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Convolution operators on quasianalytic classes of Roumieu type

José Bonet and Reinhold Meise

Abstract. Extending previous work of Braun, Meise, and Vogt, and of Meyer, we characterize those
convolution operators that are surjective on the space E{ω}(R) of all quasianalytic {ω}-ultradifferentiable

functions of Roumieu type. We also investigate {ω}-ultradifferential operators on E{ω}[a, b] for compact

intervals.

1. Introduction

For a weight function ω let E{ω}(R) denote the space of all {ω}-ultradifferentiable functions of
Roumieu type on R. Then each µ ∈ E ′{ω}(R) induces a convolution operator Tµ : E{ω}(R) → E{ω}(R). If
ω is non-quasianalytic, i.e., if E{ω}(R) contains non-trivial functions with compact support, then Braun,
Meise, and Vogt [7] characterized those convolution operators Tµ that are surjective on E{ω}(R). Though
the arguments that were used in [7] rely heavily on the existence of fundamental solutions for surjec-
tive convolution operators, Meyer [21] proved a similar result for convolution operators Tµ for which
µ ∈ E ′{ω}(R) is supported by the origin, even for quasianalytic weight functions ω. In both articles, the
proofs are based on properties of the projective limit functor due to Palamodov [24] and the sequence
space representation for the kernels of slowly decreasing convolution operators Tµ given by Meise [15].

In the present paper we show in Theorem 3.10 that the characterization, given in [7] also holds
for quasiananalytic weight functions ω. More precisely, we prove that for each weight function ω and
µ ∈ E ′{ω}(R) the convolution operator Tµ is surjective on E{ω}(R) if and only if the Fourier-Laplace trans-
form µ̂ of µ is {ω}-slowly decreasing and the zero set V (µ̂) of µ̂ can be decomposed as V (µ̂) = V0 ∪ V1

such that

lim
|a|→∞
a∈V0

| Im a|
ω(a)

= 0 and lim inf
|a|→∞
a∈V1

| Im a|
ω(a)

> 0.

The proof uses the better understanding of the slowly decreasing conditions that was achieved by
Momm [22], Bonet, Galbis, and Meise [2], and Bonet, Galbis, and Momm [3] together with results
about the derived functor of the projective limit functor and about (LF )-spaces, due to Vogt [29] and
to Wengenroth [31]. Applying the Fourier-Laplace transform and methods from Meise [14] and [15]
again together with a recent result of Vogt [30] and Bonet and Domanski [1], we also show that a
convolution operator Tµ acting surjectively on E{ω}(R) admits a continuous linear right inverse only if
lim|a|→∞,a∈V (µ̂) | Im a|/ω(a) = 0.

We also investigate {ω}-ultradifferentiable operators Tµ on E{ω}(R) and on E{ω}[a, b] for compact
intervals [a, b] with a < b and we show that such an operator is slowly decreasing if and only if
Tµ,[a,b] : E{ω}[a, b] → E{ω}[a, b] is surjective for all a, b ∈ R with a < b. Whenever this condition is
satisfied then ker Tµ,[a,b] is isomorphic to the strong dual of a nuclear power series space of finite type.
If in addition lim|ζ|→∞,ζ∈V (µ̂) | Im ζ|/ω(ζ) = 0 then the restriction map % : kerTµ → ker Tµ,[a,b] is an
isomorphism for each a < b.
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2. Preliminaries

In this section we introduce the notation that will be used throughout the entire paper.

2.1. Weight functions. A function ω : R → [0,∞[ is called a weight function if it is continuous,
even, increasing on [0,∞[, and if it satisfies ω(0) = 0 and also the following conditions:

(α) There exists K ≥ 1 such that ω(2t) ≤ Kω(t) + K.
(β) ω(t) = o(t) as t tends to infinity.
(γ) log(t) = o(ω(t)) as t tends to infinity.
(δ) ϕ : t 7→ ω(et) is convex on [0,∞[.

If a weight function ω satisfies

(Q)
∫ ∞

1

ω(t)
t2

dt = ∞

then it is called a quasianalytic weight. Otherwise it is called non-quasianalytic.
A weight function ω satisfies the condition (α1) if

sup
λ≥1

lim sup
t→∞

ω(λt)
λω(t)

< ∞.

This condition was introduced by Petzsche and Vogt [25] and is equivalent to the existence of C1 > 0
such that for each W ≥ 1 there exists C2 > 0 such that

ω(Wt + W ) ≤ WC1ω(t) + C2, t ≥ 0.

The radial extension ω̃ of a weight function ω is defined as

ω̃ : Cn → [0,∞[, ω̃(z) := ω(|z|).
It will also be denoted by ω in the sequel, by abuse of notation. The Young conjugate of the function
ϕ = ϕω, which appears in (δ), is defined as

ϕ∗(x) := sup{xy − ϕ(y) : y > 0}, x ≥ 0.

2.2. Example. The following functions are easily seen to be weight functions:
(1) ω(t) := |t|(log(e + |t|))−α, α > 0.
(2) ω(t) := |t|α, 0 < α < 1.
(3) ω(t) = max(0, (log t)s), s > 1.

2.3. Ultradifferentiable functions defined by weight functions. Let ω be a given weight
function. For a compact subset K of RN and m ∈ N denote by C∞(K) the space of all C∞-Whitney jets
on K, define

Em
{ω}(K) := {f ∈ C∞(K) : ‖f‖K,m := sup

x∈K
sup

α∈NN
0

|f (α)(x)| exp
(
− 1

m
ϕ∗(m|α|)

)
< ∞},

and let
E{ω}(K) := indm→ Em

{ω}(K)

which is a (DFN)-space.
For an open set G in RN , define the space E{ω}(G) of all ω-ultradifferentiable functions of Roumieu type
on G as

E{ω}(G) := {f ∈ C∞(G) : For each K ⊂ G compact there is m ∈ N so that ‖f‖K,m < ∞}.
It is endowed with the topology given by the representation

E{ω}(G) = proj←K E{ω}(K),

where K runs over all compact subsets of G.
Note that E{ω}(G) is a countable projective limit of (DFN)-spaces, which is ultrabornological, reflexive

and complete. This follows from Rösner [26], Satz 3.25 and Vogt [30], Theorem 3.4.



ROUMIEU 3

The space E(ω)(G) of all ω-ultradifferentiable functions of Beurling type on G is defined as

E(ω)(G) := {f ∈ C∞(G) : for each K ⊂ G compact and m ∈ N

pK,m(f) := sup
x∈K

sup
α∈NN

0

|f (α)(x)| exp
(
−mϕ∗(

|α|
m

)
)

< ∞}.

It is easy to check that E(ω)(G) is a Fréchet space if we endow it with the locally convex topology given
by the semi-norms pK,m.

If a statement holds in the Beurling and the Roumieu case then we will use the notation E∗(G). It
means that in all cases ∗ can be replaced either by (ω) or by {ω}.

2.4. Definition. Let ω be a weight function and G an open convex set in RN .
(a) We define the space A(ω) by

A(ω) := {f ∈ H(C) : ∃ n ∈ N : ‖f‖n := sup
z∈C

|f(z)| exp(−nω(z)) < ∞}

and endow it with its natural (LB)-topology. Then A(ω) is an (DFN)-space. We also define the
Fréchet space

A{ω} := {f ∈ H(C) : ∀ n ∈ N : ‖f‖n := sup
z∈C

|f(z)| exp(− 1
n

ω(z)) < ∞}.

(b) For each compact set K in G, the support functional of K is defined as

hK : RN → R, hK(x) := sup{〈x, y〉 : y ∈ K}.

(c) For K as in (b) and λ > 0 let

A(K, λ) := {f ∈ H(CN ) : ‖f‖K,λ := sup
z∈CN

|f(z)| exp(−hK(Im z)− λω(|z|)) < ∞}

and define
A(ω)(CN , G) := indK,n→A(K, n)

A{ω}(CN , G) := indK→A(K), where A(K) := proj←m A(K,
1
m

).

It is easy to check that A(K, λ) is a Banach space, that A(ω)(CN , G) is an (LB)-space, that
A(K) is a Fréchet space, and that A{ω}(CN , G) is an (LF)-space.

