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A problem on the structure of Fréchet spaces

José Bonet

Abstract. The following open problem is stated: Is there a non-normable Fréchet space E such that
every continuous linear operator 7" on E has the form 7" = A\l 4 S, where .S maps a 0-neighbourhood of
FE into a bounded set? A few remarks and the relation of this question with other still open problems on
operators between Fréchet spaces are mentioned.

Un problema sobre la estructura de espacios de Fréchet

Resumen. Se plantea el siguiente problema: ;Existe un espacio de Fréchet no normable FE tal que
todo operador lineal y continuo 7" en E tiene la forma T = Al + S, donde S manda un entorno de F
en un conjunto acotado? Se mencionan algunas observaciones y la relacién de esta cuestién con otros
problemas atn abiertos acerca de operadores en espacios de Fréchet.

Dedicated to Prof. Manuel Valdivia on the occasion of his 80th birthday

1. Introduction

The purpose of this short expository article is to state an open problem about the linear structure of non-
normable Fréchet spaces, and to relate this question with some other open problems about continuous linear
operators on Fréchet spaces. Our notation for functional analysis is standard; see e.g. [30]. All the vector
spaces are considered over the field C of complex numbers.

After the seminal papers of Gowers and Maurey [19, 20] on hereditarily indecomposable Banach spaces,
several important open problems about the linear structure of infinite dimensional Banach spaces have been
solved in the last fifteen years; see the excellent survey by Maurey [29]. Here are some of them:

(A) (Banach, 1932) Is every infinite dimensional Banach space X isomorphic to its closed hyperplanes?

(B) (Homogeneous Banach space problem, Banach 1932) If an infinite dimensional Banach space X is
isomorphic to every infinite dimensional subspace of itself, does it follow that X is isomorphic to ¢5?

(C) (Bessaga, Petczynski, 1958) Does every infinite dimensional Banach space contain an infinite uncon-
ditional basic sequence?

(D) (Lindenstrauss, 1970) Is it possible to decompose every infinite dimensional Banach space as a topo-
logical sum of two infinite dimensional subspaces?
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(E) (Scalar-plus-Compact Problem, Lindenstrauss, 1976) Does there exist an infinite dimensional Banach
space on which every continuous linear operator is a compact perturbation of a scalar multiple of the
identity?

As Maurey says in [29], “the results and examples obtained in this direction represent a significant
progress in our understanding of infinite dimensional Banach spaces”. Let us review some of these results.
Gowers and Maurey’s example [19] was the first infinite dimensional Banach space X s which is hered-
itarily indecomposable (in short: HI) in the sense that if a closed subspace Z of X/ is the direct sum
Z = X @Y of two closed subspaces, then either X or ¥ must be finite dimensional. Question (D) was
then solved by proving much more than asked. Clearly, a HI space cannot contain an infinite unconditional
basic sequence, since the closed span of that sequence would be decomposable into two closed subspaces
generated by corresponding unconditional block basis. Thus the space X, gave also a negative solution
to Problem (C).

Every bounded operator 7" on a Hl-space X has the form 7" = Al + S where A € C, I is the identity
and S is a strictly singular operator. An operator is strictly singular if it cannot be restricted to an infinite
dimensional subspace on which it is an isomorphic embedding. In particular, every operator on a HI space
must be strictly singular or Fredholm with index zero. As a consequence, X is not isomorphic to any
proper closed subspace of itself, since any isomorphism from X into a proper subspace would have to be
a Fredholm operator with non-zero index, therefore strictly singular, a contradiction. See e.g. [26, Section
3.7]. In particular, X ps solved Problem (A) in the negative.

The homogeneous Banach space Problem (B) has a positive solution, which follows from a result by
Komorowski and Tomczak [24] and Gowers’ beautiful dichotomy theorem [18]: An arbitrary infinite di-
mensional Banach space X either contains an infinite unconditional sequence or contains a HI subspace.

