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Abstract

In this note we show that weakly compact operators from a Banach space X into a
complete (LB)-space E need not factorize through a reflexive Banach space. If E is a
Fréchet space, then weakly compact operators from a Banach space X into E factorize
through a reflexive Banach space. The factorization of operators from a Fréchet or a
complete (LB)-space into a Banach space mapping bounded sets into relatively weakly
compact sets is also investigated.

1 Introduction and preliminaries

A linear operator T ∈ L(X,Y ) between Banach spaces is weakly compact if it maps the closed
unit ball of X into a weakly relatively compact subset of Y . There are two possible extensions
of this concept when the continuous linear operator T ∈ L(F,E) is defined between locally
convex spaces F and E. As in [5], we say that T is reflexive if it maps bounded sets into
weakly relatively compact sets, and it is called weakly compact (as in [10, 42.2]) if there is a
0-neighborhood U in F such that T (U) is relatively weakly compact in E. It can be easily
seen that if T ∈ L(F,E) is weakly compact, then T is reflexive. Although the converse is
true if F is a Banach space, in general this is false, as the identity T : E → E on an infinite
dimensional Fréchet Montel space E shows. One can take, for example, the space E of entire
functions on the complex plane endowed with the compact open topology. On the other hand,
van Dulst [22] showed that if F is a (DF)-space and E is a Fréchet space and T is reflexive,
then T is weakly compact (see also [9, Corollary 6.3.8]). We refer the reader to [14] or [11]
for (DF)-spaces. Grothendieck [6, Cor. 1 of Thm 11] and [7, IV,4.3,Cor. 1 of Thm 2] proved
that if F is a quasinormable locally convex space (cf. [2] or [11]), E is a Banach space and
T is reflexive, then T is weakly compact. This result can be seen e.g. in Junek [9, 6.3.4 and
6.3.5]. Extensions of these results for sets of operators can be seen in [17].

Davis, Figiel, Johnson and Pe lczyński [4] proved the following beautiful and important
result: Every weakly compact operator between Banach spaces factorizes through a reflexive
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Banach space. J.C. Dı́az and Domański [5] investigated the factorization of reflexive operators
between Fréchet spaces through reflexive Fréchet spaces. In connection with our research on
weakly compact operators between C∗-algebras and locally convex spaces in [3], we became
interested in the factorization of weakly compact and reflexive operators between Banach
spaces and Fréchet or complete (LB)-spaces. In [3] we continued work by Brooks, Saitô and
Wright, showing that weakly compact operators T : A → E from a C∗-algebra A into a
complete locally convex space E constitute the natural non-commutative version of vector
measures with values in E. See also [12], [13], [19], [25] and [26]. A recent expository article
on this topic is [24].

We use standard notation for functional analysis and locally convex spaces [7, 8, 10, 11, 14].
The closed unit ball of a Banach space Y will be denoted by Y1. A Fréchet space is a complete
metrizable locally convex space. We refer the reader to [2, 10, 11] for the theory of Fréchet
and (DF)-spaces. For a locally convex space E = (E, τ), E′ stands for the topological dual of
E and we denote by σ(E,E′) and β(E,E′) the weak and strong topologies on E respectively.
The family of all absolutely convex 0-neighborhoods of a locally convex space E is denoted
by U0(E), the family of all absolutely convex bounded subsets of E by B(E), and the family
of all continuous seminorms on E by cs(E). If E is a locally convex space and q ∈ cs(E), Eq

is the Banach space which appears as the completion of (E/Kerq, q̂), q̂(x + Kerq) = q(x),
x ∈ E. We denote by πq : E → Eq, πq(x) = x + Kerq and by πp,q : Eq → Ep, p ≤ q, the
canonical maps. If B ∈ B(E), the normed space generated by B is EB := (spanB, pB), pB
being the Minkowski functional of B. If B ∈ B(E), then EB ↪→ E continuously. If E is
sequentially complete, then EB is a Banach space for every B ∈ B(E) which is closed. If X
is a Banach space, X1 stands for the closed unit ball of X.

An (LB)-space E := indnEn is a Hausdorff countable inductive limit of Banach spaces.
Every (LB)-space is a (DF)-space and every (DF)-space is quasinormable (see [14, 8.3.37]).
An (LB) space E is called regular if every bounded subset in E is contained and bounded
in a step Em. An (LB)-space is complete if and only if it is quasicomplete. Every complete
(LB)-space is regular.