2.5. The Fourier-Laplace transform. Let ω be a weight function and let G be an open convex
set in RN . For each u ∈ E∗(G)′ it is easy to check that

û : CN → C, û(z) := ux(e−i〈x,z〉)

is an entire function which belongs to A∗(CN , G) and that

F : E ′∗(G) → A∗(CN , G), F(u) := û,

is linear and continuous.

The following result was proved for N = 1 by Meyer [20] and for general N in the Roumieu case by
Rösner [26]. For a unified proof we refer to Heinrich and Meise [10], Theorems 3.6 and 3.7.

2.6. Theorem. For each weight function ω satisfying ω(t) = o(t) as t tends to infinity and each
convex open set G ⊂ RN the Fourier-Laplace transform

F : E ′∗(G) → A∗(CN , G)

is a linear topological isomorphism.

2.7. Convolution operators. For µ ∈ E∗(R)′, µ 6= 0, and ϕ ∈ E∗(R) we define

µ̌(ϕ) := µ(ϕ̌), ϕ̌(x) := ϕ(−x), x ∈ R.

The convolution operator Tµ : E(∗(R) → E∗(R) is defined by

Tµ(f) := µ̌ ∗ f, (µ̌ ∗ f)(x) := µ̌(f(x− .)), x ∈ R.
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It is a well-defined, linear, continuous operator; see Meyer [20] and [21]. For g ∈ A∗(C, R) we define the
multiplication operator Mg : A∗(C, R) → A∗(C, R) by Mg(f) = gf . It is well-known that for µ ∈ E∗(R)
we have on E∗(R)′ : F ◦ T t

µ = Mµ̂ ◦ F .

2.8. Definition. Let X = indn→Xn be an (LF)-space.
(a) X is called sequentially retractive if for each convergent sequence (xj)j∈N in X there exists n ∈ N

such that (xj)j∈N lies in Xn and converges there.
(b) X is called boundedly stable if on each set which is bounded in some Xn all but finitely many

of the step topologies coincide.

From Wengenroth [31], Theorem 6.4 and Corollary 6.7, we recall the following equivalences which
we will use in section 3.

2.9. Theorem. Let X = indn→Xn be an (LF)-space and let (‖.‖n,k)k∈N be a fundamental sequence
of semi-norms for Xn. Then the following assertions are equivalent:

(1) X is sequentially retractive.
(2) There exist absolutely convex zero neighborhoods Un in Xn for n ∈ N such that Un ⊂ Un+1 and

such that for each n ∈ N there exists m ≥ n such that X and Xm induces the same topology on
Un.

(3) X is boundedly stable and satisfies the condition (P ∗3 ), i.e.,

∀ n ∈ N ∃ m ≥ n ∀ k ≥m ∃ N ∈ N ∀ M ∈ N ∃ K ∈ N, S > 0 ∀ x ∈ Xn :

‖x‖m,M ≤ S(‖x‖k,K + ‖x‖n,N ).

If Xn is a Fréchet-Montel space for each n ∈ N then (1)-(3) are also equivalent to
(4) X is regular, i.e., for each bounded set B in X there exists n ∈ N such that B ⊂ Xn and is

bounded there.
(5) X is complete.

2.10. Corollary. For each weight function ω and for each convex open set Ω ⊂ RN the (LF)-space
A{ω}(CN ,Ω) = indn→A{ω}(Kn) satisfies the equivalent conditions of Theorem 2.9.

Proof. Since A{ω}(Kn) is a Fréchet-Montel space for each n ∈ N, it follows that indn→A{ω}(Kn) is
boundedly stable. In the proof of Rösner [26], Satz 3.25, it is shown that the system (‖·‖n,k)n,k∈N, defined
by ‖f‖n,k : supz∈C |f(z)| exp(−n| Im z| − 1

kω(z)) satisfies the condition (P ∗3 ). Hence condition 2.9 (3) is
satisfied and the corollary follows from Theorem 2.9. See also Bonet and Domanski [1]. �

2.11. Definition. Let α = (αj)j∈N be an increasing, unbounded sequence in [0,∞[. For R ∈ {0,∞}
the power series spaces ΛR(α) are defined as

ΛR(α) := {x = (xj)j∈N ∈ CN : ‖x‖r :=
∞∑

j=1

|xj | exp(rαj) < ∞ ∀ r < R}.

Λ∞(α) is called a power series space of infinite type, while Λ0(α) is said to be of finite type. Note that
ΛR(α) is a Fréchet-Schwartz space for each α and each R.

3. Surjectivity

In this section we characterize the surjectivity of the convolution operators Tµ : E{ω}(R) → E{ω}(R).
We show that some of the equivalences in Braun, Meise, and Vogt [7], Theorem 3.8, in combination with
Corollary 2.8, that were proved in the non-quasianalytic case also hold in the quasianalytic case. We also
extend the characterization which Meyer [21] gave for convolution operators Tµ for which µ ∈ E ′{ω}(R)
is supported by the origin, to arbitrary convolution operators. We begin by recalling several slowly
decreasing conditions.

3.1. Definition. Let ω be a weight function.
(a) F ∈ A{ω}(CN , RN ) is called {ω}-slowly decreasing, if for each m ∈ N there exists R > 0 such

that for each x ∈ RN with |x| ≥ R there exists ξ ∈ CN satisfying |x − ξ| ≤ ω(x)/m such that
|F (ξ)| ≥ exp(−ω(ξ)/m).
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(b) F ∈ A(ω)(CN , RN ) is called (ω)-slowly decreasing, if there exists C > 0 such that for each x ∈ R,
|x| ≥ C, there exists ξ ∈ CN such that

|x− ξ| ≤ Cω(x) and |F (ξ)| ≥ exp(−C| Im ξ| − Cω(ξ)).

The significance of the {ω}-slowly decreasing condition is explained by the following result.

3.2. Proposition. Let ω be a weight function and let F ∈ A{ω}(CN , RN ) be given. Then the following
assertions are equivalent:

(a) F is {ω}-slowly decreasing.
(b) There exists a weight function σ satisfying σ = o(ω) such that F ∈ A(σ)(CN , RN ) and such that

F is (σ)-slowly decreasing.
(c) The multiplication operator MF : A{ω}(CN , RN ) → A{ω}(CN , RN ), MF (g) := Fg, has closed

range.
(d) M−1

F : FA{ω}(CN , RN ) → A{ω}(CN , RN ) is sequentially continuous.

Proof. (a) ⇒ (b): This holds by Bonet, Galbis, and Meise [2], Lemma 3.2, since in their proof
the non-quasianalyticity of the weight function ω is not needed (see, e.g., Heinrich and Meise [10],
Corollary 3.8).

(b) ⇒ (c): Since every principal ideal in H(CN ) is closed, it suffices to show that the following
assertion holds:

(3.1) If g ∈ A{ω}(CN , RN ) and g/F ∈ H(CN ) then g/F ∈ A{ω}(CN , RN ).

To prove (3.1), fix g ∈ A{ω}(CN , RN ) and choose a weight function σ according to (b). Then there exist
A,B > 0 such that

(3.2) |F (z)| ≤ A exp(B| Im z|+ Bσ(z)), z ∈ CN

and there exists κ ∈ N such that for each p ∈ N there exists Cp > 0 such that

(3.3) |g(z)| ≤ Cp exp(κ| Im z|+ 1
p
ω(z)), z ∈ CN .

Next note that with n = 1 we get from Bonet, Galbis, and Momm [3], Proposition 2 (c), that

(3.4) there exist k,m ∈ N and R > 0 such that for each z ∈ CN , |z| ≥ R, there exists
ζ ∈ CN with |ζ − z| ≤ | Im z|+ kσ(z) such that |F (ζ)| ≥ exp(−m| Im ζ| −mσ(ζ)).

Now we apply Hörmander [11], Lemma 3.2, with r := | Im z|+ kσ(z) to get for |z| ≥ R:∣∣∣∣ g(z)
F (z)

∣∣∣∣ ≤ sup|w−z|≤4r |g(w)| sup|w−z|≤4r |F (w)|
(sup|w−z|≤r |F (w)|)2

.

Using the upper estimate (3.2) for F and the lower estimate for |F (ζ)| it follows that∣∣∣∣ g(z)
F (z)

∣∣∣∣ ≤ ( sup
|w−z|≤4r

|g(w)|)A exp((5B| Im z|+ 2m| Im ζ|+ 4kσ(z) + Bσ(5|z|+ 4kσ(z)) + 2mσ(ζ)).

