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Abstract

We study the dynamical behaviour of composition operators defined on spaces of real
analytic functions. We characterize when such operators are power bounded, i.e. when the
orbits of all the elements are bounded. In this case this condition is equivalent to the
composition operator being mean ergodic. In particular, we show that the composition
operator is power bounded on the space of real analytic functions on Ω if and only if there
is a basis of complex neighbourhoods U of Ω such that the operator is an endomorphism on
the space of holomorphic functions on each U .

1 Introduction and Notation

The purpose of this paper is to study the behaviour of orbits of composition operators Cϕ(f) :=
f ◦ϕ, ϕ a real analytic self map, on spaces of real analytic functions defined on an open subset of
Rd or, more generally, on a real analytic manifold. There are three interesting notions describing
different dynamical behaviour of a continuous linear operator: power boundedness (i.e. all orbits
are bounded), mean ergodicity (i.e. all orbits are Cesaro convergent, see [41] and [29]) and
hypercyclicity (i.e. there exists a dense orbit). We completely characterize when Cϕ is power
bounded in terms of the self map ϕ. In particular we prove that in this context Cϕ is power
bounded if and only if it is mean ergodic. Our results provide a new, rather surprising, necessary
condition for a composition operator to be hypercyclic.

A systematic investigation of composition operators on spaces of real analytic functions have
been undertaken by Langenbruch and the second author; see the series of papers [15], [16], [17].
However, these papers concentrate on aspects different form the dynamical behaviour of the
operator.

There is a huge literature about the dynamical behavior of various linear continuous op-
erators on Banach, Fréchet and more general locally convex spaces; see the survey paper by
Grosse-Erdmann [21] and the recent books by Bayart and Matheron [4] and by Grosse-Erdmann
and Peris [23]. Composition operators on different function spaces have been also extensively
investigated. See, for instance, [38], [5], [6] and [22]; for general theory of composition operators
on Banach spaces of holomorphic functions see [11], [37].

12000 Mathematics Subject Classification. Primary: 47B33, 46E10. Secondary: 47A16, 47A35.
Key words and phrases: Spaces of real analytic functions, real analytic manifold, composition operator, mean

ergodic operator, power bounded operator, orbit, hypercyclic operator, hyperbolic spaces.
Acknowledgement: The research of Bonet was partially supported by MEC and FEDER Project MTM2007-

62643 and by GV Project Prometeo/2008/101. The research of Domański was supported in years 2007-2010 by
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The space A (Ω) of real analytic functions, i.e. analytic complex functions with real argument
in Ω ⊆ Rd or Ω being a real analytic manifold, is a natural function space, which has attracted
much attention recently in connection with its topological structure (for example the space is
separable, complete and has no Schauder basis [18]), global analysis, the splitting of short exact
sequences, composition operators, and surjectivity, existence of continuous linear right inverse
and parameter dependence of linear partial differential operators. See e.g. [30], [31], [33], [39],
the authors’ papers [7], [8], [13], [15], [16], [17] and the survey [12].

Let T : E → E be a continuous linear operator on a Hausdorff locally convex space E. The
iterates of T are denoted by Tn := T ◦ · · · ◦ T, n ∈ N. If the sequence (Tn)n∈N is equicontinuous
in the space L(E) of linear operators from E to E, T is called power bounded. In case the space
E is barrelled, for example if E = A (Ω) , one can apply the uniform boundedness principle to
conclude that T is power bounded if and only if the orbit {Tn(x) : n ∈ N} is bounded for every
x ∈ E.

A continuous linear operator T on E is called mean ergodic if the limits

(1) Px := lim
N→∞

1
N

N∑

n=1

Tnx, x ∈ E,

exist in E. A power bounded operator T is mean ergodic precisely when X = ker(I − T ) ⊕
im(I − T ). Moreover, imP = ker(I − T ) and kerP = im(I − T ). If the space E is barrelled
and T is mean ergodic, the sequence 1

N

∑N
n=1 Tn converges pointwisely to a continuous linear

projection P ; see [41, Ch. VIII, §3]. If the convergence is uniform on bounded sets we call T
uniformly mean ergodic. There is a classical theory of mean ergodic operators which goes back
to fundamental papers of Yosida and Hille especially in the Banach case; cf. [29] and [20]. For
more details on the locally convex theory see [41], [2] and [3] and the references therein.

Let ϕ : U → U be a continuous self-map on a topological space U , we say that ϕ has stable
orbits on U if for every compact subset K of U there is a compact subset L b U such that
ϕn(K) ⊆ L for n ∈ N. This concept plays an important role in the characterizations below.

We are ready to formulate the main result of our paper. The equivalences of (a), (c) and (d)
and the last statement are rather surprising.

Main Theorem. Let Ω be a real analytic manifold (compact or non-compact) and let
ϕ : Ω → Ω be a real analytic map. The following assertions are equivalent:

(a) Cϕ : A (Ω) → A (Ω) is power bounded.
(b) Cϕ : A (Ω) → A (Ω) is (uniformly) mean ergodic.
(c) The manifold Ω has a basis of complex neighbourhoods consisting of sets V such that ϕ

extends as a holomorphic self-map of V .
(d) There is a complex neighbourhood V of Ω such that ϕ extends to V as a holomorphic self

map and ϕ has stable orbits on V , or equivalently Cϕ : H(V ) → H(V ) is power bounded; see
[9].

In particular, if Cϕ : A (Ω) → A (Ω) is hypercyclic, then (c) does not hold.

