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Received: date / Accepted: date

Abstract We characterize those composition operators defined on spaces of holomorphic
functions of several variables which are power bounded, i.e. the orbits of all the elements
are bounded. This condition is equivalent to the composition operator being mean ergodic.
We also describe the form of the symbol when the composition operator is mean ergodic.
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1 Introduction and Notation

The purpose of this note is to study the behaviour of orbits of composition operators Cϕ( f ) :=
f ◦ϕ , ϕ a holomorphic self map, on spaces H(U) of holomorphic functions defined on an
open connected subset (=domain) U of Cd or, more generally, of a Stein manifold Ω . The
space H(U) is endowed with the compact open topology and it is a nuclear Fréchet space,
hence Montel. We are interested here in the case when the orbits of all the elements under
Cϕ are bounded. If this occurs, the operator Cϕ is called power bounded. A related interest-
ing question is when Cϕ is mean ergodic [9], [22], [17] and [3]. We complement important
results on universality which were obtained in [5], [6] and [12]. These papers do not discuss
when Cϕ is power bounded or mean ergodic on H(U).
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Inst. Univ. Matemática Pura y Aplicada IUMPA, Edificio ID15 (8E), Cubo F, Cuarta Planta, Universidad
Politécnica de Valencia, E-46071 Valencia, SPAIN
E-mail: jbonet@mat.upv.es

P. Domański
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2 José Bonet, Paweł Domański

There is a huge literature about the dynamical behavior of various linear continuous
operators on Banach, Fréchet and more general locally convex spaces; see the survey papers
by Grosse-Erdmann [10], [11] and the recent books by Bayart and Matheron [4] and by
Grosse-Erdmann and Peris [13]. For the general theory of composition operators on Banach
spaces of holomorphic functions see [8] and [20]; and [21] for composition operators on
H(U).

Let T : E → E be a continuous linear operator on a Hausdorff locally convex space
E. The iterates of T are denoted by T n := T ◦ · · · ◦ T,n ∈ N. If the sequence (T n)n∈N is
equicontinuous in the space L(E) of linear operators from E to E, T is called power bounded.
In case E = H(U), it is a Fréchet space and the uniform boundedness principle can be
applied to conclude that T is power bounded if and only if the orbit {T n(x) : n ∈ N} is
bounded for every x ∈ E.

A continuous linear operator T on E is called mean ergodic if the limits

Px := lim
N→∞

1
N

N

∑
n=1

T nx, x ∈ E, (1)

exist in E. A power bounded operator T is mean ergodic precisely when X = ker(I−T )⊕
im(I−T ). Moreover, imP = ker(I−T ) and kerP = im(I−T ). If the space E is barrelled
and T is mean ergodic, the sequence 1

N ∑
N
n=1 T n converges pointwisely to a continuous linear

projection P; see [22, Ch. VIII, §3]. If the convergence is uniform on bounded sets we call
T uniformly mean ergodic. There is a classical theory of mean ergodic operators which goes
back to fundamental papers of Yosida and Hille especially in the Banach case; cf. [17]. For
more details on the locally convex theory see [22], [2] and [3] and the references therein.

We characterize those composition operators Cϕ , Cϕ( f ) := f ◦ϕ , on the space of holo-
morphic functions H(U) on a domain U in a Stein manifold Ω , ϕ : U →U holomorphic,
such that Cϕ is power bounded; see Proposition 1. We prove that power boundedness is
equivalent to (uniform) mean ergodicity. Finally in Theorem 1 we describe precisely the
form of ϕ such that Cϕ is power bounded. The evaluation of these equivalent conditions and
the precise form of the projection which appears as limit of the Cesaro sums is determined
in concrete cases in Corollaries 2 and 3. Our results here are utilized in [7] to investigate
power bounded composition operators on spaces of real analytic functions.