Obviously, |ζ − z| ≤ | Im z|+ kσ(z) implies

| Im ζ| ≤ 2| Im z|+ kσ(z) and σ(ζ) ≤ σ(2|z|+ kσ(z)).

Since σ is a weight function, it is easy to check that this implies the existence of A1 ≥ A and B1 ≥ B
such that by (3.3) we get for each p ∈ N∣∣∣∣ g(z)

F (z)

∣∣∣∣ ≤ ( sup
|w−z|≤4r

|g(w)|)A1 exp(B1| Im z|+ B1σ(z))

≤ A1Cp exp(B1| Im z|+ (κ + 4)| Im z|+ B1σ(z) +
1
p
ω(5|z|+ 4kσ(z))).

Since ω is a weight function and since σ = o(ω), it follows from this, that g/F is in A{ω}(CN , RN ). Hence
we proved that (3.1) and consequently that (c) holds.

(c) ⇒ (d): By Corollary 2.10, the (LF)-space A{ω}(CN , RN ) = indn→An is sequentially retractive.
The continuous linear map MF : A{ω}(CN , RN ) → A{ω}(CN , RN ) has closed range by the present
hypothesis. Hence im(MF ) ∩ An = M−1

F (An) is closed in An for each n ∈ N. This means that im(MF )
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is stepwise closed in the sense of Floret [9], Theorem 6.4. By this theorem M−1
F : FA{ω}(CN , RN ) →

A{ω}(CN , RN ) is sequentially continuous. Hence (d) holds.
(d) ⇒ (a): Note first that for each λ > 0 the spaces A{ω}(CN , RN ) and A{λω}(CN , RN ) are equal.

Therefore, we may assume that there exists t0 > 0 such that ω(t) ≤ t/2 for t ≥ t0. Next choose k ∈ N
so that F ∈ Ak, where Ak := A(B(0, k)) in the notation of 2.4. To argue by contraposition, we assume
that F is not {ω}-slowly decreasing. Then there exist κ ∈ N and an unbounded sequence (xj)j∈N in RN

for which (|xj |)j∈N is increasing and for which the following holds for each j ∈ N

(3.5) |F (ζ)| ≤ exp(− 1
κ

ω(ζ)) for all ζ ∈ CN with |ζ − xj | <
1
κ

ω(xj).

We claim that this implies the following assertion:

(3.6) There exists a sequence (gj)j∈N in A1 which is unbounded in An for each n ∈ N,
while (MF (gj))j∈N is a null-sequence in Ak+1.

Obviously, (3.6) implies that M−1
F : FA{ω}(CN , RN ) → A{ω}(CN , RN ) is not sequentially continuous.

Hence (d) implies (a).
To prove (3.6) we argue similarly as in Momm [22] (see also [2], Proposition 3.4) and define for j ∈ N

and R > 0 the function hj,R : CN → R by hj,R(z) := | Im z| for z ∈ CN \ B(xj , R) and for z ∈ B(xj , R)
by

hj,R(z) := sup{v(z) : v is plurisubharmonic on B(xj , R) and for

each ξ ∈ ∂B(xj , R) : lim sup
ζ→ξ

v(ζ) ≤ | Im ξ|}.

Then hj,R is continuous and plurisubharmonic on CN . Next let K ≥ 1 be the constant from 2.1 (α),
choose p ∈ N, p ≥ 2, so large that 2K/p ≤ 1/κ, let Rj := ω(xj)/p, and define ϕj := hj,Rj . Since
|xj | → ∞, we may assume that for all j ∈ N the following holds:

(3.7) 2 ≤ ω(xj)
2p

,
1

ω(xj)
≤ ω(xj)

8p2
, |xj | ≥ t0 and hence

ω(xj)
p

+ 1 ≤ |xj |
2

.

Using Hörmander’s solution of the ∂-problem (see Hörmander [12], Theorem 4.4.4) it follows as in Momm
[23], 1.8, that there exists a constant CN > 0 such that for each j ∈ N there exists fj ∈ H(CN ) satisfying
the following estimates

(3.8) |fj(xj)| ≥ exp( inf
|w−xj |≤1

ϕj(w)− CN log(1 + |xj |2))

and

(3.9) |fj(z)| ≤ CN exp( sup
|w−z|≤1

ϕj(w) + CN log(1 + |z|2)), z ∈ CN .

Next note that for z ∈ CN \B(xj , Rj + 1) we have

(3.10) sup
|w−z|≤1

ϕj(w) = sup
|w−z|≤1

| Im w| ≤ | Im z|+ 1.

From this estimate and (3.9) we get for each j ∈ N and each m ∈ N

sup
z∈C

|fj(z)| exp(−| Im z| − 1
m

ω(z)) < ∞.

Hence fj ∈ A1 for each j ∈ N. Therefore, also the sequence (gj)j∈N defined by

gj := exp(−ω(xj)
8p

)fj , j ∈ N,

is in A1. To show that it is not bounded in An for any n ∈ N, note that the function

vj(z) :=
1

2Rj
(| Im z|2 − |Re z|2 + R2

j )
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is harmonic and satisfies vj(z) ≤ | Im z| for z ∈ ∂B(xj , Rj), since xj ∈ RN . By the definition of ϕj , this
implies ϕj ≥ vj on B(xj , Rj) and consequently by (3.7)

inf
|w−xj |≤1

ϕj(w) ≥ inf
|w−xj |≤1

vj(w) ≥ 1
2Rj

(−1 + R2
j ) =

Rj

2
− 1

2Rj
=

ω(xj)
2p

− 2p

ω(xj)
≥ ω(xj)

4p
.

Since log(1+ t2) = o(ω(t)) for t tending to infinity, there exists δ > 0 such that exp(−CN log(1+ |xj |2)) ≥
δ exp(−ω(xj)/32) for each j ∈ N. Therefore, it follows from (3.8) that for each n ∈ N and each m ∈ N
with m ≥ 16p we have for each j ∈ N:

sup
z∈CN

|gj(z)| exp(−n| Im z| − 1
m

ω(z))

≥ exp((− 1
8p

− 1
m

+
1
4p

)ω(xj)− log(1 + (xj)2)) ≥ δ exp(
1

32p
ω(xj)).

This shows that (gj)j∈N is unbounded in An for any n ∈ N.
To prove that (MF (gj))j∈N is a null-sequence in Ak+1, note first that for z ∈ CN \B(xj , Rj + 1) we

get from (3.10) and (3.9) that for each m ∈ N we have

|F (z)fj(z)| ≤ ‖F‖
B(0,k),1/m

exp(k| Im z|+ 1
m

ω(z)) exp(| Im z|+ 1)

≤ ‖F‖
B(0,k),1/m

exp((k + 1)| Im z|+ 1
m

ω(z)).
(3.11)

To estimate Ffj in B(xj , Rj + 1), fix z ∈ B(xj , Rj + 1). Then we have by the maximum principle and
(3.7)

sup
|w−z|≤1

ϕj(w) ≤ sup
|w−xj |≤Rj+2

ϕj(w) ≤ sup
|w−xj |≤Rj+2

| Im w| ≤ Rj + 2 =
ω(xj)

p
+ 2 ≤ 3ω(xj)

2p

and also

|Re z| ≥ |xj | −Rj − 1 = |xj | −
ω(xj)

p
− 1 ≥ |xj |

2
.

Since ω satisfies 2.1 (α), the last estimate implies ω(xj) ≤ ω(2Re z) ≤ Kω(z) + K and consequently

sup
|w−z|≤1

ϕj(w) ≤ 3Kω(z)
2p

+
3K

2p
.

From this, (3.5), and (3.9) we get the existence of C ′ such that for each j ∈ N:

|F (z)fj(z)| ≤ CN exp(− 1
κ

ω(z) +
3Kω(z)

2p
+

3K

2p
+ CN log(1 + |z|2)))

≤ C ′ exp((
2K

p
− 1

κ
)ω(z)) ≤ C ′.