The example of Gowers and Maurey X, is separable. Argyros, Lopez-Abad and Todorcevic [4]
presented an example of a non-separable reflexive Banach space which contains no unconditional basic
sequence. For a better understanding of the difficulty of this construction, recall that every non-separable
reflexive Banach space admits non-trivial projections although, by Gowers’ dichotomy theorem, this space
is saturated with HI space. The construction of [4] also gives an uncountable family of reflexive HI separable
Banach spaces which are totally incomparable.

The scalar-plus-compact Problem (E) has been solved very recently by Argyros and Haydon [3]. An-
droulakis and Schlumprecht [1] had exhibited strictly singular, non-compact operators defined on the whole
space X@gas; thus showing that X, could not be a counterexample to Problem (E). Argyros and Hay-
don construct a Banach space X 4 such that every continuous linear operator 7" on X 47 is of the form
T =M+ K, ) € C, K compact. The space X 4 is HI and its dual is isomorphic to ¢;. This result is rele-
vant in connection with other problems in Banach space theory. As a consequence of a famous theorem of
Lomonosov on invariant subspaces (see e.g. [25, 42.9.(6)]), the space X 4 is the first example of a Banach
space such that every continuous linear operator on it has a non-trivial invariant subspace. Moreover, the
space (X o) of compact operators on X 4 is a proper complemented subspace of the space £(X ax)
of all continuous linear operators.

It seems to be a still open problem whether there is a Banach space X such that every continuous linear
operator 7" on X is of the form " = A\l + N, where N is a nuclear operator.

Let us point out right away that there are no hereditarily indecomposable non-normable Fréchet spaces.
Indeed, this follows from classical results due to Bessaga, Petczyniski and Rolewicz [7, 8]: Let E be a non-
normable Fréchet space. If E admits a continuous norm, then E contains a subspace which is isomorphic
to a nuclear Kothe echelon space A1(A). If E does not have a continuous norm, then it contains a copy
of the countable product w of copies of the scalar field. In any case, every non-normable Fréchet space
FE contains a subspace H which can be written as H = F ® G of infinite dimensional nuclear subspaces
F and G. Miiarro [31] complemented this result with the following theorem: Every non-normable, non-
nuclear Fréchet space E contains a closed subspace Y = F @& G where F' and G are infinite dimensional
and one of them is not nuclear. However, nuclear Fréchet spaces with “few” operators do exist: Dubinski
and Vogt [16, Lemma 2.1] give examples of nuclear power series spaces E such that every continuous linear
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operator 7' on E has the form T' = D + K, where D is a diagonal operator and K maps a 0-neighbourhood
of F into a relatively compact set. In Section 2 we state the main open problem discussed in this paper. A
Fréchet space solving this problem would have very “few” operators in a non-normable sense and would
satisfy, in particular, that every infinite dimensional complemented subspace must be a Banach space.

2. Statement of the Problem. Remarks

First we recall some notation. For a locally convex space E, which we assume to be Hausdorff, E’ stands
for its topological dual. The set of continuous seminorms on the space E is denoted by cs(E). We denote
by B(E, F) the strong topology and by o(E, F') the weak topology on E with respect to a dual pair (F, F').
The strong dual (E’, 3(E’, E)) of E is also denoted by E;. If E is a locally convex space, then £(E)
denotes the vector space of all continuous linear maps from F to E. The composition of an operator T’
with itself n times is denoted by 7™. Given T' € L(E) we denote by T € L(E') its transpose defined by
T'(u) =uoT € E foreachu € E’. A locally convex space is called normable if it is isomorphic to a
normed space, or equivalently if it has a bounded 0-neighbourhood. A complete, metrizable, locally convex
space is called a Fréchet space, see [30].

A linear operator T" on a locally convex space E is called bounded (resp. compact) if there is a 0-
neighbourhood U in E such that T'(U) is a bounded (resp. relatively compact) subset of E. Clearly every
compact operator is bounded and every bounded operator is continuous. A continuous linear operator 7" on
FE is called Montel if it maps bounded sets into relatively compact subsets of . Every bounded operator
on a Fréchet Montel space is compact. Examples and results concerning these classes of operators in the
frame of Fréchet spaces can be seen in [12]. The following problem is well-known in the theory of Fréchet
spaces and has been discussed by the author with L. Frerick and D. Vogt among others.