In Corollary 2.6 we get a precise description of ϕ such that Cϕ : A (Ω) → A (Ω) is power
bounded, which gives a very strong necessary condition. A neat description is obtained for real
analytic functions on intervals of the real line in Theorem 2.8.

A description of the natural topology on A (Ω) (going back to Martineau) is given, for
instance, in [18] or [12]. The space A (Ω) has very good properties: it is nuclear, separable,
complete, barrelled and even ultrabornological, satisfies the closed graph theorem, but surpris-
ingly it has no Schauder basis by [18].
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To be precise, the space A (Ω) is equipped with the unique locally convex topology such
that for any U ⊆ Cd open, Rd ∩ U = Ω, the restriction map R : H(U) −→ A (Ω) is continuous
and for any compact set K ⊆ Ω the restriction map r : A (Ω) −→ H(K) is continuous. We
endow the space H(U) of holomorphic functions on U with the compact-open topology and the
space H(K) of germs of holomorphic functions on K with its natural locally convex inductive
limit topology:

H(K) = indn∈N H∞(Un),

where (Un)n∈N is a basis of Cd-neighbourhoods of K. Martineau (see [12]) proved that there is
exactly one topology on A (Ω) satisfying the condition above. Endowed with this topology one
has the following description as a countable projective limit:

A (Ω) = projN∈N H(KN ).

Here (KN )N is a fundamental sequence of compact subsets of Ω. Analogously one defines the
topology on A (Ω) when Ω is a real analytic manifold [40]. A long survey on the space of real
analytic functions with very precise description of its topology is contained in [14].

It is known that every real analytic manifold Ω has a complexification Ω̃ [24, Th. III.3.3]
and it has a fundamental system of Stein open neighbourhoods in Ω̃ [24, Th. III.3.6]. Clearly,
if Ω ⊆ Rd is just an open subset then Ω̃ is an open subset of Cd and a complex neighbourhood
of Ω. By a complex neighbourhood of a subset S of a real analytic manifold Ω we mean a
neighbourhood of S in a complexification Ω̃ of Ω. Again in case of open sets Ω ⊆ Rd a complex
neighbourhood of S ⊆ Ω is just a neighbourhood of S in Cd. Moreover, without loss of generality
we may assume that the complexification Ω̃ of Ω is embedded as a Stein manifold into some Cd

such that Ω̃∩Rd = Ω see [24, Th. VI.1.1]. Recall that every Stein manifold embeds via a proper
map into Cd for suitable d ∈ N [26, 5.3.9].

We will use Kobayashi semi-distance kV (·, ·) on a complex manifold V ⊆ Cd. Here the
beautiful book [27] is a standard reference. Every holomorphic map ϕ : V → V is always
non-expansive with respect to kV . The manifold V is called hyperbolic if kV is a distance (and
then it induces the standard topology of V ). Every domain biholomorphic to a bounded set is
automatically hyperbolic [27, Cor. 4.1.10, Prop. 3.2.2]. The manifold V is called Kobayashi
complete if (V, kV ) is a complete metric space, or equivalently, if every ball in this space is
relatively compact [27, Prop. 1.1.9]. Every bounded open set V ⊆ Cd such that every its
boundary point admits a weak peak function is Kobayashi complete [27, Cor. 4.1.11]. Both
hyperbolicity and Kobayashi completeness are biholomorphic invariants.

By B(x, r) and BkV
(x, r) we denote, respectively, euclidean and Kobayashi balls of center x

and radius r. The notation K b U means that K is a compact subset of the open set U . By R̄
we denote the extended real line R ∪ {∞} ∪ {−∞}. For non-explained notions from functional
analysis we refer to [35]. For complex analysis of several variables see [25] and for real analytic
manifolds see [24]. For dynamics of holomorphic maps see [1], [36].

Acknowledgement. The authors are very indebted to F. Bracci for providing some infor-
mation concerning complex dynamics. The second named author is very grateful to colleagues
from Valencia for warm hospitality during his stays there.

2 Proof of the main theorem

Theorem 2.1 Let Ω be a real analytic manifold (compact or non-compact) and let ϕ : Ω → Ω
be a real analytic map. The following assertions are equivalent:

(a) Cϕ : A (Ω) → A (Ω) is power bounded.
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(b) Cϕ : A (Ω) → A (Ω) is uniformly mean ergodic.
(c) Cϕ : A (Ω) → A (Ω) is mean ergodic.
(d) For all K b Ω there is L b Ω such that for all complex neighbourhood U of L there is a

complex neighbourhood V of K such that

∀ n ∈ N ϕn is defined on V and ϕn(V ) ⊆ U.

(e) For every complex neighbourhood U of Ω there is a complex (open!) neighbourhood V ⊆ U
of Ω such that ϕ extends as a holomorphic function to V , ϕ(V ) ⊆ V , and ϕ has stable orbits on
V .

(f) The manifold Ω has a basis of complex neighbourhoods consisting of sets V such that ϕ
extends as a holomorphic self-map of V .

Proof: Recall that the manifold Ω and its complexification Ω̃ are embedded as submanifolds
into Cd such that Ω̃ ∩ Rd = Ω.

(a)⇒(b): Follows from [2, Prop. 2.4] since A (Ω) is Montel and all its bounded subsets are
metrizable; see also [10].