2 Results

Proposition 2.1 Let E := indnEn be a complete (LB)-space. The following conditions are
equivalent:

(1) Every weakly compact operator T from an arbitrary Banach space X into E factorizes
through a reflexive Banach space.

(2) Every weakly compact subset of E is contained and weakly compact in some step Em.

Proof. We assume first that (1) is satisfied and fix a weakly compact subset K of E. Since
E is complete, the closed absolutely convex hull B of K is also weakly compact by Krein’s
theorem [10, 24.5.(4’)]. Accordingly, the canonical inclusion T : EB → E is weakly compact.
By condition (1), there are a reflexive Banach space Y and continuous linear operators T1 ∈
L(EB, Y ) and T2 ∈ L(Y,E) such that T = T2 ◦ T1. The continuity of T1 yields λ > 0 such
that T1(B) ⊂ λY1. Since T2 : Y → indnEn is continuous, we can apply Grothendieck’s
factorization theorem [11, Theorem 24.33] to find m such that T2(Y ) ⊂ Em and T2 : Y → Em

is continuous. The unit ball Y1 of the reflexive Banach space Y is σ(Y, Y ′)-compact, hence

2



T2(Y1) is σ(Em, E′
m)-compact in Em. Now, T (B) = B = T2T1(B) ⊂ T2(λY1) = λT2(Y1).

Therefore B, and hence K, is σ(Em, E′
m)-compact in Em and condition (2) is proved.

Conversely, we assume that condition (2) holds and take a weakly compact operator
T : X → E from a Banach space X into E. The image T (X1) of the unit ball of X is
σ(E,E′)-compact in E. We can apply condition (2) to find m such that the closure K of
T (X1) is σ(Em, E′

m)-compact in Em. This implies that T (X) ⊂ Em and that T : X → Em

is weakly compact between the Banach spaces X and Em. By the theorem of Davis, Figiel,
Johnson and Pe lczyński [4], T : X → Em factorizes through a reflexive Banach space Y . This
implies that the operator T : X → E also factorizes through the reflexive Banach space Y .

2

Theorem 2.2 There are a Banach space X, a complete (LB)-space E := indnEn and a
weakly compact operator T ∈ L(X,E) which does not factorize through a reflexive Banach
space.

Proof. By Valdivia [20, Chapter1,9.4.(11)], a complete (LB)-space E satisfies condition (2)
in Theorem 2.1 if and only if it satisfies Retakh’s condition (M0): there exists an increasing
sequence {Un}∞n=1 of absolutely convex 0–neighbourhoods Un in En such that for each n ∈ N
there exists m(n) > n with the property that the topologies σ(E,E′) and σ(Em(n), E

′
m(n))

coincide on Un. See also [23], [15] and [16]. Bierstedt and Bonet [1] showed that there exist
complete co–echelon spaces E = indn ℓ

∞(vn) of order infinity which do not satisfy condition
(M0). In fact it is enough to take E as the strong dual of a distinguished non quasinormable
Köthe echelon space λ1(A) of order 1; see e.g. [2]. We can apply Theorem 2.1 to find a
Banach space X and a weakly compact operator T : X → E which does not factorize through
a reflexive Banach space.

2

The following result is well-known to specialists. For the convenience of the reader, we
give a brief proof.

Proposition 2.3 Every weakly compact operator T : X → E from a Banach space X into a
Fréchet space E factorizes through a reflexive Banach space.

Proof. The closure B of T (X1) in E is a weakly compact set. By a result of Grothendieck
(see e.g. [9, Corollary 6.4.5] or [17, Section 1 Lemma (e)]), there is C ∈ B(E) such that B is
weakly compact in EC . The map T : X → EC is well defined and weakly compact, hence it
factorizes through a reflexive Banach space Y , by the theorem of Davis, Figiel, Johnson and
Pe lczyński [4]. Since the inclusion from EC into E is continuous, the original map T : X → E
factorizes through Y , too. 2

We now consider the factorization of reflexive maps from a locally convex space F into a
Banach space X through a reflexive Banach space Y . Deep results concerning the factorization
of reflexive maps between Fréchet spaces through a reflexive Fréchet space can be seen in Dı́az,
Domanski [5].