Problem 1 [s there a non-normable Fréchet space E such that every continuous linear operator T on E
has the form T' = X + S, where S is a bounded operator?

Proposition 1 (i) If E is a non-normable Fréchet space such that every continuous linear operator T
on E has the form T = X\ + S with S bounded, then every projection P on E satisfies that either
P(E) or (I — P)(FE) is normable. In particular every Fréchet Montel space with this property would
have only finite dimensional or finite codimensional complemented subspaces.

(ii) If a Fréchet space contains an infinite dimensional Montel subspace with an unconditional basis, then
there is a continuous linear operator T' on E which is not of the form T = Al + S with S bounded.

(iii) If E is a non-normable Fréchet space such that every continuous linear operator T on E has the
form T = X + S with S bounded, then E admits a continuous norm.

PROOF. (i) Let P be a projection on E. There are A € C and a bounded operator .S on E such that
P=X+S.If A\ =1,then ] — P = —S is bounded in E, hence the identity on (I — P)(E) is a
bounded operator and (I — P)(FE) is normable. If A # 1, then P — AI = S is bounded. If y € P(FE), then
(1 — XNy = Sy, and the identity on P(FE) is a bounded operator. Consequently P(FE) is normable.

(i1) Suppose that £ = F' @ G with F' an infinite dimensional Montel subspace with an unconditional
basis. Decomposing the basis of F' in two infinite blocks, we conclude that F' = F} & F5, with F; and F,
infinite dimensional Montel subspaces. Now E = F} @ (F @ () and neither F; nor F; @© G is normable.
We can apply (i) to conclude that there is a continuous linear operator 7' on E which is not of the form
T = A\l + S with S bounded.

(iii) If £ does not admit a continuous norm, by a classical result of Bessaga and Pelczyriski [7], there
is a complemented subspace of E isomorphic to a countable product w of copies of C. We can apply (ii)
to conclude that there is a continuous linear operator 7" on £ which is not of the form 7" = A\ + S with §
bounded. A contradiction. W



José Bonet

The proof of the following result depends on a remarkable construction of hyperplanes due to Valdivia
[32]. Since every continuous linear operator with finite dimensional range is bounded, it gives a positive
answer to Problem 1 for non-complete metrizable locally convex spaces.

Theorem 1 (Bonet, Frerick, Peris, Wengenroth [11]) Every separable infinite dimensional Fréchet space
FE contains a dense hyperplane Y such that every continuous linear operator T on Y has the form T =
A + F, where X € C and F has finite dimensional range.

3. Related problems on hypercyclic operators

A continuous and linear map 7' € L£(E) on a locally convex space E is called hypercyclic if there exists a
vector z € E (which is called hypercyclic vector) such that its orbit O(T, z) := {T"z : n = 0,1,2,...} is
dense in E. The operator T is called transitive if for each pair of non-empty open subsets U, V' of E there
isn € N such that 7" (U) NV # (). A continuous linear operator on a separable Fréchet space is transitive
if and only if it is hypercyclic. The operator is called chaotic (in the sense of Devaney) if it is hypercyclic
and the set of periodic points of 7" is dense in E. Although the first examples of hypercyclic operators were
given in the first half of the last century, much research has been done concerning hypercyclic and chaotic
operators during the last years especially after the unpublished but well-known PhD thesis of C. Kitai, the
article by Godefroy and Shapiro [17] and the excellent surveys by Grosse-Erdmann [21, 22]. The books of
Bayart and Matheron [5] and Grosse-Erdmann and Peris [23] give a complete picture.