(3.12)

From (3.11) and (3.12) it follows that (Ffj)j∈N is bounded in Ak+1. Since (exp(−ω(xj)/8p))j∈N is a
null-sequence, we proved that (MF (gj))j∈N is a null-sequence in Ak+1. Hence the proof of (3.6) and also
the one of the proposition is complete. �

3.3. Corollary. Let ω be a weight function and let F ∈ A{ω}(C, R) be given. Then the conditions
(a) - (d) in Proposition 3.2 are equivalent to the following one:

(e) There exists a weight function σ satisfying σ = o(ω)such that F ∈ A(σ)(C, R), and there exist
ε, C, D > 0 such that for each component S of the set

S(F, ε, C) := {z ∈ C : |F (z)| < ε exp(−C| Im z| − Cσ(z))}

the following estimates hold:

sup
z∈S

(| Im z|+ Cσ(z)) ≤ D(1 + inf
z∈S

(| Im z|+ σ(z))), sup
z∈S

ω(z) ≤ D(1 + inf
z∈S

ω(z)).
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Proof. To show that condition 3.2(b) implies the present condition (e), note that by Momm [22],
Proposition 1, (e) follows from (b), except for the last estimate. This, however, follows from the diameter
estimates given in the proof of Meise, Taylor, and Vogt [17]. Lemma 2.3.

To show that (e) implies condition 3.2(c) let V (F ) := {a ∈ C : F (a) = 0} and denote for each
a ∈ V (F ) by ord(F, a) the order of vanishing of F at a. Then consider the map

% : A{ω}(C, R) →
∏

a∈V (F )

Cord(F,a), %(g) := (g(a), g′(a), . . . , g(ord(F,a)−1)(a))a∈V (F ).

It is easy to check that % is linear and continuous. Hence Iloc(F ) := ker % is closed in A{ω}(C, R). Thus,
(d) follows if we show that FA{ω}(C, R) = im(MF ) = Iloc(F ). To do so, note first that obviously we
have im(MF ) ⊂ Iloc(F ). For the converse inclusion fix g ∈ Iloc(F ). Then there exists k ∈ N such that for
each m ∈ N there is Cm > 0 such that

|g(z)| ≤ Cm exp(k| Im z|+ 1
m

ω(z)), z ∈ C.

By (e), we can choose σ, ε, C, and D according to (e). Then note that g ∈ Iloc(F ) implies g/F ∈ H(C).
Since σ = o(ω), we get for each m ∈ N the existence of C ′m such that for each z ∈ C \ Sσ(F, ε, C) the
following estimate holds∣∣∣∣ g(z)

F (z)

∣∣∣∣ ≤ Cm exp(k| Im z|+ 1
m

ω(z))
1
ε

exp(C| Im z|+ Cσ(z))

≤ C ′m exp((k + C)| Im z|+ 2
m

ω(z)).
(3.13)

Now note that from (3.13) and the estimates in (e) it follows by the maximum principle that for each
m ∈ N there exists C ′′m such that for each component s of Sσ(F, ε, C) and each z ∈ S we get the estimate∣∣∣∣ g(z)

F (z)

∣∣∣∣ ≤ C ′m exp((k + C) sup
ζ∈S

(| Im ζ|) +
2
m

sup
ζ∈S

ω(ζ))

≤ C ′m exp((k + C)D(1 + | Im z|+ σ(z)) +
2D

m
(1 + ω(z)))

≤ C ′′m exp((k + C)D| Im z|+ 3D

m
ω(z)).

(3.14)

Obviously, (3.13) and (3.14) imply that g/F ∈ A{ω}(C, R). Hence g = F (g/F ) ∈ FA{ω}(C, R). �

In order to apply Proposition 3.2 we recall the following sequence spaces from Meise [15], 1.4.

3.4. Definition. Let α = (αj)j∈N and β = (βj)j∈N be sequences of nonnegative real numbers and
let E = (Ej)j∈N be a sequence of Banach spaces. For R > 0 and m ∈ N let

K(E, R, m) := {x = (xj)j∈N ∈
∞∏

j=1

Ej : ‖x‖R,m := sup
j∈N

‖xj‖j exp(−Rαj − βj/m) < ∞}

and define the Fréchet space K(E, R, α, β) and the (LF)-space K(E, α, β) by

K(E, R, α, β) := proj←m K(E, R, m) and K(E, α, β) := indk→ proj←m K(E, k, m).

If Ej = C for each j ∈ N, then we write K(α, β) instead of K(E, α, β).

3.5. Remark. If limj→∞ βj = ∞ then for each k ∈ N the space proj←m K(k,m) is a Fréchet-Schwartz
space. Note that by Meise [15], Example 1.9 (2), the (LF)-space K(α, β) is in fact an (LB)-space,
whenever lim infj→∞ αj/βj > 0.

Because of Corollary 3.3, we get from Meise [15], Theorem 2.6, the following holds (for more details
we refer to the proof of Proposition 4.7 below):

3.6. Theorem. Let ω be a weight function and let F ∈ A{ω}(C, R) be {ω}-slowly decreasing. Then
A{ω}(C, R)/FA{ω}(C, R) is either finite dimensional or isomorphic to K(α, β), for the sequences α and
β defined as

α := (| Im aj |)j∈N, β := (ω(aj))j∈N,



ROUMIEU 9

where (aj)j∈N is an enumeration of the points in V (F ) with each point repeated as many times as the
multiplicity of the zero of F at this point.

From Braun, Meise, and Vogt [7], Proposition 3.7, and Vogt [28], Theorem 4.3, we recall the following
result.

3.7. Proposition. Let α and β be sequences of nonnegative real numbers such that limj→∞ βj = ∞.
Then K(α, β) is complete if and only if there exists δ > 0 such that each limit point of the set {αj/βj :
j ∈ N, βj 6= 0} is contained in {0} ∪ [δ,∞[.

3.8. Lemma. Let E = indn→En be an (LF)-space which is sequentially retractive and for which each
En is a Fréchet-Schwartz space. Let S : E → E be a continuous linear operator for which S(E) ∩ En is
closed in En for each n ∈ N. Then the following assertions are equivalent:

(1) S is an injective topological homomorphism.
(2) St : E′ → E′ is surjective.
(3) The (LF)-space E/S(E) := indn→En/(S(E) ∩ En) is sequentially retractive.
(4) E/S(E) is complete.
(5) E/S(E) is regular.

Proof. (1) ⇔ (2): This holds by Floret [9], Theorem 6.2.
(1) ⇒ (3): By the present hypothesis, we have the following short algebraically exact sequence of

(LF)-spaces with continuous linear maps

(3.15) 0 → E
S→ E

q→ E/S(E) → 0,

where S(E) carries the topology defined in (3) and where q is the quotient map. Next note that by
Wengenroth [31], Theorem 6.4, E is sequentially retractive if and only if E is acyclic, a concept explained
in [31] and Vogt [29], Section 1. Hence it follows from (3.15) and [29], Theorem 1.5, that E/S(E) is
acyclic and consequently sequentially retractive. Thus (3) holds.

(3) ⇒ (1): This implication follows from (3.15) by Vogt [29], Theorem 1.4, if we show the following:

(3.16) For each n ∈ N there is m ∈ N such that S−1(En) ⊂ Em.

To show this, we define on S(E) the (LF)-topology τ by (S(E), τ) := indn→(S(E) ∩ En). Then the
map S : E → (S(E), τ) is injective and has closed graph. Consequently, it is an injective topological
homomorphism. By the continuity of S−1 : (S(E), τ) → E and Grothendieck’s factorization theorem we
get for each n ∈ N the existence of m ∈ N such that

S−1(En) = S−1(S(E) ∩ En) ⊂ Em.

Thus, (3.16) holds and consequently (3) holds.
(3) ⇔ (4) ⇔ (5): This follows from Theorem 2.9. �

3.9. Theorem. Let ω be a weight function and let F ∈ A{ω}(C, R) be {ω}-slowly decreasing. Then
the following conditions are equivalent:

(1) MF : A{ω}(C, R) → A{ω}(C, R) is an injective topological homomorphism.
(2) There exists δ > 0 such that each limit point of the set {| Im a|/ω(a) : a ∈ V (F ), ω(a) 6= 0} is

contained in {0} ∪ [δ,∞[.