(b)⇒(c): Obvious.
(c)⇒(d): By [2, Prop. 2.2], the sequence

(
1
nCϕn

)
tends to zero, so it is bounded and

equicontinuous on A (Ω) , since A (Ω) is barrelled. Now, it is a standard argument that for
every K b Ω there is L b Ω such that each Cϕn acts continuously from A (Ω) equipped
with the topology of H(L) into A (Ω) equipped with the topology of H(K) and, moreover,(

1
nCϕn

)
is an equicontinuous family with respect to these topologies. Since A (Ω) is a dense

subspace of the complete spaces H(K) and H(L), each Cϕn extends to continuous operators

Ĉϕn : H(L) −→ H(K) and
(

1
n Ĉϕn

)
is an equicontinuous family. Let us emphasize that Ĉϕn is

just an extension via density so, a priori, there is no reason why it can be defined as a composition
operator on H(L).

We first show that, for every n ∈ N,

ϕn(K) ⊆ L.

Of course, if Ω is compact we can take K = L = Ω. In the general case assume that ϕn(K) * L,
thus there is u = (u1, . . . , ud) ∈ ϕn(K) such that u /∈ L. Let

fε(z) :=
1∑d

j=1(zj − uj)2 + εi
.

Clearly for every ε > 0 the function fε ∈ A (Ω) . As ε → 0, fε(z) → 1∑d
j=1(zj−uj)2

∈ H(L) on a

complex neighbourhood of L but |fε ◦ ϕn(v)| → ∞ for any v ∈ K, ϕn(v) = u; a contradiction.
Let U be a complex neighbourhood of L. We may assume without loss of generality that

U is a polynomial polyhedron, or more precisely an intersection of a polynomial polyhedron in
Cd with Ω̃ see [26, Lemma 2.7.4], comp. [19, proof of Th. 1.6]. Since 1

n Ĉϕn : H(L) −→ H(K)
are equicontinuous, for every U1 b U a complex neighbourhood of L there is V a complex
neighbourhood of K such that

Ĉϕn : H∞(U1) −→ H∞(V )

is continuous for every n ∈ N. The reason for that is that any equicontinuous family of operators
between LB-spaces maps a fixed step-space into some fixed step-space continuously.
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We consider U ⊆ Ũ such that Ũ is a complex neighbourhood of Ω such that ϕ : Ũ −→ Cd

is defined and holomorphic and, without loss of generality, we may assume that V ⊂ Ũ . Since
ϕ(K) ⊆ L, we may also assume without loss of generality that ϕ(V ) ⊆ U . Now, assume that n
is the smallest natural number k such that the following does not hold:

ϕk is defined on V and ϕk(V ) ⊆ U .

We have chosen U , V in such a way that n > 1. Since ϕn−1 is defined on V and ϕn−1(V ) ⊆ U ⊆ Ũ
so ϕn is defined on V . Therefore ϕn(V ) * U .

Let u ∈ ϕn(V ) \ U . Since U is assumed to be a polynomial polyhedron, there is a non-
constant polynomial p such that for every w ∈ U , |p(w)| < 1 but p(u) ≥ 1. On the other hand,
there is 0 < δ < 1 such that |p(w)| < δ for all w ∈ U1. Define the function

g(z) :=
1

p(z)− p(u)
.

This function belongs to H∞(U1), thus

Ĉϕn(g) ∈ H∞(V ).

Recall that, by definition, the operator Ĉϕn acts as a composition operator on A (Ω) , but on
other elements it is defined via extension from a dense subspace. Since g is defined on some
polynomial polyhedron containing U1 as a relatively compact set there is a sequence (gl)l∈N of
polynomials (so elements of A (Ω) ) tending uniformly on U1 to g. Thus

Ĉϕn(g) = lim
l→∞

Ĉϕn(gl) = lim
l→∞

gl ◦ ϕn.

The limit is taken in H∞(V ), which implies that gl ◦ ϕn, n ∈ N, are holomorphic functions
defined on V which uniformly tend to Ĉϕn(g). Without loss of generality we may assume that
K and V are connected. Since ϕn(K) ⊆ L ⊆ U1 we get, on a neighbourhood of K,

gl ◦ ϕn → g ◦ ϕn as l →∞,

therefore g ◦ ϕn and Ĉϕn(g) coincide on some complex neighbourhood of K as holomorphic
functions.

Set
W := {z : p ◦ ϕn(z) = p(u)}, W ∩ V 6= ∅.

The function g ◦ ϕn is defined on V \W and, since W is analytic, the set V \W is connected.
Thus on V \W

Ĉϕn(g) = g ◦ ϕn.

Choosing (vk)k∈N in V \W such that limk→∞ vk = v ∈ V with ϕn(v) = u we get

lim
k→∞

|g ◦ ϕn(vk)| = ∞ and lim
k→∞

Ĉϕn(g)(vk) = Ĉϕn(g)(v);

a contradiction.
(d)⇒(e): First we show that U contains a complex neighbourhood V such that ϕ extends

on V and ϕ(V ) ⊆ V . In case Ω is compact, this is obvious. For non-compact Ω assume that (d)
holds. For any compact set K we find a suitable compact L and then for this L we find another
compact set L1 such that for every open neighbourhood U1 of L1 there is a neighbourhood U
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of L such that ϕn are defined on U and ϕn(U + B(0, ε)) ⊆ U1 for every n ∈ N and some fixed
ε > 0. Here U + B(0, ε) means in fact the intersection of Ω̃ with the algebraic sum of U and
B(0, ε) in Cd. Let us take a bounded complex neighbourhood U1. It is easily seen that (ϕn) are
equicontinuous complex maps on U (use Cauchy estimates). Thus

∀ δ > 0 ∃ 0 < η(δ) < δ ∀ n ∈ N : x, y ∈ U, ‖x− y‖ < η(δ) ⇒ ‖ϕn(x)− ϕn(y)‖ < δ.