Ansari [2] and Bernal [6] proved independently that every separable infinite dimensional Banach space
admits a hypercyclic operator. This result was extended to separable infinite dimensional Fréchet spaces
by Bonet and Peris [14]. On the other hand, Bonet, Martinez-Giménez and Peris [13] showed that there is
no continuous chaotic operator on the separable Banach space X constructed by Gowers and Maurey.
See also [5, Theorem 6.36]. This was the first time that the relevance of HI spaces in hypercyclicity was
observed. We have the following result for especial types of operators on Fréchet spaces.

Theorem 2 (1) (Bonet, Peris [14, Prop. 8]) No compact operator on a Fréchet space is hypercyclic.

(2) (Martinez-Giménez, Peris [28, Prop. 6.1]) No perturbation of a non-zero multiple of the identity by
a compact operator on a Fréchet space is chaotic.

(3) (Bonet, Peris [14, Example 9]) There is a bounded hypercyclic operator defined on the countable
product of copies of the space {,,,1 < p < o0.

The present formulation of Theorem 2 requires small changes in the proof of [28, Prop. 6.1]. Parts (1)
and (2) above are valid for arbitrary Hausdorff locally convex spaces. Theorem 2 (1) and (2) imply that the
separable Banach space X 47 constructed by Argyros and Haydon admits no chaotic operator.

The following two problems were mentioned by the author in [10].

Problem 2 Does every infinite dimensional Fréchet Montel space admit a chaotic operator?

If the solution to Problem 1 yields an infinite dimensional Fréchet Montel space F such that every
continuous linear operator 7" on E has the form 1" = Al + S, where S is a bounded operator, then S is
compact, since £ is Montel. We can apply Theorem 2 (1) and (2) to conclude that £ admits no chaotic
operator. Accordingly a positive solution of Problem 1 with a Fréchet Montel example, would give a
negative solution of problem 2.

The best positive result related to Problem 2 has been recently obtained by de la Rosa, Frerick and Peris
[15].

Theorem 3 (de la Rosa, Frerick, Grivaux and Peris [15]). Every Fréchet space with an unconditional
basis, in particular every nuclear Fréchet space with basis, admits a chaotic operator.
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Problem 3 Does every infinite dimensional non-normable separable Fréchet space support a hypercyclic
operator T such that \T is hypercyclic for all A # 0? The most important case is for infinite dimensional
Fréchet Montel spaces.

This is clearly a question on non-normable Fréchet spaces, since every operator on a Banach space with
norm less or equal than 1 cannot be hypercyclic. The work of Godefroy and Shapiro [17] contains several
examples of nuclear Fréchet spaces which admit an operator 7" such that AT is hypercyclic for al A #£ 0.

By a deep result of Le6n-Saavedra and Miiller [27], whenever T is a hypercyclic operator, the rotation
AT of T', where ) is any complex number of modulus 1, is also hypercyclic and they have the same hyper-
cyclic vectors. Accordingly, to solve Problem 3 it is enough to show that every non-normable Fréchet space
supports a continuous linear operator 7" such that A7 is hypercyclic for each A > 0.

The following result shows that if there is a a non-normable Fréchet space Ej such that every operator
T € L(Ey) is of the form T' = A\ + S, with S bounded, i.e. the solution of Problem 1 is positive, then no
hypercyclic operator T on Ej satisfies that p7" is hypercyclic for al ¢ # 0; thus solving Problem 3 in the
negative.

Proposition 2 [f S is a bounded operator on a Fréchet space E and A € C, then there is ;i > 0 such that
w(AI + S) is not hypercyclic on E.

PROOF. Let (Uy) be a basis of open absolutely convex neighbourhoods in E such that Uy C Uy for
each k € Nand U; # E. Since S is bounded, there is m > 1 such that S(U,,) is bounded in E. For
each k > m there is M}y > 0 such that S(U,,) C MUy. Therefore (AT + S)(Ux) C (J\| + My )Uy, for
eachk > m. SetT := N + S and p := (|| + My,41)~. We have (uT)(Upnt1) C Upg1. The sets
U :=Upy1 and V := E\ Uy, are non-empty and open in F and (7)) (U) NV = ) for each n € N. This
implies that 7" is not transitive, thus it is not hypercyclic. W

The following observation is an easy extension of this result.