Proof. Note that A{ω}(C, R) = indn→An, where each An is a Fréchet-Schwartz space. By Corol-
lary 2.10, A{ω}(C, R) is sequentially retractive. Since F is {ω}-slowly decreasing, it follows from Proposi-
tion 3.2 that MF hat closed range. Thus, the hypotheses of Lemma 3.8 are fulfilled for S = MF and E =
A{ω}(C, R). Moreover, the open mapping theorem for (LF)-spaces implies that A{ω}(C, R)/FA{ω}(C, R)
and indn→An/(An ∩ FA{ω}(C, R)) are topologically equal. Hence Lemma 3.8 implies that condition (1)
is equivalent to the completeness of A{ω}(C, R)/FA{ω}(C, R). By Theorem 3.6 the latter space is isomor-
phic to K(γ, δ). From the definition of the sequences γ and δ in Theorem 3.6 and Proposition 3.7 it now
follows that A{ω}(C, R)/FA{ω}(C, R) is complete if and only if condition (2) holds. Hence we proved the
equivalence of (1) and (2). �

3.10. Theorem. Let ω be a weight function and let µ ∈ E{ω}(R)′, µ 6= 0, be given. Then the following
assertions are equivalent:
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(1) Tµ : E{ω}(R) → E{ω}(R) is surjective.
(2) The following two conditions are satisfied:

(a) µ̂ is {ω}-slowly decreasing.
(b) There exists δ > 0 such that each limit point of the set {| Im a|/ω(a) : a ∈ V (µ̂), ω(a) 6= 0}

is contained in {0} ∪ [δ,∞[.

Proof. (1)⇒ (2): Since the space E{ω}(R) is ultrabornological and webbed, the surjectivity of Tµ im-
plies that Tµ is open or equivalently a surjective topological homomorphism. By a result of Grothendieck
(see Köthe [13], 32, 4.(3)), T t

µ(E{ω}(R)′) is weakly closed in E{ω}(R)′ and hence closed. Because of
F ◦ T t

µ = Mµ̂ ◦ F , this implies that Mµ̂ has closed range. Therefore, µ̂ is {ω}-slowly decreasing by
Proposition 3.2. Hence condition (a) holds.
Moreover, also the hypotheses of Lemma 3.8 are fulfilled for E = A{ω}(C, R) and S = Mµ̂, since
A{ω}(C, R) is sequentially retractive by Corollary 2.10. From 2.7 we know that

(3.17) F t ◦M t
µ̂ = (T t

µ)t ◦ F t = Tµ ◦ F t.

This shows that M t
µ̂ is surjective. Hence Mµ̂ is an injective topological homomorphism, by Lemma 3.8.

Consequently, Theorem 3.9 implies that (b) holds.
(2) ⇒ (1): By Theorem 3.9 the conditions (a) and (b) imply that Mµ̂ : A{ω}(C, R) → A{ω}(C, R) is an

injective topological homomorphism. Hence the Theorem of Hahn-Banach implies that M t
µ̂ is surjective.

Since the space E{ω}(R) is reflexive, we get from (3.17) that Tµ is surjective. �

Of course, one wants to know which surjective convolution operators E{ω}(R) admit a continuous lin-
ear right inverse. We were only able to prove the following necessary condition, which is a characterization
in the non-quasianalytic case by Braun, Meise, and Vogt [7], Theorem 4.2.

3.11. Proposition. Let ω be a quasianalytic weight function which satisfies the condition (α1), let
µ ∈ E ′{ω}(R), µ 6= 0 be given, and assume that Tµ : E{ω}(R) → E{ω}(R) is surjective. If Tµ admits a
continuous linear right inverse, then

lim
a∈V (µ̂)
|a|→∞

| Im a|
ω(a)

= 0.

Proof. If we assume that the present condition does not hold then we can find a sequence ((aj)j∈N
in V (µ̂) and δ > 0 with | Im aj | ≥ δω(aj) for each j ∈ N. Proceeding by recurrence, we extract a
subsequence of (aj)j∈N, which we denote in the same way, such that

(i) |aj+1| ≥ 4|aj |, and for n(t) := card{j : |aj | ≤ t},
(ii) n(t) log t = o(ω(t)) as t →∞.

Applying [6], 1.7 and 1.8 (a), we find a weight function σ0(t) such that n(t) log t = o(σ0(t)) and σ0(t) =
o(ω(t)) as t →∞. As in [7], 3.11, we define

F (z) :=
∞∏

j=1

(
1− z

aj

)
, z ∈ C.

By Rudin [27], Theorem 15.6, F is an entire function such that its set of zeros consists of the sequence
(aj)j , and satisfies the following conditions:

(1) There exists C > 0 : |F (z)| ≤ C exp(σ0(z)), z ∈ C.
(2) There exists ε0 > 0 such that |F (ζ)| ≥ ε0 exp(−σ0(ζ)) for all ζ ∈ C \

⋃∞
j=1 B(aj , 1).

(3) There exist ε0 > 0,K0 > 0 such that for all ζ ∈ C with 1 ≤ |ζ − aj | ≤ 2 for some j:

|F (z)| ≥ ε0 exp(−K0σ0(z)), z ∈ C.

This can be achieved by the arguments given in [4], proof of Lemma 3.5, arguments based on Braun,
Meise, and Vogt [7], 3.11. In particular, F is (σ0)-slowly decreasing by (ii).

Since each aj is a zero of µ̂(z), it follows that g(z) := µ̂(z)/F (z) is an entire function. Since F
is (σ0)-slowly decreasing, we conclude g ∈ A(σ0)(C, R). On the other hand σ0(t) = o(ω(t)), hence
A(σ0)(C, R) ⊂ A{ω}(C, R), and the latter space is an algebra. This yields that Mg : A{ω}(C, R) →
A{ω}(C, R), Mg(h) := gh, is a continuous linear operator.
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By hypothesis, Mµ̂ : A{ω}(C, R) → A{ω}(C, R) admits a continuous linear left inverse Lµ̂. The
operator LF := Lµ̂ ◦ Mg : A{ω}(C, R) → A{ω}(C, R) is continuous and it is a left inverse of MF , since
LF MF (h) = h for each h ∈ A{ω}(C, R).

We define, for an entire function f ∈ H(C), %(f) := (f(aj))j ∈ CN. Proceeding as we did in the proof
of [4], Lemma 3.8 (a proof based on the method of the proof of Meise [14], Theorem 3.7), we conclude
from properties (1), (2), and (3) of F that

MF A{ω}(C, R) = ker % ∩A{ω}(C, R),

hence this principal ideal is closed, and the quotient A{ω}(C, R)/MF A{ω}(C, R) coincides with the se-
quence (LF)-space G := K(α, β) for α := (| Im aj |)j∈N and β := (ω(aj))j∈N. Since MF : A{ω}(C, R) →
A{ω}(C, R) has a continuous linear left inverse, we conclude that G is isomorphic to a complemented
subspace of A{ω}(C, R).

We now show that the (LF)-space G coincides algebraically and topologically with the (LB)-sequence
space

E := {y ∈ CN : ∃m : ‖y‖m := sup
j∈N

|yj | exp(−m| Im aj |) < ∞}.

Indeed, it is clear that E ⊂ G. On the other hand, if x ∈ G, there is n ∈ N such that for k = 1 we can
find C1 > 0 with

|xj | ≤ C1 exp(n| Im aj |+ ω(aj)) for each j ∈ N.

Since | Im aj | ≥ δω(aj) for each j, we select m ∈ N, m > n + δ−1, we get

|xj | ≤ C1 exp(m| Im aj |) for each j, and x ∈ E.

By the closed graph theorem E = G also topologically.
This implies that G is isomorphic to the dual of the power series space Λ∞((| Im aj |)j∈N) of infinite

type and is complemented in A{ω}(C, R) ∼= E{ω}(R)′. This yields that Λ∞((| Im aj |)j∈N) is isomorphic
to a complemented subspace of E{ω}(R). Since ω satisfies (α1), this implies by Vogt [30] or Bonet and

Domanski [1], Corollary 2.5, that Λ∞((| Im aj |)j∈N) has property (Ω). This, however, is a contradiction.
�

4. Ultradifferential operators on compact intervals

In this section we show that the surjectivity of {ω}-ultradifferential operators on E{ω}[a, b] is charac-
terized by µ̂ being {ω}-slowly decreasing.

4.1. Definition. Let ω be a weight function and assume that for µ ∈ E ′{ω}(R) its Fourier-Laplace
transform µ̂ is in A{ω}. Then the operator Tµ will be called an {ω}-ultradifferential operator since for
each f ∈ E{ω}(R) we have

Tµ(f) =
∞∑

j=0

ij
µ̂(j)(0)

j!
f (j).

