying (4.2). If
x ∈ Im(P), then Tx = x and so T[n]x = x for all n ∈ N. That is, the restriction

T[n]|Ker(I−T ) = I in L(Ker(I − T )), n ∈ N. (4.15)
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On the other hand, since Ker(P ) = Im(I − T ) is complemented in X, it is both
barrelled, see [35, Corollary 4.2.2], and a GDP–space, see [3, Proposition 3.1].
Since PT[n] = T[n]P , it is clear that Z := Ker(P ) is T[n]–invariant and hence, T[n]

defines an element S[n] := T[n]|Z of L(Z), for all n ∈ N. Of course, with S := T |Z
we have S[n] = (T |Z)[n] and the operators {S[n]}∞n=1 are pairwise commuting.
Moreover, Z = Ker(P ) = Im(I − T ) together with limn→∞ T[n]x = 0, for all
x ∈ Ker(P ), imply that limn→∞ S[n] = 0 in Ls(Z). So, defining Sn ∈ L(Z) via
Sn := I − S[n], for n ∈ N, we have that SnSm = SmSn for all m, n ∈ N together
with Sn → I in Ls(Z) as n → ∞ and, that (Sn − I)Sm = S[n](I − S[m]) → 0
in Lb(Z) as n → ∞ (for each fixed m ∈ N). Hence, applying Lemma 2.4 to
{Sn}∞n=1 ⊆ L(Z) we conclude that

lim
n→∞

(S[n])
2 = 0 in Lb(Z). (4.16)

Combining (4.15) and (4.16) it follows that (T[n])2 → P in Lb(X) as n →∞.
(ii) Suppose now that X is a quojection Fréchet space with the lc–topology

generated by the increasing sequence of continuous seminorms {qj}∞j=1.
In the case that T is power bounded, there exist constants cj ≥ 1, for each

j ∈ N, such that
qj(Tnx) ≤ cjqj(x), x ∈ X, n ∈ N.

It follows that

qj(T[n])x ≤
1
n

n∑
m=1

qj(Tmx) ≤ cjqj(x), x ∈ X, j, n ∈ N.

So, still in the notation of the proof of part (i), the result follows by recalling
(4.15) and applying Lemma 2.4 to the sequence {Sn}∞n=1 ⊆ L(Z).

Otherwise, as the sequence { 1
nTn|Z}∞n=1 ⊆ L(Z) is equicontinuous and the

GDP–space Z, see [3, Proposition 3.1(i)], is a quojection (being a quotient space
of the quojection X), we proceed as in the proof of (iii)⇒(ii) in Theorem 4.1.
So, we first construct a sequence {Zj}∞j=1 of Banach spaces and a sequence
{Qj}∞j=1, with Qj : Z → Zj , of continuous linear surjective operators such that
Z = proj j(Zj , Qj,j+1), where Qj.j+1 ∈ L(Zj+1, Zj) satisfies Qj,j+1Qj+1 = Qj .
Then, for each j ∈ N, we define Tj ∈ L(Zj) satisfying the following properties:

TjQj = QjT, (which implies (Tj)[n]Qj = QjT[n], n ∈ N), (4.17)

lim
n→∞

1
n

Tn
j = 0 in Lb(Zj), (4.18)

lim
n→∞

(I − (Tj)[m])(Tj)[n] = 0 in Lb(Zj), ∀m ∈ N. (4.19)

lim
n→∞

((Tj)[n])
2 = 0 in Lb(Zj). (4.20)

We point out that (4.20) follows from (4.16) and (4.17) because of S = T |Z .
Now, the facts that ((Tj)[n])2 → 0 in Lb(Zj) with Zj is Banach space imply
that I − ((Tj)[m])2 is invertible in L(Zj) for some m ∈ N. Then the identity
(I − (Tj)[m])(I + (Tj)[m])(I − ((Tj)[m])2)−1 = I in L(Zj) shows that I − (Tj)[m] is
invertible in L(Zj). But, (4.19) implies that

lim
n→∞

(Tj)[n] = lim
n→∞

(I − (Tj)[m])
−1(I − (Tj)[m])(Tj)[n] = 0
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in Lb(Zj). It follows that S[n] = T[n]|Z → 0 in Lb(Z) as n →∞. Indeed, fix any
j ∈ N and B ∈ B(Z). Then, again in the notation of (iii)⇒(ii) in Theorem 4.1,
we have

sup
z∈B

qj(S[n]z) = sup
z∈B

qj(T[n]z) = sup
z∈B

(q̂j)j(QjT[n]z)

= sup
z∈B

(q̂j)j((Tj)[n]Qjz) = sup
ẑ∈Qj(B)

(q̂j)j((Tj)[n]ẑ)

≤ sup
ẑ∈Qj(B)

(q̂j)k(j)((Tj)[n]ẑ), n ∈ N,

with supẑ∈Qj(B)(q̂j)k(j)((Tj)[n]ẑ) → 0 as n → ∞ because (Tj)[n] → 0 in Lb(Zj).
Finally, because of (4.15), we conclude that T[n] → P in Lb(X) as n →∞. �

Corollary 4.4. Let X be a quojection GDP–Fréchet space. If X is mean ergodic,
then X is uniformly mean ergodic.