Let us consider a complex neighbourhood W of K, W ⊆ U , such that for every n ∈ N

ϕn(W ) + B(0, ε) ⊆ U.

Define
W0 := W, Wk := ϕ(Wk−1) + B

(
0, η

( ε

2k

))
.

We prove inductively that

(2) ϕn(Wk) ⊆
( ∞⋃

l=1

ϕl(W )

)
+ B


0,

k∑

j=1

ε

2j


 and Wk ⊆ U.

Clearly this is true for k = 0. Now, assuming (2) for k − 1 we get

Wk = ϕ(Wk−1) + B
(
0, η

( ε

2k

))
⊆

( ∞⋃

l=1

ϕl(W )

)
+ B


0,

k−1∑

j=1

ε

2j


 + B

(
0, η

( ε

2k

))
⊆ U.

Moreover, we get

ϕn(Wk) = ϕn


ϕ(Wk−1) + B

(
0, η

( ε

2k

))

︸ ︷︷ ︸
⊆U


 ⊆ ϕn+1(Wk−1) + B

(
0,

ε

2k

)
⊆

⊆
( ∞⋃

l=1

ϕl(W )

)
+ B


0,

k−1∑

j=1

ε

2j


 + B

(
0,

ε

2k

)
⊆

( ∞⋃

l=1

ϕl(W )

)
+ B


0,

k∑

j=1

ε

2j


 .

Since Wk are open, ϕ(Wk) ⊆ Wk+1, thus W̃ :=
⋃∞

k=0 Wk is an open set with ϕ(W̃ ) ⊆ W̃ .
We have proved that for every complex neighbourhood U of Ω and every compact set K ⊆ Ω

there is a complex open neighbourhood WK of K such that

ϕ(WK) ⊆ WK ⊆ U.

The set V :=
⋃

KbΩ WK is a complex neighbourhood of Ω, ϕ(V ) ⊆ V .
Now we show that there is a fundamental sequence of compact sets (Kj) in Ω such that

ϕ(Kj) ⊆ Kj for every j ∈ N. Again for Ω compact this is trivial. In the general case, by (d), for
every compact set K b Ω there is a compact set L b Ω such that ϕn(K) ⊆ L for every n ∈ N.
Define

M := K ∪
∞⋃

n=1

ϕn(K)

which is a compact set and K ⊆ M , ϕ(M) ⊆ M ⊆ L. Therefore we can construct (Kj) easily.
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Without loss of generality we may assume that U is biholomorphic to a bounded set since

z 7→ (arctan z1, . . . , arctan zd)

is a diffeomorphism of Rd onto (−π/2, π/2)d which maps biholomorphically a complex neigh-
bourhood of the first set onto a complex neighbourhood of the second set. Thus U and V are
hyperbolic and, by [27, Cor. 4.1.10], the Kobayashi pseudodistance kV on V is a distance and
generates its standard topology. Define

Uj(ε) := {z ∈ V : kV (z, Kj) < ε}.

Since every holomorphic map is non-expansive with respect to the Kobayashi distance ϕ(Uj(ε)) ⊆
Uj(ε). For every j ∈ N there is εj > 0 such that Uj(εj) is relatively compact in W . Then
ϕ(V ) ⊆ V for

V :=
∞⋃

j=1

Uj(εj).

Let K be a compact set in V , then

K ⊂
∞⋃

j=1

⋃

0<ε<εj

Uj(ε)

and therefore

K ⊂
n⋃

j=1

Uj(ε̃j)

for some 0 < ε̃j < εj . On the other hand, L :=
⋃n

j=1 Uj(ε̃j) ⊃ K is compact and ϕ(L) ⊆ L.
(e)⇒(f): Obvious.
(f)⇒(a): Again for compact Ω this is immediate. Assume that Ω is non-compact, (Cϕn)

are not equicontinuous and (f) holds. As usual Ω is a real analytic manifold contained in a
complexification Ω̃ ⊆ Cd, Ω̃∩Rd = Ω. By the Tubular Neighbourhood Theorem [34, Th. 10.19],
there is a neighbourhood T of Ω in Cd and a smooth retraction onto R : T → Ω. Therefore
there is a complex neighbourhood V of Ω such that ϕ(V ) ⊆ V and R(V ) = Ω; in particular,
all ϕn are defined on V . In case Ω is an open set of Rd then the smooth retraction R can be
assumed to be the standard projection from Cd onto Rd.

Proceeding with the proof, first we show the following:
Claim. There is K b Ω such that for every complex neighbourhood U ⊆ V of K we have

⋃

n∈N
R(ϕn(U)) is not relatively compact in Ω

Obviously, ϕn is well defined on U for every n ∈ N. Assume that the claim does not hold,
i.e.,

∀ K b Ω ∃ UK ⊆ V a complex nbh. of K :
⋃

n∈N
R(ϕn(UK)) is relatively compact in Ω.