4.2. Definition. For a weight function ω and for R > 0 define the Fréchet space A{ω,R} of entire
functions by

A{ω,R} := proj←m A([−R,R],
1
m

).

We also define the space
A(ω,R) := indn→A([−R,R], n),

which is a (DFN)-space.

4.3. Remark. By Rösner [26], 2.19, for each weight function ω and each R > 0, the Fourier-Laplace
transform F : E ′{ω}[−R,R] → A{ω,R} is a linear topological isomorphism.

4.4. Proposition. Let ω be a weight function. For F ∈ A{ω}, F 6= 0, the following conditions are
equivalent:

(1) F is {ω}-slowly decreasing.
(2) For each R > 0 and each g ∈ A{ω,R} which satisfies g/F ∈ H(C), the function g/F is in A{ω,R}.



12 J. BONET AND R. MEISE

(3) For each R > 0 the multiplication operator

MF : A{ω,R} → A{ω,R}, MF (g) := Fg,

has closed range.
(4) For each R > 0 the map MF defined in (3) is an injective topological homomorphism.

Proof. (1)⇒ (2): Note first that a standard application of Braun, Meise, and Taylor [6], Lemma 1.7,
implies the existence of a weight function σ1 satisfying σ1 = o(ω) such that F ∈ A(σ) for each weight
function σ which satisfies σ1 = o(σ). Since g ∈ A{ω,R}, we can find a weight function σ2 and C2 > 0 such
that σ2 = o(ω) and such that

|g(z)| ≤ C2 exp(R| Im z|+ σ2(z)), z ∈ C.

Next note that because of the hypothesis (1) it follows from Proposition 3.2 that there exists a weight
function σ3 with σ3 = o(ω) such that F ∈ A(σ3) and F is (σ3)-slowly decreasing. Now choose a weight
function σ which satisfies σ = o(ω) and max(σ1, σ2, σ3) ≤ σ. Then we have g ∈ A(σ,R), F ∈ A(σ) and
that F is (σ)-slowly decreasing. Since g/F ∈ H(C) by hypothesis, it follows from [5], Lemma 4.6, that
g/F ∈ A(σ,R) ⊂ A{ω,R}. Hence we showed that (2) holds.

(2)⇒ (3): Obviously, the inclusion map J : A{ω,R} → H(C) is linear and continuous and the principal
ideal FH(C) is closed in H(C). Hence J−1(FH(C)) is closed in A{ω,R}. Because of J−1(FH(C)) =
FA{ω,R} = MF (A{ω,R}), this implies that (3) holds.

(3) ⇒ (4): Since MF is injective and since A{ω,R} is a Fréchet space, this follows from the closed
range theorem (see Meise and Vogt [19], 26.3).

(4) ⇒ (1): If we show that M−1
F : FA{ω}(C, R) → A{ω}(C, R) is sequentially continuous then it

follows from Proposition 3.2 (d) that (1) holds. To do so, let (Fhj)j∈N be a sequence in FA{ω}(C, R)
that satisfies limj→∞ Fhj = 0. By Corollary 2.10, the inductive limit A{ω}(C, R) = indn→A{ω,n} is
sequentially retractive. Hence there exists n ∈ N such that (Fhj)j∈N is in fact a sequence in A{ω,n} and
converges to 0 in this space. Now (2) implies that (hj)j∈N converges to zero in A{ω,n} and consequently
in A{ω}(C, R). �

4.5. Corollary. Let ω be a weight function and let Tµ 6= 0 be an {ω}-ultradifferentiable operator.
Then the Fourier-Laplace transform µ̂ of µ is slowly decreasing if and only if for each a, b ∈ R with a < b
the convolution operator

Tµ,[a,b] : E{ω}[a, b] → E{ω}[a, b]
is surjective.

Proof. Since Tµ commutes with translations, it is enough to prove the corollary for [a, b] = [−R,R]
and each R > 0. Since E{ω}[−R,R] is a (DFN)-space the strong dual of which is isomorphic to A{ω,R}
via Fourier-Laplace transform (by Remark 4.3) and since F ◦ T t

µ,[−R,R] = Mµ̂ ◦ F , the corollary follows
from the closed range theorem (see, e.g., Meise and Vogt [18], 26.3). �

4.6. Lemma. Let ω be a weight function and assume that F ∈ A{ω} is {ω}-slowly decreasing. Then
there exists a weight function σ satisfying σ = o(ω) such that F ∈ A(σ). Moreover, there exist ε0, C0, and
D > 0 such that each connected component S of the set

Sσ(F, ε0, C0) := {z ∈ C : |F (z)| < ε0 exp(−C0σ(z))}
satisfies

diam S ≤ D inf
z∈S

σ(z) + D and sup
z∈S

ω(z) ≤ D inf
z∈S

ω(z) + D.

Proof. By Proposition 3.2 there exists a weight function σ1 satisfying σ1 = o(ω) such that F ∈
A(σ1)(C, R) and F is (σ1)-slowly decreasing. From Braun, Meise, and Taylor [6], Lemma 1.7, we get
the existence of a weight function σ2 satisfying σ2 = o(ω) and F ∈ A(σ2). Hence we can choose a
weight function σ which satisfies max(σ1, σ2) ≤ σ and σ = o(ω). Then F ∈ A(σ) and F is (σ)-slowly
decreasing. Thus F satisfies the hypotheses of [5], Lemma 4.2. Therefore, [5], Lemma 4.3, implies the
existence of positive numbers ε0, C0, and D such that for each component S of Sσ(F, ε0, C0) we have
diam S ≤ D infz∈S σ(z) + D. To show that we also have

(4.1) sup
z∈S

ω(z) ≤ D inf
z∈S

ω(z) + D
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for each component S of Sσ(F, ε0, C0), provided that D > 0 is large enough, we remark that the following
was shown in the proof of [5], Lemma 4.3: There exist m ∈ N and R0 ≥ 1 such that for each z0 ∈
Sσ(F, ε0, C0) satisfying |z0| ≥ R0 the connected component S of Sσ(F, ε0, C0) which contains z0 satifies

diam S ≤ 4mσ(z0).

It is no restriction to assume that R0 is so large that from 2.1 (α) and (β) and σ = o(ω) we get the
existence of L and K0 ≥ 1 such that

σ(t) ≤ ω(t) ≤ Lt and ω(2t) ≤ K0ω(t), t ≥ R0.

Next we fix a component S of Sσ(F, ε0, C0) such that S ∩ (C \B(0, R0)) 6= ∅ and we choose z0 ∈ S with
|z0| ≥ R0 as well as z1, z2 ∈ S such that

inf
z∈S

ω(z) = ω(z1) and sup
z∈S

ω(z) = ω(z2).

In the proof of [5], Lemma 4.3, it was shown that then |z0| ≤ 2|z1|. By our choices, this implies

|z2| ≤ |z2 − z1|+ |z1| ≤ diam S + |z1| ≤ 4mσ(z0) + |z1|
≤ 4mω(2|z1|) + |z1| ≤ 4mK0ω(z1) + |z1| ≤ (4mLK0 + 1)|z1|.

Since ω satisfies 2.1 (α), this estimate implies the existence of K1 ≥ 1 such that

sup
z∈S

ω(z) = ω(z2) ≤ ω((4mLK0 + 1)|z1|) ≤ K1ω(z1) = K1 inf
z∈S

ω(z).

Since there are only finitely many components S of Sσ(F, ε0, C0) which are contained in B(0, R0), we
proved (4.1), provided that we choose D > 0 large enough. �

4.7. Proposition. Let ω be a weight function and let F ∈ A{ω} be {ω}-slowly decreasing. For
R > 0 denote by qR : A{ω,R} → A{ω,R}/FA{ω,R} and by q : A{ω}(C, R) → A{ω}(C, R)/FA{ω}(C, R) the
corresponding quotient maps. Let JR : A{ω,R} → A{ω}(C, R) be the inclusion map. Then for each R > 0
the map JR induces a continuous linear injection jR : A{ω,R}/FA{ω,R} → A{ω}(C, R)/FA{ω}(C, R) which
satisfies jR ◦ qR = JR ◦ q.