We will use Kobayashi semi-distance kV (·, ·) on a complex manifold V ⊆ Cd . Here the
beautiful book [16] is a standard reference. Every holomorphic map ϕ : V → V is always
non-expansive with respect to kV . The manifold V is called hyperbolic if kV is a distance (and
then it induces the standard topology of V ). Every domain biholomorphic to a bounded set is
automatically hyperbolic [16, Cor. 4.1.10, Prop. 3.2.2]. The manifold V is called Kobayashi
complete if (V,kV ) is a complete metric space, or equivalently, if every ball in this space
is relatively compact [16, Prop. 1.1.9]. Every bounded open set V ⊆ Cd such that every
boundary point admits a weak peak function is Kobayashi complete [16, Cor. 4.1.11]. Both
hyperbolicity and Kobayashi completeness are biholomorphic invariants. Recall that every
Stein manifold embeds via a proper map into Cd for suitable d ∈ N [15, 5.3.9].

By B(x,r) and BkV (x,r) we denote, respectively, euclidean and Kobayashi balls of center
x and radius r. The notation K b U means that K is a compact subset of the open set U . For
non-explained notions from functional analysis we refer to [18]. For complex analysis of
several variables see [14]. For dynamics of holomorphic maps see [1], [19].
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2 Power bounded composition operators on spaces of holomorphic functions

Let ϕ : U →U be a continuous self-map on a topological space U , we say that ϕ has stable
orbits on U if for every compact subset K of U there is a compact subset L b U such that
ϕn(K)⊆ L for n ∈ N. This concept plays an important role later on.

Proposition 1 Let U be a connected domain of holomorphy in Cd (or even in a Stein mani-
fold) and let ϕ : U→U be a holomorphic mapping. The following assertions are equivalent:

(a) Cϕ : H(U)→ H(U) is power bounded.
(b) Cϕ : H(U)→ H(U) is uniformly mean ergodic.
(c) Cϕ : H(U)→ H(U) is mean ergodic.
(d) The map ϕ has stable orbits on U.
(e) There is a fundamental family of connected compact sets (L j) in U such that ϕ(L j)⊆

L j for every j ∈ N.

Proof (a)⇒(b): Follows from [2, Prop. 2.4] since H(U) is a Fréchet Montel space.
(b)⇒(c): Obvious.
(c)⇒(d): By [2, Prop. 2.2], the sequence

( 1
nCϕn

)
tends to zero, so it is bounded and

equicontinuous on H(U). For every K compact in U we find L compact in U such that
(1/n)Cϕn extends to (1/n)Ĉϕn : A(L)→ A(K) as a continuous map, where K and L have
non-empty interior and A(K) denotes the completion of H(U) with respect to the sup-norm
on K. Since U is a domain of holomorphy it is holomorphically convex and we can assume
that L is equal to its U-holomorphic hull, i.e.,

L = {w ∈U : | f (w)| ≤ sup
z∈L
| f (z)| ∀ f ∈ H(U)}.

Suppose that there are n ∈ N and a ∈ ϕn(K) \L. Then there is a function f ∈ H(U) such
that f (a) = 1 but supz∈L | f (z)| ≤ ε , ε ∈ (0,1). Since f k tends uniformly to zero on L as
k→ ∞ but does not tend to zero at a, the map Cϕn is not continuous from A(L) to A(K); a
contradiction.

(d)⇒(e): Let K be connected compact set in U . Select a connected compact set L ⊇ K
such that ϕn(K)⊆ L for n ∈ N. Apply condition (d) again to find a compact set M such that
ϕn(L)⊆M for every n ∈ N. Then

L̃ := L∪
∞⋃

n=1

ϕn(L)

is a compact connected set such that ϕ(L̃) ⊆ L̃ and L̃ ⊇ K. It is connected since ϕn(L) is
connected and ϕn(L)∩L contains ϕn(K). By induction we can construct (L j) as required.

(e)⇒(a): Obvious. ut
REMARKS. 1. The conditions (d) and (e) in Proposition 1 are always equivalent. The

implication (c)⇒(d) requires in the proof that U is a domain of holomorphy, the converse
implication does not — it suffices that U is a domain in a Stein manifold.

2. Every domain U in a Stein manifold has a unique maximal extension V such that
V is a Stein manifold and H(U) and H(V ) are isomorphic as Fréchet algebras (points of
V are exactly multiplicative functionals on H(U), see [14, Sect. I.H, Th. III.J.1, III.R.5]).
Since Cϕ : H(U)→ H(U) is an algebra homomorphism, ϕ extends uniquely to ψ : V → V
such that Cϕ corresponds to Cψ . These remarks permit us to conclude that the equivalence
(a)⇔(b)⇔(c) in Proposition 1 holds for arbitrary domain U in a Stein manifold.