Clearly, Ũ :=
⋃

KbΩ UK is a complex neighbourhood of Ω such that ϕn are all defined on Ũ and
for every compact subset M of Ũ the set

⋃
n∈NR(ϕn(M)) is relatively compact in Ω.
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For every complex neighbourhood Ṽ ⊆ Ũ of Ω there is another complex neighbourhood
W̃ (Ṽ ) ⊆ Ṽ such that for every K b Ω the set

{z ∈ W̃ : R(z) ∈ K}

is relatively compact in Ṽ . We choose V0 a complex neighbourhood of Ω such that V0 ⊆ W̃ (Ũ)
and ϕ(V0) ⊆ V0 (it exists by (f) and the remarks above). Analogously, we choose inductively a
basis of complex neighbourhoods (Vi) of Ω such that

Vi+1 ⊆ W̃ (Vi), ϕ(Vi+1) ⊆ Vi+1

(again by (f) and the remarks above). Clearly,

ϕn(Vi) ⊆ Vi ∀ n ∈ N, i

and since Vi+1 ⊆ Ũ and Vi+1 ⊆ W̃ (Vi) for every compact set M ⊆ Vi+1 the set
⋃

n∈N ϕn(M) is
compact in Vi. Thus for every f ∈ H(Vi), the sequence (Cϕn(f)) is bounded in H(Vi+1) and
thus in A (Ω) . We have proved that for every f ∈ A (Ω) the sequence (Cϕn(f)) is bounded
in A (Ω) which contradicts our assumption that the sequence (Cϕn)n is not equicontinuous on
A (Ω) . This completes the proof of Claim.

By the claim we have just proved, K has a complex neighbourhood basis (Uk) such that
for every k there is a sequence of points (xk,n)n∈N in Uk such that R(ϕn(xk,n)) are arbitrarily
close to the boundary of Ω as n → ∞. We may assume that ϕn(xk,n) /∈ Rd, since taking
x̃k,n close to xk,n we get ϕn(x̃k,n) close to ϕn(xk,n) and since ϕn cannot be real on a complex
open set. Let (Ωm)m∈N be an open relatively compact exhaustion of Ω. Then there is an open
complex neighbourhood Wm of Ωm contained in R−1(Ωm) which does not contain any element
of {ϕn(xk,n) : n ∈ N, k ≤ m}. Let W :=

⋃
m∈NWm then for any k ∈ N there are infinitely many

ϕn(xk,n) not contained in W . Therefore there is no complex neighbourhood V ⊆ W of Ω such
that ϕ(V ) ⊆ V . A contradiction with (f). 2

Remarks. 1. The condition (f) of Theorem 2.1 is equivalent to the condition that for
every Fréchet space E continuously embedded into A (Ω) there is another Fréchet space F
continuously embedded into A (Ω) such that Cϕn(E) ⊆ F for every n ∈ N. This is a consequence
of the fact that for every Fréchet space F each continuous linear map T : F → A (Ω) factorizes
through some H(U) for some complex neighbourhood U of Ω, as was proved in [15, proof of
Prop. 5.2]. In fact, the Fréchet space F can be chosen satisfying that Cϕn : E → F, n ∈ N, form
an equicontinuous sequence; see Theorem 2.1.

2. By the result above, there is a fundamental sequence of compact subsets (Kj) of Ω such
that ϕ(Kj) ⊆ Kj .

Theorem 2.1 shows that power boundedness of Cϕ on A (Ω) is equivalent to existence of
many complex neighbourhoods of Ω such that ϕ extends to them as a self map even with good
behaviour of orbits. It turns out that it suffices to have one sufficiently small neighbourhood
whenever orbits behave well.

Theorem 2.2 Let Ω ⊆ Rd be a real analytic connected manifold and let ϕ : Ω → Ω be a real
analytic map. Then Cϕ : A (Ω) → A (Ω) is power bounded if and only if any one of the
following conditions hold:

(a) There is a complex neighbourhood V of Ω such that ϕ extends to V as a holomorphic self
map and ϕ has stable orbits on V .
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(b) There is a hyperbolic complex neighbourhood V of Ω such that ϕ extends to V as a
holomorphic self-map, V is contained in a Stein neighbourhood U such that the inclusion Ω ↪→ U
is a proper map (i.e. the inverse image of every compact set is compact) and Cϕ : H(V ) → H(V )
is power bounded.

(c) There is a hyperbolic complex neighbourhood V of Ω such that ϕ extends to V as a
holomorphic self-map and ϕ has stable orbits on Ω.

(d) There is a complex neighbourhood V of Ω such that ϕ extends to V as a holomorphic
self-map, V is contained in a complex Kobayashi complete hyperbolic neighbourhood U of Ω such
that the inclusion Ω ↪→ U is a proper map and ϕ has at least one orbit relatively compact in Ω.

First, we need a lemma.

Lemma 2.3 Every real analytic manifold has a basis of neighbourhoods in its complexification
consisting of Kobayashi complete hyperbolic manifolds.

Proof: By [24, Th. VI.1.1] every real analytic manifold Ω embeds into Rd as a submanifold.
Taking W = Rd \ (Ω \ Ω), then Ω is embedded via a proper map as a submanifold into W . By
[32, 2.2], there is a real analytic map h : W → R+ such that h(x) → 0 as x → ∂W . Thus the
map

x 7→ (x, 1/h(x))

is a proper embedding of W into Rd+1. Of course, there is a complexification W̃ contained in
Cd+1. On the other hand, Rd+1 has a basis of Kobayashi complete hyperbolic neighbourhoods
S in Cd+1: just take products of Kobayashi complete hyperbolic one-connected neighbourhoods
of R in C, see [27, Prop. 3.2.3]. Since the complexification Ω̃ of Ω in W̃ is closed in sufficiently
small neighbourhoods S, the intersections S ∩ Ω̃ form the required basis of complex complete
hyperbolic neighbourhoods of Ω. 2

Proof of Theorem 2.2: Necessity of all conditions follows from Theorem 2.1 since every
real analytic manifold has a basis of complex neighbourhoods in its complexification consist-
ing of Stein neighbourhoods [24, Th. III.3.6] or consisting of Kobayashi complete hyperbolic
neighbourhoods, see Lemma 2.3.