Proof. Fix R > 0 and note that FA{ω,R} is a closed linear subspace of A{ω,R} by Proposition 4.4,
while FA{ω}(C, R) is closed in A{ω}(C, R) by Proposition 2.4. Next note that the result holds trivially
if F has only finitely many zeros. Therefore, we assume from now on that V (F ) := {a ∈ C : F (a) = 0}
is an infinite set. Then we choose a weight function σ and positive numbers ε0, C0, and D according to
Lemma 4.6 and we label the connected components S of Sσ(F, ε0, C0) which satisfy S∩V (F ) 6= ∅ in such
a way that the sequence β, defined by

βj := sup
z∈Sj

ω(z), j ∈ N.

is increasing. Also, we define the sequence α by

αj := sup
z∈Sj

| Im z|, j ∈ N,

Then we define the sequence E = (Ej)j∈N by

Ej :=
∏

b∈Sj∩V (F )

Cord(F,b), j ∈ N,

and we let

%j : H∞(Sj) → Ej , %j(f) :=
(( 1

k!
f (k)(b)

)
0≤k<ord(F,b)

)
b∈Sj∩V (F )

.

We endow Ej with the quotient norm

‖%j(g)‖ := inf{‖h‖H∞(Sj) : %j(h) = %j(g)}, g ∈ H∞(Sj).

Then %j is linear, continuous, and surjective. If f ∈ A{ω,R}, then for each m ∈ N there exists Cm > 0
such that

|f(z)| ≤ Cm exp(R| Im z|+ 1
m

ω(z)), z ∈ C.
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Obviously, this implies that for each m ∈ N and each j ∈ N we have

‖f |Sj
‖H∞(Sj) ≤ Cm exp(Rαj +

1
m

βj).

Hence the map
%R : A{ω,R} → K(E, R, α, β), %R(f) := (%j(f |Sj

))j∈N

is well-defined, linear, and continuous. By the definition of the spaces A{ω}(C, R) = indn→A{ω,n} and
K(E, α, β) = indn→K(E, n, α, β) also the map

% : A{ω}(C, R) → K(E, α, β), %(f) := (%j(f |Sj
))j∈N

is well-defined, linear, and continuous.
Next we claim that ker %R = FA{ω,R} and ker % = FA{ω}(C, R). Obviously, FA{ω,R} is contained in

ker %R. To prove the converse inclusion, fix g ∈ ker %R. Then g/F is in H(C). By Proposition 4.4 this
implies that g ∈ FA{ω,R}. Since A{ω}(C, R) = indn→A{ω,n}, this implies ker % = FA{ω}(C, R).

To show that %R is surjective, fix y = (yj)j∈N in K(E, R, α, β). By the definition of the norm in Ej ,
we can choose λj ∈ H∞(Sj) satisfying

%j(λj) = yj and ‖yj‖H∞(Sj) ≤ 2‖yj‖j , j ∈ N.

Then we define

λ : Sσ(F, ε0, C0) → C, λ(z) = λj(z) if z ∈ Sj and λ(z) = 0 if z ∈ C \
∞⋃

j=1

Sj

and we claim that for each m ∈ N there exist p ∈ N and Cm > 0 such that

(4.2) sup
z∈C

|λ(z)| exp(−R| Im z| − 1
m

ω(z)) ≤ Cm‖y‖R,p.

To prove this, fix m ∈ N and choose p ≥ 2Dm. Since σ = o(ω), there exists Cm > 0 such that

2 exp(RDσ(t) + (R + 1)D) ≤ Cm exp(
D

p
ω(t)) for t ≥ 0.

Then we get for each j ∈ N and each z ∈ Sj the following estimate

|λj(z)| ≤ 2‖yj‖j ≤ 2‖y‖R,p exp(Rβj +
1
p
αj)

≤ 2‖y‖R,p exp(R| Im z|+ R diam Sj +
1
p
(Dω(z) + D))

≤ 2‖y‖R,p exp(R| Im z|+ RDσ(z) + (R + 1)D +
D

p
ω(z))

≤ Cm‖y‖R,p exp(R| Im z|+ 1
m

ω(z)),

which implies (4.2).
Next note that by Lemma 4.6 there exists B > 0 such that

|F (z)| ≤ B exp(Bσ(z)), z ∈ C.

Hence it follows from the proof of [5], Lemma 4.7, that there exist ε1, C1 > 0, χ ∈ C∞(C) and A0, B0 > 0
such that
(4.3)

0 ≤ χ ≤ 1, χ ≡ 1 on Sσ(F, ε1, C1), Suppχ ⊂ Sσ(F, ε0, C0), and
∣∣∣∣∂χ

∂z
(z)

∣∣∣∣ ≤ A0 exp(B0σ(z)), z ∈ C.

Now define
v := − 1

F

∂

∂z
(χλ) = − 1

F

∂χ

∂z
λ

and note that v is in C∞(C) and vanishes on Sσ(F, ε1, C1). Moreover, we get from (4.2) and (4.3) that
for each m ∈ N there exist p ∈ N and Cm > 0 such that for each z ∈ C we have

|v(z)| ≤ 1
ε1

A0Cm‖y‖R,p exp(R| Im z|+ 1
m

ω(z) + (B0 + C1)σ(z)).
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Using Lemma 1.7 of Braun, Meise, and Taylor [6], we get the existence of a weight function τ ≥ σ and
of A1 > 0 such that

|v(z)| ≤ A1 exp(R| Im z|+ τ(z)), z ∈ C.

Since τ satisfies condition 2.1 (γ), this estimate implies∫
C
(|v(z)| exp(−R| Im z| − 2τ(z)))2dz < ∞.

By Hörmander [12], Theorem 4.4.2, there exists g ∈ L2
loc(C) which satisfies ∂g

∂z = v and

(4.4)
∫

(|g(z)| exp(−R| Im z| − 2τ(z)− log(1 + |z|2)))2dz < ∞.

Since v is a C∞-function on C and since ∂
∂z is elliptic, g belongs to C∞(C). By the choice of v, we now

get that f := χλ + gF ∈ C∞(C) and ∂f
∂z = 0, i.e., f ∈ H(C). Now the estimates for λ in (4.2), for g in

(4.4), and for F imply a weighted L2-estimate for f which can be converted by standard arguments to a
sup-estimate which shows that f is in fact in A{ω,R}. By the definition of f and λ, we get

%(f) = (%j(f |Sj ))j∈N = (%j(λj))j∈N = y.

Hence we proved that %R : A{ω,R} → K(E, R, α, β) is surjective. Since K(E, α, β) = indn→K(E, n, α, β)
and A{ω}(C, R) = indn→A{ω,R} we also get that % : A{ω}(C, R) → K(E, α, β) is surjective. Since
ker %R = FA{ω,R} and ker % = FA{ω}(C, R), classical open mapping theorems show that we can identify
A{ω,R}/FA{ω,R} with K(E, R, α, β) and A{ω}(C, R)/A{ω}(C, R) with K(E, α, β). If we do this % and %R

are the corresponding quotient maps. Now note that by the definition of the maps %R and %, the following
diagram, where jR : K(E, R, α, β) → K(E, α, β) denote the inclusion, is commutative

A{ω,R}
%R

→ K(E, R, α, β)
↓ JR ↓ jR

A{ω}(C, R)
%→ K(E, α, β).

Thus the proof is complete. �

4.8. Remark. Under the hypotheses of Proposition 4.7 we proved that for each R > 0 the space
A{ω,R}/FA{ω,R} is topologically isomorphic to the Fréchet space K(E, R, α, β), as the proof of 4.7 shows.

4.9. Corollary. Let ω be a weight function, let F be {ω}-slowly decreasing, and assume that
lim|a|→∞, a∈V (F ) | Im a|/ω(a) = 0. Then for each R > 0 the map jR, defined in Proposition 4.7,
jR : A{ω,R}/A{ω,R} → A{ω}(C, R)/FA{ω}(C, R) is surjective and hence a linear topological isomorphism.

Proof. From the proof of Proposition 4.7 and the open mapping theorem it follows that we only
have to show that K(E, α, β) ⊂ K(E, R, α, β). In fact we will show that K(E, α, β) ⊂ K(E, 0, α, β). To
do so we fix y ∈ K(E, α, β). Then there exists n ∈ N such that for each m ∈ N there exists Cm > 0 such
that for each j ∈ N

‖yj‖j ≤ Cm exp(nαj +
1

2m
βj).

Next choose a weight function σ = o(ω) so that the assertions of Lemma 4.6 hold and for each j ∈ N
choose aj ∈ Sj . (If V (F ) is finite, there is nothing to prove). Then we get from Lemma 4.6

αj = sup
z∈Sj

| Im z| ≤ | Im aj |+ diam Sj ≤ | Im aj |+ Dσ(aj) + D.