Proof. Let T ∈ L(X) be power bounded. According to [2, Remark 2.6(i)], given
any q ∈ ΓX there is p ∈ ΓX such that

q(Tnx) ≤ p(x), x ∈ X, n ∈ N.

So, for any B ∈ B(X), we have qB(Tn) ≤ supx∈B p(x) < ∞ for all n ∈ N and
hence, limn→∞

1
nTn = 0 in Lb(X). Since T is mean ergodic (as X is), Theorem

4.3(ii) implies that T is uniformly mean ergodic. �

Remark 4.5. (i) The argument used in the proof of Theorem 4.3(ii) to show that
the sequence {(Tj)[n]}∞n=1 tends to 0 in the Banach space Lb(Zj) is essentially the
idea behind the proof given in [26, Theorem 8], [27, Theorem 5].

Unfortunately, if X is non-normable, then this strategy is not applicable. The
problem lies in the fact that if a sequence {Rn}∞n=1 ⊆ L(X) satisfies limn→∞Rn =
0 in Lb(X), then I−Rn may fail to be invertible for every n ∈ N. Indeed, consider
X = ω and the projection operators Rnx := (0, . . . , 0, xn, xn+1, . . .), for x ∈ ω
and n ∈ N. Clearly Rn → 0 in Ls(ω) and hence, also Rn → 0 in Lb(ω) because
ω is a Montel space. But, for every n ∈ N, the operator I −Rn is finite rank and
hence, is surely not invertible.

(ii) There is another class of Fréchet spaces for which the conclusion of Theorem
4.3(ii) holds. As already noted, any Montel Fréchet space X is necessarily a GDP–
space. An examination of the proof of Proposition 2.8 in [2] then shows that every
mean ergodic operator T ∈ L(X) is necessarily uniformly mean ergodic in X (even
without the hypothesis that limn→∞

1
nTn = 0 in Lb(X)).

A classical example of a quojection GDP–Fréchet space which is not Montel is
L∞loc(Ω), with Ω any open subset of RN . It was noted in Section 2 that L∞loc(Ω)
is a quojection. Since L∞loc(Ω) is isomorphic to a countable product of Banach
spaces, each one isomorphic to the GDP–Banach space L∞([0, 1]), it follows that
L∞loc(Ω) is a GDP–space, see [3, Proposition 3.1(ii)]. But, since L∞loc(Ω) contains a
complemented copy of the Banach space L∞([0, 1]), it cannot be a Montel space.
By the same argument, any countably infinite product of infinite dimensional
GDP–Banach spaces is a (non–normable) quojection GDP–Fréchet space which
is not Montel. On the other hand, every infinite dimensional Montel Fréchet
space which admits a continuous norm (see Example 3.1 for such spaces) cannot
be a quojection (see the discussion prior to Lemma 2.3).
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It is worth pointing out that the implication (iii)⇒(i) in Theorem 4.1, valid
whenever X is a quojection, fails to hold in Montel Fréchet spaces; see [2, Example
2.17].

Question 2. Let X be a Fréchet GDP–space which is non–Montel and not a
quojection (examples of such spaces of the kind λ∞(A) can be found in [11]). Let
T ∈ L(X) be mean ergodic with τb-limn→∞

1
nTn = 0. Is T necessarily uniformly

mean ergodic?
We end with an application of Theorem 4.3.

Corollary 4.6. Let X be a prequojection Fréchet space such that X ′′
β is a GDP–

space. Suppose that T ∈ L(X) satisfies limn→∞
1
nTn = 0 in Lb(X) and that T tt

is mean ergodic in X ′′
β . Then T is uniformly mean ergodic.

Proof. Observe that (T[n])tt = (T tt)[n] for all n ∈ N. By assumption there is a
projection Q ∈ L(X ′′

β) such that (T tt)[n] → Q in Ls(X ′′
β) as n → ∞. It follows

that Q(X) ⊆ X and T[n] → P in Ls(X) as n →∞ with P = Q|X ∈ L(X).
Since limn→∞

1
nTn = 0 in Lb(X) and (T tt)n = (Tn)tt for all n ∈ N, we have

that limn→∞
1
n(T tt)n = 0 Lb(X ′′

β). So, we can apply Theorem 4.3 to T tt to
conclude that (T tt)[n] → Q in Lb(X ′′

β) as n → ∞. This implies that T[n] → P in
Lb(X) and hence, T is uniformly mean ergodic. �

We note that the Banach space c0 itself is not a GDP–space, but its strong
bidual c′′0 = `∞ is. For a non–normable example, consider the product space
X =

∏∞
n=1 X(n), where X(n) = c0 for each n ∈ N. Then X is a quojection

and hence, also a prequojection. Since X contains a complemented copy of c0, it
cannot be a GDP–space, see [3, Proposition 3.1(i)]. However, its strong bidual
X ′′

β =
∏∞

n=1 X(n)′′ =
∏∞

n=1 `∞ (see [22, p.287]) is a GDP–space [3, Proposition
3.1(ii)].

For an example of a non–trivial prequojection which itself is not a GDP–space,
but with strong bidual a GDP–space, we refer to [1]. Indeed, the example of
the prequojection constructed in [1] contains a complemented copy of c0 and its
strong bidual is isomorphic to

∏∞
n=1 `∞.
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