We show that each condition is sufficient.
Sufficiency of (a): Condition (a) implies condition (d) in Theorem 2.1 by an argument similar

to the one given in the proof that (d) implies (e) in Theorem 2.1. We omit the details; compare
with [9, Proposition 2.2].

(d)⇒(a) (and (d) is also sufficient): Let the orbit of x ∈ Ω be relatively compact in Ω and
let K be an arbitrary compact set in Ω. Since V is hyperbolic (as a subset of a hyperbolic set),

sup
z∈K

kV (z, x) = R < ∞.

Thus for every n ∈ N, z ∈ K, we have:

kU (ϕn(z), ϕn(x)) ≤ kV (ϕn(z), ϕn(x)) ≤ kV (z, x) ≤ R.

As the orbit of x is relatively compact in U we have

sup
n∈N

kU (x, ϕn(x)) = C < ∞

and for every n ∈ N and z ∈ K we get

kU (ϕn(z), x) ≤ R + C.
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Since U is Kobayashi complete, all its balls are relatively compact in U , hence
⋃

n∈N ϕn(K) is
relatively compact in U and contained in Ω. Since ∂RΩ ⊆ ∂CU , the set is also relatively compact
in Ω. We have proved that for every compact set K ⊆ Ω there is a compact set L in Ω such that
ϕn(K) ⊆ L for every n ∈ N. We easily construct a fundamental family (Kj) of compact sets in
Ω such that ϕ(Kj) ⊆ Kj for every j ∈ N.

Now, we can repeat the last part of the proof of (d)⇒(e) in Theorem 2.1 to get that there
is complex neighbourhood W ⊆ V of Ω such that there is a fundamental family of compact sets
(Lj) in W with ϕ(Lj) ⊆ Lj for every j ∈ N. The set W plays the role of V in (a).

Sufficiency of (c): As in the proof of (d)⇒(e) in Theorem 2.1, we find a fundamental family
(Kj) of compact sets in Ω such that ϕ(Kj) ⊆ Kj for every j ∈ N. For every sequence (εj) of
positive numbers the set

W := {z ∈ V : ∃ j ∈ N kV (z,Kj) < εj}
whenever kV denotes the Kobayashi distance of V satisfies ϕ(W ) ⊆ W . Every neighbourhood
of Ω in V contains a set of the form W . This completes the proof by Theorem 2.1 (f).

(b)⇒(c) (and (b) is also sufficient): Assume that Cϕ : H(V ) → H(V ) is power bounded.
For every K compact in V we find L compact in V such that Cϕn extends to Ĉϕn : A(L) →

A(K) as a continuous map, where K, L has non-empty interiors and A(K) denotes the comple-
tion of H(V ) with respect to the sup-norm on K. Let us denote by L̂ the holomorphic hull of
L in U , i.e.,

L̂ = {w ∈ U : |f(w)| ≤ sup
z∈L

|f(z)| ∀ f ∈ H(U)}.

If there is a ∈ ϕn(K) \ L̂ then there is a function f ∈ H(U) ⊆ H(V ) such that f(a) = 1 but
supz∈L̂ |f(z)| ≤ ε, ε ∈ (0, 1). Since fk tends uniformly to zero on L̂ ⊇ L as k → ∞ but does
not tend to zero at a, the map Cϕn is not continuous from A(L) to A(K). Since ϕ(Ω) ⊆ Ω, for
every compact set K in V the set

⋃∞
n=1 ϕn(K ∩ Ω) ⊆ L̂ ∩ Ω =: M is relatively compact in Ω

(since M is compact in U and Ω is closed in U). Thus we have proved that for every compact
set K ⊆ Ω there is a compact set L in Ω such that ϕn(K) ⊆ L for every n ∈ N. This completes
the proof of (c).

2

Remark. Examples of hyperbolic neighbourhoods are arbitrary complex manifolds biholo-
morphic with submanifolds of bounded open sets see [27, Cor. 4.1.10, Prop. 3.2.2]. For d = 1
every domain with complement in C consisting of two points is hyperbolic. If Ω is a real line
then ϕ is real on the whole real line and then V in (d) or (b) can be assumed symmetric with
respect to the real line. If it has one point outside it has automatically two such points.

Problem 2.4 Is it true that power boundedness of Cϕ : A (Ω) → A (Ω) implies that there
exists a complete hyperbolic complex neighbourhood V of Ω such that ϕ(V ) ⊆ V or such that this
set V is a domain of holomorphy? Does there exist a fundamental family of such neighbourhoods?

Slightly more can be said if the relatively compact orbit in Theorem 2.2 (d) reduces to
one point. We have the following consequence of Carathéodory-Cartan-Kaup-Wu Theorem [28,
10.2.15]; see also [27, Th. 5.5.1].

Corollary 2.5 Let Ω be a real analytic connected manifold and let ϕ : Ω → Ω be a real an-
alytic map with a fixed point u ∈ Ω. If Cϕ : A (Ω) → A (Ω) is power bounded then either
|det ϕ′(u)| < 1 or ϕ is a biholomorphic automorphism of a (fundamental) family of hyperbolic
complex neighbourhoods of Ω. In the latter case, if ϕ′(u) is the identity map then ϕ is the
identity.
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Remark. Even if the first case holds orbits of ϕ need not converge to a fixed point and
there could exist many fixed points. Consider the map

ϕ(x, y, z) := ((x cos z−y sin z) ·
(

0.5 +
1

2
√

x2 + y2

)
, (x sin z + y cos z) ·

(
0.5 +

1

2
√

x2 + y2

)
, z)

defined on a cylinder with basis in x-y plane being an annulus (z ∈ (−1, 1)). It is easily seen
that the only fixed points are of the form (x, y, 0) where x2 + y2 = 1 but orbits starting from
(x, y, z) tend to the circle {(x, y, z) : x2 + y2 = 1}.