Since lim|a|→∞, a∈V (F ) | Im a|/ω(a) = 0, for each m ∈ N there exists Dm > 0 such that

| Im a| ≤ 1
4mn

ω(a) + Dm, a ∈ V (F )

and we can choose Km > 0 such that

Dσ(t) + D ≤ 1
4mn

ω(t) + Km, t ≥ 0.
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Then we get

nαj +
1

2m
βj ≤

1
4m

ω(aj) +
1
4n

ω(aj) + nDm + Km ≤ 1
2m

βj + nDm + Km

and hence
‖yj‖j ≤ Cm exp(nDm + Km) exp(

1
m

βj), j ∈ N.

This shows that y is in fact in K(E, 0, α, β). �

4.10. Proposition. Let ω be a weight function and let Tµ 6= 0 be an {ω}-ultradifferentiable operator.
If the Fourier-Laplace transform µ̂ of µ is slowly decreasing, then for each a, b ∈ R with a < b the following
assertions hold:

(1) kerTµ,[a,b] is isomorphic to Λ0(γ)′b, where γ = (ω(aj))j∈N and where (aj)j∈N counts the zeros of
µ̂ with multiplicities in such a way that (ω(aj))j∈N is increasing.

(2) If lim|z|→∞,z∈V (µ̂) | Im(z)|/ω(z) = 0 then the map %[a,b] : kerTµ → ker Tµ,[a,b], %[a,b](f) := f |[a,b],
is an isomorphism.

Proof. Since Tµ commutes with translations, it suffices to consider intervals of the form [−R,R] for
R > 0. By Proposition 4.7 the short sequence

0 → A{ω,R}
Mµ̂→ A{ω,R}

qR→ A{ω,R}/µ̂A{ω,R} → 0

of Fréchet-Schwartz spaces and continuous linear maps is exact. Hence its dual sequence is exact, too,
by Meise and Vogt [18], Proposition 26.24. Since the spaces E{ω}[−R,R] are reflexive, it follows from
Remark 4.3 and µ̂A{ω,R} = imMµ̂ = (ker M t

µ)⊥ that up to Fourier-Laplace transform the dual sequence
can be identified with

0 → ker Tµ,[−R,R] → E{ω}[−R,R]
Tµ,[−R,R]→ E{ω}[−R,R] → 0.

Hence we get from Remark 4.8 that kerTµ,[−R,R] is isomorphic to (A{ω,R}/µ̂A{ω,R})′ ∼= (K(E, R, α, β))′.
Now note that K(E, R, α, β) is a nuclear Fréchet space which is isomorphic to K(E, 0, α, β) = Λ0(E, β)
by an obvious diagonal transform. Now (1) follows from Meise [14], Proposition 1.4, by the definition of
the sequence E and the diameter estimates for the sets Sj in the proof of Proposition 4.7.

To prove (2), note that by the arguments in Meise [15], 3.4, we have (kerTµ)′ ∼= E ′{ω}(R)/(ker Tµ)⊥ ∼=
A{ω}(C, R)/µ̂A{ω}(C, R) via Fourier-Laplace transform. Hence for each R > 0 we have the following
commutative diagram with exact rows:

0 → ker Tµ → E{ω}(R)
Tµ→ E{ω}(R) → 0

↓ %[−R,R] ↓ %[−R,R] ↓ %[−R,R]

0 → ker Tµ,[−R,R] → E{ω}[−R,R]
Tµ,[−R,R]→ E{ω}[−R,R] → 0 .

If we dualize it and apply the Fourier-Laplace transform, the dual map of %[−R,R] : kerTµ → ker Tµ,[−R,R]

corresponds to the map jR : A{ω,R}/µ̂A{ω,R} → A{ω}(C, R)/µ̂A{ω}(C, R), defined in Proposition 4.7. As
we showed in the proof of 4.7, jR becomes the inclusion of K(E, R, α, β) in K(E, α, β), if we identify the
corresponding quotient spaces with these vector-valued sequence spaces. Since lim|z|→∞,z∈V (µ̂) | Im z|/ω(z) =
0 holds by hypothesis, it follows easily that

K(E, R, α, β) = K(E, 0, α, β) = K(E, α, β)

as sets but also as locally convex spaces. Therefore, jR is a linear topological isomorphism. Next note
that kerTµ,[−R,R] is reflexive as closed subspace of a (DFS)-space. To see that also kerTµ is reflexive,
we argue as follows: By Theorem 3.10, the present hypotheses imply that Tµ : E{ω}(R) → E{ω}(R) is
surjective. Since Proj1 E{ω}(R) = 0 by Meyer [21], Theorem 3.7, (or Rösner [26], Satz 3.25) it follows
from the long exact sequence theorem (see Wengenroth [31], Corollary 3.1.5) that Proj1 ker Tµ = 0.
Hence kerTµ is ultrabornological by Wengenroth [31], Theorem 3.3.4. Therefore, the semi-reflexive space
ker Tµ is reflexive. Hence %[−R,R] : kerTµ → ker Tµ,[−R,R] is an isomorphism, too. �

4.11. Remark. If ω is non-quasianalytic and Tµ is a convolution operator on E{ω}(R) which is
surjective, then Theorem 4.2 in Braun, Meise, and Vogt [7] shows that Tµ admits a continuous linear
right inverse if and only if lim|a|→∞,a∈V (µ̂) | Im a|/ω(a) = 0. In the quasianalytic case, so far we only have
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the necessity of this condition by Proposition 3.11. For {ω}-ultradifferential operators, the sufficiency of
this condition will follow from Proposition 4.10 as soon as one knows that for some R > 0 the operator
Tµ,[−R,R] admits a continuous linear right inverse. Because then one can apply the formal arguments
that were used in [5], Corollary 4.11, in the Beurling case and which were first applied by Domanski and
Vogt [8], Theorem 4.7, in the real-analytic case. However, it is still open, whether Tµ,[−R,R] admits a
continuous linear right inverse. The main difficulty is that the linear topological structure of E{ω}[−R,R]
or equivalently of A{ω,R} is not known.

Problem: Is A{ω,R} isomorphic to a power series space of finite type?

Remark. It follows easily from Meise and Taylor [16], Lemma 1.10, that A{ω,R} has the property
(DN). If ω is non-quasianalytic then [16], Corollary 6.4, in connection with [18], Proposition 29.18, shows
that A{ω,R} is isomorphic to a power series space of finite type.

References

[1] J. Bonet, P. Domanski: Parameter dependence of solutions of differential equations on spaces of distributions and the
splitting of short exact sequences, J. Funct. Analysis 230 (2006), 329–381.

[2] J. Bonet, A. Galbis, R. Meise: On the range of convolution operators on non-quasianalytic ultradifferentiable functions,

Studia Math. 126 (1997), 171–198.
[3] J. Bonet, A. Galbis, S. Momm: Nonradial Hörmander algebras of several variables and convolution operators, Trans.

Amer. Math. Soc. 353 (2001), 2275–2291.
[4] J. Bonet, R. Meise: Quasianalytic functionals and projective descriptions, Math. Scand. 94 (2004), 249–266.

[5] J. Bonet, R. Meise: Characterization of the convolution on quasianalytic classes of Beurling type that admit a contin-

uous linear right inverse, Studia Math. 184 (2008), 49–77.
[6] R.W. Braun, R. Meise, B.A. Taylor: Ultradifferentiable functions and Fourier analysis, Result. Math. 17 (1990),

206–237.

[7] R.W. Braun, R. Meise, D. Vogt: Existence of fundamental solutions and surjectivity of convolution operators on classes
of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344–370.

[8] P. Domanski, D. Vogt: Linear topological properties of the space of analytic functions on the real line, p. 113–132

in Recent Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, M. Maestre, J. Schmets (eds.), North-Holland
Math. Studies 189 (2001).

[9] K. Floret: Some aspects of the theory of locally convex inductive limits, p. 205–237, in ”Functional Analysis: Surveys

and Recent Results” (Ed. K.-D. Bierstedt, B. Fuchssteiner), North-Holland Math. Studies 38 (1980).
[10] T. Heinrich, R. Meise: A support theorem for quasianalytic functionals, Math. Nachr. 280 (2007), 364–387.
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