4 José Bonet, Paweł Domański

We analyze the holomorphic functions ϕ : U →U for which condition (d) in Theorem
1 is satisfied.

Proposition 2 Let ϕ : U → U be a holomorphic map and let U be a domain in a Stein
manifold. Assume that there is a fundamental family of compact subsets (L j) of U such that
ϕ(L j) ⊆ L j for every j ∈ N. Then for every j ∈ N there is a fundamental family of (open!)
neighbourhoods V of L j in U such that ϕ(V ) ⊆ V . In particular, every compact set K ⊆U
is contained in a hyperbolic open subset V ⊆U such that ϕ(V )⊆V .

Proof Clearly U is a manifold embedded into Cd . Without loss of generality we may assume

that L j b
◦
L j+1. Fix j ∈ N. There is ε > 0 such that (L j +B(0,ε))∩U ⊆ L j+1. Here L +

B(0,ε) means in fact the algebraic sum of L and B(0,ε) in Cd . By the Cauchy estimates, the
sequence (ϕn)n is uniformly equicontinuous on L j+2. Then

∀ δ > 0 ∃ 0 < η(δ ) < δ ∀ n ∈ N : x,y ∈ L j+1, ‖x−y‖< η(δ )⇒‖ϕn(x)−ϕ
n(y)‖< δ .

Let us define W0 := L j, Wk :=
(

ϕ(Wk−1)+B
(

0,η
(

ε

2k

)))
∩U and prove inductively that

Wk ⊆ L j+1 and ϕ
n(Wk)⊆

(
L j +B

(
0,

k

∑
j=1

ε

2 j

))
∩U. (2)

The condition is true for k = 0. Now, assuming (2) for k−1 we get

Wk =
(

ϕ(Wk−1)+B
(

0,η
(

ε

2k

)))
∩U ⊆

(
L j +B

(
0,

k−1

∑
j=1

ε

2 j

)
+B

(
0,η

(
ε

2k

)))
∩U ⊆L j+1.

Moreover, we have

ϕ
n(Wk) = ϕ

n

(ϕ(Wk−1)+B
(

0,η
(

ε

2k

)))
∩U︸ ︷︷ ︸

⊆L j+1

⊆ (ϕ
n+1(Wk−1)+B

(
0,

ε

2k

))
∩U ⊆

⊆

(
L j +B

(
0,

k−1

∑
j=1

ε

2 j

)
+B

(
0,

ε

2k

))
∩U ⊆

(
L j +B

(
0,

k

∑
j=1

ε

2 j

))
∩U.

Since Wk are open subsets of U and ϕ(Wk) ⊆Wk+1 thus W̃ :=
⋃

∞
k=0 Wk is an open set in U

such that ϕ(W̃ ) ⊆ W̃ ⊆ L j + B(0,ε). Taking ε > 0 arbitrarily small we get the conclusion.
Since every submanifold of a bounded open set in Cd is hyperbolic [16, Cor. 4.1.10, Prop.
3.2.2], the last sentence of the statement follows. ut

Proposition 3 Let ϕ : U → U be a holomorphic map and let U be a domain in a Stein
manifold.

(a) If U is hyperbolic and every orbit of ϕ in U is relatively compact then ϕ has stable
orbits in U and, hence, Cϕ : H(U)→ H(U) is power bounded.

(b) If U is Kobayashi complete hyperbolic and there is a relatively compact orbit of ϕ

then ϕ has stable orbits in U and, hence, Cϕ : H(U)→ H(U) is power bounded.
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Proof (a): Fix a compact set K. For every x ∈ K its ϕ-orbit Ox := {ϕn(x) : n ∈ N} is rel-
atively compact. Hence there is ε(x) > 0 such that Ux := {z ∈ U : kU (z,Ox) < ε(x)} is
relatively compact in U . As (BkU (x,ε(x))x∈K is a covering of K, there is a finite subcovering
(BkU (xi,ε(xi)))i=1,...,m. Since ϕ is non-expansive with respect to the Kobayashi metric of U ,
for each z ∈ K, ϕn(z) ∈

⋃m
i=1 Uxi for each z ∈ K, and the set

⋃m
i=1 Uxi is relatively compact.