Remark 1 If an operator T' on a locally convex space E satisfies that there are M > 0 and an absolutely
convex closed 0-neighbourhood U different from E with T(U) C MU, then (1/M)T is not transitive on
E. It is enough to observe that the interior V of U and the open set E\ U satisfy (1/M)T)"(U)NV =0
foreachn € N.

It is not clear whether every non-normable Fréchet space E admits an operator T such that T(U)
is not absorbed by U for every absolutely convex open 0-neighbourhood U different from E. Recall that
Theorem 2 (3) implies that there are hypercyclic operators R on non-normable Fréchet spaces F' which are
bounded. In particular they satisfy that R(Uy) is absorbed by Uy, k € N, for a basis of open absolutely
convex neighbourhoods (Uy), in F.

An operator T on a locally convex space E is called power bounded if (T™),, is equicontinuous in
L(E).

Proposition 3 Ifthe operator T on a locally convex space E is power bounded, then there is an absolutely
convex closed 0-neighbourhood U in E different from E such that T"(U) C U for eachn € N.

PROOF. Let W be an absolutely convex closed 0-neighbourhood in E different from E. Since (T"),, is
equicontinuous, there is an absolutely convex 0-neighbourhood V' in E such that T"(V) C W for each
n=0,1,2,... Clearly V C (7_ (™)~ (W). Denote by U the set of (>~ (I™)~* (W), which is an
absolutely convex closed 0-neighbourhood in E satisfying V' C U C W, hence U is different from E. It is
easy to see that 7" (U) C U foreachn e N. W
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4. A related problem on topologizable operators

The following two classes of operators were defined and studied by Zelazko in [33] in the context of operator
algebras on locally convex spaces.

Definition 1 An operator T' € L(FE) on a locally convex space F is called ropologizable if for every
continuous seminorm p € cs(E) there is a continuous seminorm g € ¢s(E) such that for every n € N there
is M,, > 0 such that

p(T"z) < Myq(x)

foreachx € F.

Definition 2 An operator T € L(E) on a locally convex space E is called m-topologizable if for every
continuous seminorm p € cs(E) there are a continuous seminorm ¢ € ¢s(E) and C' > 1 such that for every
n € N such that

p(T"z) < C"q(x)

foreachx € E.

Observe that in the definitions above it is essential that the seminorm ¢ only depends on the seminorm
p and not on the iteration k. By Zelazko [33], Theorems 5 and 9, an operator T € L(FE) is topologizable
(resp. m-topologizable) if and only if 7" belongs to some operator algebra A C L(E) on E (resp. T belongs
to an operator algebra of the form Ly (E)); see [33] for notation.

Clearly every m-topologizable operator is topologizable. If the locally convex space E is normable,
then every operator 7' € L(E) is m-topologizable. The translation operator is mentioned in Zelazko [33],
Examples 8, as a natural operator which is not topologizable in many cases. On the other hand, the differ-
entiation operator on the Fréchet space H(C) of entire functions endowed with the compact open topology
is a topologizable operator [9]. Accordingly, there are hypercyclic operators which are topologizable and
hypercyclic operators which are not topologizable. Every bounded operator on a locally convex space is
even m-topologizable, [9, prop. 7].

Theorem 4 (Bonet [9]).
(i) If E is a Fréchet space without a continuous norm, then there is T € L(E) which is not topologizable.

(ii) Every power series space of infinite type E admits an operator T € L(E) which is not topologizable.
The following problem remains open.

Problem 4 (Bonet [9]). Does every infinite dimensional Fréchet space with a continuous norm admit an
operator which is not topologizable?

If the solution to Problem 1 is positive, then there is a non-normable Fréchet space Ey, with a continuous
norm by Proposition 1 (iii), such that every operator T' € L(Ey) is of the form T" = AT+ .5, with .S bounded.
In this case, every operator on Ey would be m-topologizable by [33, Prop. 12], thus solving in the negative
Problem 4.
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