By Theorem 2.1 (e) and [9, Theorem 2.5] we get immediately the following consequence.

Corollary 2.6 Let Ω be a real analytic connected manifold and let ϕ : Ω → Ω be a real analytic
map. If Cϕ : A (Ω) → A (Ω) is mean ergodic then there is a real analytic submanifold M ⊆ Ω
and a real analytic surjective retraction ρ : Ω → M such that ϕ restricted to M is a real analytic
diffeomorphism such that the smallest closed group containing ϕ is a compact abelian group G,
every ϕ-orbit tends to some G-orbit of elements of M (convergence is uniform on compact sets
of starting points of orbits) and

P (f)(z) := lim
n→∞

1
N

N∑

n=1

Cϕn(f)(z) =
∫

G
f(γ ◦ ρ(z))dH(γ),

where H is the Haar measure on G and

im P = {f : f is constant on ρ−1 ({γ ◦ ρ(z) : γ ∈ G}) z ∈ U}.

Remark. By Theorem 2.2 (c), if there is a hyperbolic complex neighbourhood V of Ω such
that ϕ(V ) ⊆ V then the condition in Corollary above is also sufficient for power boundedness of
Cϕ : A (Ω) → A (Ω) .

Observe that all criteria for power boundedness of Cϕ : A (Ω) → A (Ω) contain conditions
on the behavior of ϕ outside Ω.

Problem 2.7 Give a characterization of power bounded composition operators Cϕ : A (Ω) →
A (Ω) in terms of the behavior of ϕ solely on Ω.

In case Ω is an interval, we have always a fixed point and part (c) of the result below solves
the problem above in that case.

Theorem 2.8 Let a, b ∈ R̄ and let ϕ :]a, b[−→]a, b[ be real analytic. The following are equiva-
lent:

(a) Cϕ : A (]a, b[) −→ A (]a, b[) is power bounded.
(b) There exists a complex neighbourhood U of ]a, b[ such that ϕ(U) ⊆ U , C \ U contains at

least two points, and ϕ has a (real) fixed point u, or equivalently, there is a fundamental family
of such neighbourhoods of ]a, b[.

(c) ϕ is of one of the following forms:

(1) ϕ = id ;

(2) ϕ2 = id ;

(3) ϕn tends in A (]a, b[) to a constant function ≡ u ∈]a, b[ as n →∞ and |ϕ′(u)| < 1.
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If u is the fixed point of ϕ then the above cases in (c) correspond to:

(1) ϕ′(u) = 1;

(2) ϕ′(u) = −1;

(3) |ϕ′(u)| < 1.

Moreover, Cϕ is uniformly mean ergodic and the projection P := limn→∞ 1
N

∑N
n=1 Cϕn is of the

following form:

(1) P = id ;

(2) P (f) = f+f◦ϕ
2 , im P = {f : f = f ◦ ϕ}, ker P = {f : f = −f ◦ ϕ};

(3) P (f) = f(u), im P = the set of constant functions, ker P = {f : f(u) = 0}.
Proof: (a)⇒(b): First, we show that there is a compact subinterval [A,B] of ]a, b[ such that

ϕ([A,B]) ⊆ [A,B]. Indeed, by Theorem 2.2 (c), for any compact interval [C, D] of ]a, b[ there is
a compact interval [E, F ] ⊂]a, b[ such that ϕn([C,D]) ⊆ [E, F ] for every n ∈ N. We define

K := [E,F ] ∪
∞⋃

n=1

ϕn([E, F ])

It is easily seen that ϕ(K) ⊆ K. It is connected since ϕn([E, F ]) is connected and [E, F ] ∩
ϕn([E,F ]) contains ϕn([C, D]). Compactness of K follows by the statement on [C, D] applied
to [E, F ]. Thus K = [A,B] for suitably chosen A,B ∈ (a, b). Since ϕ is continuous and
ϕ([A,B]) ⊆ [A,B], ϕ has a fixed point in [A, B] ⊆]a, b[. The rest of the statement follows from
Theorem 2.1 (e). See also Theorem 2.2 and the remark after its proof.

(b)⇒(a): Use Theorem 2.2.
(b)⇒(c): Part of (c) follows from Corollary 2.5 but we prefer to give a simple direct proof.
Let U be a set satisfying (b) (without loss of generality we may assume that U is connected),

contained in {z ∈ C : d(z, ]a, b[) < 1, Re (z) ∈]a, b[}. Since ϕ is real on the real line ϕ(z̄) = ϕ(z)
for z ∈ U and thus we may assume that U is symmetric with respect to the real line. Let
Ũ be the union of U and all its compact components of the complement. Therefore there is
a Riemann (biholomorphic) map ψ : Ũ → D, D the unit disc, such that ψ(]a, b[) =] − 1, 1[,
ψ(u) = 0, u the fixed point of ϕ and let W := ψ(U). The maps Cψ−1 : H(U) → H(W ) and
Cψ : H(W ) → H(U) are isomorphisms and under these isomorphisms the map Cϕ corresponds
to Cη, where η := ψ ◦ ϕ ◦ ψ−1.