(b) Let the ϕ-orbit Ox of x be relatively compact. Let K be an arbitrary compact subset of
U containing Ox, thus K ⊆ BkU (x,r) for some r > 0. Since ϕ is non-expansive with respect
to the Kobayashi metric of U , orbits of all points of K are contained in BkU (x,2r). This set
is relatively compact since in a complete hyperbolic set all Kobayashi balls are relatively
compact. ut

REMARK. For U = C, part (b) of Proposition 3 does not hold: it is enough to take
ϕ(z) = 2z.

Corollary 1 Let U be a topologically contractible bounded strongly pseudoconvex domain
in Cd with C 3 boundary. Let ϕ : U →U be a holomorphic map. Then Cϕ : H(U)→ H(U)
is power bounded if and only if ϕ has a fixed point.

Proof By Proposition 1, if Cϕ is power bounded ϕn cannot converge to a boundary point.
By [16, Th. 5.5.9], if ϕn does not converge to a boundary point then it has a fixed point. By
[16, Cor. 4.1.12], U is complete hyperbolic. Sufficiency follows from Proposition 3 (b). ut

A precise description of maps ϕ such that Cϕ : H(U)→H(U) is power bounded follows
from an argument of Abate originally used for taut manifolds, see [16, Th. 5.5.4].

Theorem 1 Let U be a domain in a Stein manifold and let ϕ : U →U be a holomorphic
map. If ϕ has stable orbits on U, then there is a holomorphic submanifold M of U and a
holomorphic surjective retraction ρ : U →M such that ψ := ϕ|M is an automorphism of M.
Moreover,

G := {ψn : n ∈ N}H(M,M)

is a compact abelian group of automorphisms on M such that every cluster point of (ϕn) in
H(U,U) is of the form γ ◦ρ where γ ∈ G. The ϕ-orbit of every element z ∈U tends to some
G-orbit of elements of M, in particular, it tends to M and this convergence is uniform with
respect to z belonging to a fixed compact set.

Finally,

P( f )(z) := lim
N→∞

1
N

N

∑
n=1

Cϕn( f )(z) =
∫

G
f (γ ◦ρ(z))dH(γ),

where H is the Haar measure on G, and the image of the projection P satisfies

im P = { f : f is constant on ρ
−1 ({γ ◦ρ(z) : γ ∈ G}) ∀ z ∈U}.

Proof Most of the statement follows immediately form the proof of [16, Th. 5.5.4] except
the uniform convergence of orbits and description of the projection P. We prove this part
below.

Since every sequence (ϕn j ) contains a subsequence convergent to γ ◦ρ for some γ ∈ G
it follows that the set of all cluster points of the orbit:

Ox := {ϕn(x) : n ∈ N}

is exactly equal to
Gρ(x) := {γ ◦ρ(x) : γ ∈ G}.
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Let K b U be an arbitrary compact set, then there is a compact set L b U , L ⊇ K such that
ϕn(K)⊆ L for every n ∈ N. Clearly, for every x ∈ K we have Gρ(x) ⊆ L and, by Proposition
2, L is contained in a hyperbolic open set V ⊆U , ϕ(V )⊆V .

The family of sets

Gρ(x)(ε) := {z ∈V : kV (z,Gρ(x)) < ε}

is a neighbourhood basis of Gρ(x) and if the orbits falls into Gρ(x)(ε), it cannot escape
because ϕ is a non-expansive with respect to kV . For every ε > 0 there is a finite set
{x1, . . . ,xm} ⊆ K such that

K ⊆
m⋃

j=1

BkV

(
x j,

ε

2

)
.

Moreover, there is n0 such that for every n > n0 and every j = 1, . . . ,m we have

kV (ϕn(x j),Gρ(x j)) <
ε

2
.

Clearly, for some j, Gρ(x) ⊆ Gρ(x j)
(

ε

2

)
. Thus for every x ∈ K and n > n0 for some j =

1, . . . ,m we have

kV (ϕn(x),Gρ(x))<
ε

2
+kV

(
ϕ

n(x),Gρ(x j)

)
≤ ε

2
+kV (ϕn(x),ϕn(x j))+kV

(
ϕ

n(x j),Gρ(x j)

)
<

3
2

ε,

and orbits of x ∈ K tend uniformly to Gρ(x).
Since im P = ker(Cϕ − id) ([22, Ch. VIII, §3]) it is easily seen that im P is the set of

functions constant on closures of all orbits and for x ∈U we have

Ox = ρ
−1 ({γ ◦ρ(x) : γ ∈ G}) .