Proposition 2.4 The following conditions are equivalent for a reflexive operator T from a
locally convex space F into a Banach space X:

(1) T factorizes through a reflexive Banach space.
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(2) T is weakly compact.

Proof. We assume that a reflexive operator T ∈ L(F,X) satisfies condition (1). There are
a reflexive Banach space Y and continuous linear operators T1 ∈ L(F, Y ) and T2 ∈ L(Y,X)
such that T = T2 ◦ T1. Find U ∈ U0(E) such that T1(U) ⊂ Y1. Since Y is reflexive, T2(Y1) is
σ(X,X ′)-compact in X. Therefore T (U) ⊂ T2(Y1) is also σ(X,X ′)-compact in X, and T is
weakly compact.

Conversely, suppose that T ∈ L(F,X) is weakly compact and find U ∈ U0(E) such that
T (U) is σ(X,X ′)-compact in X. Let q be the Minkowski functional of U . Then T = S ◦ πq,
with S : Fq → X the unique continuous extension of S(x + Kerq) := T (x). The closed unit

ball of Fq is Bq = πq(U), the closure taken in Fq. Therefore S(Bq) ⊂ T (U), the closure taken
in X. This implies that S is weakly compact between the Banach spaces. By the theorem of
Davis, Figiel, Johnson and Pe lczyński [4], S factorizes through a reflexive Banach space Y ;
hence T also factorizes through Y . 2

Corollary 2.5 Every reflexive operator from a quasinormable locally convex space into a
Banach space factorizes through a reflexive Banach space. In particular, reflexive operators
from a (DF)-space into a Banach space factorize through a reflexive Banach space.

Proof. This is a consequence of Proposition 2.4 and Grothendieck [6, Cor. 1 of Thm 11] and
[7, IV,4.3, Cor. 1 of Thm 2]. 2

There is another class of locally convex spaces F such that every Banach valued reflexive
operator factorizes through a reflexive Banach space. A locally convex space F is called
infra-Schwartz (cf. [9, 7.1.3]) if for every continuous seminorm p on F there is a continuous
seminorm q ≥ p such that the canonical map πp,q : Fq → Fp is weakly compact. Complete
infra-Schwartz spaces are projective limits of spectra of reflexive Banach spaces [9, 7.5.3]
and every reflexive quasinormable locally convex space is infra-Schwartz [9, 7.5.2]. There are
infra-Schwartz Fréchet spaces which are not quasinormable and quasinormable Fréchet spaces
which are not infra-Schwartz. It follows from the definition that every reflexive operator from
an infra-Schwartz space into a Banach space factorizes through a reflexive Banach space.
Infra-Schwartz Fréchet spaces were investigated by Floret; see [14, section 8.5]. Valdivia [21]
proved that a Fréchet space F is infra-Schwartz if and only if it is totally reflexive, i.e. every
separated quotient of F is reflexive. Reflexive non totally reflexive Fréchet spaces exist. They
are used in our last result.

Proposition 2.6 There exist a Fréchet Montel space F and a continuous surjection T : F →
X onto a Banach space X which does not factorize through a reflexive Banach space.

Proof. Köthe and Grothendieck constructed Fréchet Montel spaces F which have a quotient
isomorphic to ℓ1 or c0; see [10, 31.7] and [11, Example 27.21]. Denote by T : F → X the
quotient map. Since every bounded set in F is relatively compact, T is reflexive. If there were
a reflexive Banach space Y and continuous linear operators T1 ∈ L(F, Y ) and T2 ∈ L(Y,X)
such that T = T2 ◦T1, then T2 would be a continuous surjection from Y into X. By the open
mapping theorem, this would imply that the non-reflexive Banach space X is a quotient of
the Banach space Y . A contradiction. 2
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[19] K. Saitô, J.D.M. Wright: Extending a result of Ryan on weakly compact operators,
Proc. Edinb. Math. Soc. 49 (2006), 427-433.

[20] M. Valdivia: Topics in Locally Convex Spaces, North-Holland, Amsterdam, 1982.

[21] M. Valdivia: A characterization of totally reflexive Fréchet spaces, Math. Z. 200 (1989),
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