Summarizing, we can assume that U is bounded, contained in the unit disc and u = 0.
Define

gn(z) :=

{
ϕn(z)

z if z 6= 0,

(ϕn)′(0) if z = 0.

These functions are well defined on U and by the maximum principle and the Cauchy estimate
|gn(z)| ≤ 1/dist(0, ∂U) =: C. Hence |(ϕn)′(0)| ≤ C but (ϕn)′(0) = (ϕ′(0))n and we get
|ϕ′(0)| ≤ 1.

Since ϕ is real on the real line ϕ′(0) must be real. If ϕ′(0) = 1 then, by [28, Prop. 10.1.1],
ϕ(z) ≡ z. If ϕ′(0) = −1 then Cϕ2 satisfies the same assumptions on U as Cϕ but (ϕ2)′(0) = 1.
Thus ϕ2 = id . If |ϕ′(0)| < 1 then u is an attracting fixed point thus, by [36, Th. 5.2], ϕn tends
uniformly on compact subsets of U to u.
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By Theorem 2.1, Cϕ is mean ergodic and 1
N

∑N
n=1 Cϕn −→ P , where P is a projection onto

ker (id −Cϕ) with kernel im (id −Cϕ). Calculating P is easy on the basis of the above data.
(c)⇒(a): Cases (1) and (2) are obvious. In case (3) there is a neighbourhood A of u where ϕ is

moving all points towards u. For every compact subset of ]a, b[ there is a complex neighbourhood
B of it mapped by some ϕn into A. The result follows by Theorem 2.1 (d). 2

Remarks. 1. The equivalences of (b) and (c) with (a) in Theorem 2.8 do not hold for d > 1.
For instance take Ω an annulus in R2 and ϕ a rotation.

2. If U = C then the condition (b) is not sufficient for (a) in Theorem 2.8, since ϕ(z) := 2z
has zero as a fixed point but there are plenty of unbounded orbits.

3. In the case of several variables, power boundedness of Cϕ does not imply the existence of
a fixed point for ϕ.

Example 2.9 Even if ϕ :]− 1, 1[→]− 1, 1[ maps all bounded sets in ]− 1, 1[ in one compact set
it does not follow that ϕ is power bounded.

Indeed, take

ϕα(z) :=
2i

α · π ln
(

1− iz

1 + iz

)
.

Clearly, ϕα maps the unit disc onto the vertical strip with Re z ∈ (− 1
α , 1

α

)
. Moreover ϕα(i) = ∞,

and ϕα maps the real line into the real line and the imaginary line into the imaginary line. The
imaginary part of converse map ϕ−1

α (it) treated as the function of the real variable t ∈] − 1, 1[
has a derivative with maximum at zero equal to π·α

4 thus if the latter is < 1 the zero point is an
attractive fixed point on the imaginary line for ϕ−1

α . This implies that ϕ−n
α (i) → 0 as n → ∞.

Since on this sequence ϕn+1
α is not defined there is no common neighbourhood of zero such that

all ϕn
α are defined for all n ∈ N and fixed α, α < 1, π·α

4 < 1. Thus Cϕ : A (]−1, 1[) → A (]−1, 1[)
is not power bounded.

Here is another example: ϕ :]−1, 1[→]−1, 1[, ϕ(x) = x
1+x2 . By Theorem 2.8, Cϕ is not power

bounded since ϕ′(0) = 1 and ϕn → 0. Observe that ϕ(]− 1, 1[) =]− 1/2, 1/2[. By Theorem 2.2,
there is no hyperbolic complex neighbourhood V such that ϕ(V ) ⊆ V . Of course, since ϕ has
two singularities i and −i so there is no complex neighbourhood V of ]− 1, 1[ at all such that ϕ
is a self-map of V .

For purposes of comparison with our results above, we conclude here with the following result
about hypercyclic composition operators on spaces of real analytic functions. Part (2) below is
a consequence of our Main Theorem. Part (1) is elementary.

Corollary 2.10 Let Ω be a real analytic connected manifold and let ϕ : Ω → Ω be a real analytic
map. If Cϕ is hypercyclic, then

(1) ϕ is injective, its derivative ϕ′(z) at arbitrary point z ∈ Ω is never a singular linear map
and ϕ runs away, i.e., for every compact set K ⊆ Ω there is n ∈ N such that ϕn(K)∩K = ∅.

(2) There is a complex neighbourhood U of Ω such that for every complex neighbourhood V ⊆ U
of Ω the map ϕ does not extend as a holomorphic self map on V .

Proof: (1) If ϕ(z) = ϕ(w) then every function in the image of Cϕn has the same values in z
and in w, thus Cϕn cannot be hypercyclic. If ϕ′(z)v = 0 for a tangent vector v, then inductively
(ϕn)′(z)v = 0 for every n ∈ N and every function in im Cϕn has a derivative at z vanishing on
the vector v. Again Cϕ cannot be hypercylic. If ϕn(K) ∩K 6= ∅ for every n ∈ N then for any
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function f ∈ A (Ω) with f(K) ⊆ B(0, r) the function Cϕn(f) takes some values in B(0, r) and
so it cannot approximate any function with all values bigger than r.

Parts (2) follows form our Main Theorem. 2
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[12] P. Domański, Classical PLS-spaces: spaces of distributions, real analytic functions and their
relatives, in: Orlicz Centenary Volume, Banach Center Publications, 64, Z. Ciesielski, A.
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