On the other hand, kerP = im(Cϕ − id) ([22, Ch. VIII, §3]) and for

S : H(U)→ H(U), S( f )(z) :=
∫

G
f (γ ◦ρ(z))dH(γ)

we have kerS⊇ im(Cϕ − id) and im S = im P. Therefore S = P on H(U). ut

REMARK. 1. The converse of Theorem 1 is also true. Indeed, for every compact set
K b U the set

LK :=
⋃
z∈K

{γ ◦ρ(z) : γ ∈ G}

is compact since it is the image of the continuous map

G×K→U, (γ,z) 7→ γ(ρ(z)).

Let V be a relatively compact neighbourhood of LK . Since orbits of z ∈ K tend uniformly to
LK there is n0 such that ϕn(K)⊆V for every n > n0. Thus

⋃
n∈N

ϕ
n(K)⊆

n0⋃
n=1

ϕ
n(K)∪V

which is relatively compact.
2. If U is the unit ball then M must be an affine slice of U , see [1, Cor. 2.2.16].

The following consequences follow from Theorem 1 in special cases.
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Corollary 2 Let U be a connected open subset of C and let ϕ : U →U be a holomorphic
self-map. If Cϕ is power bounded then either ϕ is an automorphism of U or all orbits of ϕ

tends to a constant u ∈U such that u is a fixed point of ϕ .
If additionally U = D, then in the automorphism case ϕ has also a fixed point u and

ϕ = ϕ
−1
u ◦ rθ ◦ϕu, θ ∈ [0,2),

where

ϕu(z) :=
u− z
1− ūz

, rθ (z) = eiθπ z

Moreover, we have

(i) If ϕ is not an automorphism then the projection P associated to Cϕ is given: P( f )(z) =
f (u).

(ii) If ϕ is an automorphism and θ = p
q is rational then P( f )(z)= 1

q ∑
q−1
j=0 f (ϕ−1

u (r jp
q
(ϕu(z)))).

(iii) If ϕ is an automorphism and θ is irrational then P( f )(z) = 1
2
∫ 2

0 f (ϕ−1
u (rθ (ϕu(z))))dθ .

Proof It follows from Theorem 1 in the non-automorphism case (since M has to be zero-
dimensional and connected). In the automorphism case we apply Denjoy-Wolff theory (see
[19, Sec. 5]) and the well-known form of automorphisms on D. ut

Clearly the result above gives a description of mean ergodic composition operators in
the case of one-connected one dimensional Riemann manifolds.

Corollary 3 Let Bd be the unit ball in a d dimensional complex space Cd . Let ϕ : Bd → Bd
induce a power bounded map Cϕ . Then ϕ satisfies one of the following three properties:

(i) ϕ has a fixed point u and all orbits of ϕ tend to it. In this case P( f )(z) = f (u).
(ii) There is an m dimensional affine submanifold M of Bd , 1 ≤ m < n, (clearly, biholo-

morphically equivalent to the ball Bm in Cm) with a holomorphic retraction ρ onto M,
ϕ restricted to M is an automorphism, it has a fixed point u in M and the projection
associated to Cϕ has the form

P( f ) =
∫

Γ

f (ζ−1 ◦A◦ζ ◦ρ(z))dH(A),

where Γ is a closed subgroup of the group of unitary transformations generated by
ζ ◦ϕ ◦ζ−1, H is the Haar measure on this group and ζ : M→ Bm is a biholomorphism
such that ζ (u) = 0.

(iii) ϕ is an automorphism of Bd with a fixed point and P looks as above for m = d.

Proof We apply Theorem 1, and consider separately the cases when M has dimension 0,
m for 0 < m < d and d. In the second case since M is retractive it must be an affine one-
connected submanifold (see [1, Cor. 2.2.16]), thus it is biholomorphically equivalent to the
corresponding m dimensional ball. The rest follows as in the proof of Corollary 2. ut
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